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ABSTRACT 

Today, mammography is the best method for early 
detection of breast cancer. Radiologists failed to de- 
tect evident cancerous signs in approximately 20% of 
false negative mammograms. False negatives have been 
identified as the inability of the radiologist to detect 
the abnormalities due to several reasons such as poor 
image quality, image noise, or eye fatigue. This paper 
presents a framework for a computer aided detection 
system that integrates Principal Component Analysis 
(PCA), Fisher Linear Discriminant (FLD), and Nearest 
Neighbor Classifier (KNN) algorithms for the detec-
tion of abnormalities in mammograms. Using normal 
and abnormal mammograms from the MIAS data- 
base, the integrated algorithm achieved 93.06% clas-
sification accuracy. Also in this paper, we present an 
analysis of the integrated algorithm’s parameters and 
suggest selection criteria.  
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1. INTRODUCTION 

Breast cancer is the most common form of cancer in 
women; however, its early detection has proven to save 
lives. In the USA, 39,840 women and 390 males died 
due to this disease in 2010. Currently, there are more 
than two and a half million women living in United 
States have been diagnosed and treated from breast can-
cer [1]. The National Cancer Institute also estimates that 
12.7% of women born today will be diagnosed with 
breast cancer at some time in their lives [1]. 

Today, mammography is the best method for early 
detection of breast cancer. Lesion size, density of breast 

tissue, age of the patient, image quality, and the radiolo-
gist’s skills to interpret the mammogram are the factors 
that affect sensitivity of cancerous tissues identification. 
The best known possible remedy and successful treat-
ment for breast cancer is the early detection as it has 
considerably reduced the mortality rates in the past years 
[2]. It is hence very important for women to monitor 
their risk factors and maintain their periodical screening. 

Radiologists failed to detect evident cancerous signs in 
approximately 20% of false negative mammograms [3]. 
The subtle difference between the cancerous and non- 
cancerous regions is the main cause of false diagnosis. 
The sensitivity of mammography has been reported to 
improve if two radiologists examine the mammogram [4]. 
However, this is a costly solution and therefore other 
alternatives to this problem have to be investigated. 
Computer Aided Detection (CAD) is one of those alter- 
natives. The CAD is a system used to assist radiologists 
through reading, analyzing, and then labelling the mam-
mograms as normal or abnormal. It was reported that the 
cancer detection rates of a single reader with a CAD sys-
tem and of two readers are similar [5]. 

A number of researchers have investigated principal 
component analysis (PCA), Fisher linear discriminant 
(FLD), and nearest neighbor classifier (KNN) algorithms. 
For instance, in [6], Hough transform, PCA, and Euclid-
ean distance were integrated to detect abnormalities in 
mammograms. In [7], PCA and FLD algorithms were 
cascaded as dimensionality reduction modules followed 
by a discriminant analysis classifier. In [8], PCA, linear 
discriminant analysis (LDA), and probabilistic classifica-
tion have been integrated to classify healthy and diseased 
human blood serum. In [9], PCA, LDA, and PCA-LDA 
were investigated as dimensionality reduction techniques 
for speech recognition. Results indicated that the com-
bined PCA-LDA outperformed the individual algorithms. 
In [10], the performance of PCA-KNN and PCA-LDA *Corresponding author. 
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was investigated for the face recognition problem. It was 
concluded that PCA-KNN outperformed PCA-LDA. 

In this work, we develop a CAD system that confi-
dently provides the radiologist a second reader opinion 
about mammographic images. The proposed CAD sys- 
tem integrates PCA as a decorrelation-based module, 
FLD as a dimensionality reduction and feature extraction 
module, and KNN as a classification module. The inte-
gration of PCA and FLD allows the CAD algorithm to 
use more than one Eigen vector in the Fisher domain 
which should improve the classification accuracy. The 
rest of this paper is organized as follows: Section 2 pre-
sents PCA, FLD, and KNN algorithms. The proposed 
integrated approach is presented in Section 3. Section 4 
presents the experimental results followed by the conclu-
sions in Section 5. 

2. THEORY 

2.1. Principal Component Analysis 

PCA is a linear transformation and a decorrelation-based 
technique that maps a high dimensional space into a 
lower dimensional space. PCA is used as a preprocessing 
step to improve speed and accuracy of the classification 
stage while decreasing its complexity. PCA transforms 
the data set into a different coordinate system where the 
first coordinate in the transformed domain, called the 
principal component, has the maximum variance and the 
rest of the coordinates have lesser and lesser variance 
values. 

2.2. Fisher Linear Discriminant 

Linear discriminant analysis (LDA) is used to discrimi- 
nate between data classes and most commonly used in 
the two-class problem [11]. On the other hand, Fisher 
linear discriminant (FLD) is the benchmark for linear 
discrimination between two classes in the multidimen-
sional space [11]. FLD was reported with attractive com- 
putational complexity since it is only based on the first 
and second moments of the data distribution [11]. 

FLD uses a projection matrix W to reshape the data 
set’s scatter matrix in order to maximize the classes’ sepa-
rability. W represents the optimally discriminating fea-
tures and is defined as the ratio of between-class scatter 
to within-class scatter. The transformation matrix W is 
defined as [12]: 
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where C represents number of classes, i  is the mean 
of samples in class i. Then, the matrix 

 1 2, , , DW      

is constructed according to Equation (1). Next, the ma-
trix d  is formed by retaining d eigenvectors which is 
defined as 

W
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 where d is less than D. 
The output matrix  is the projection of vector 

 into a subspace of d dimension. x
The PCA algorithm transforms the data into an Ei- 

genspace that uncorrelates the data. However, in case of 
a two-class problem, the two classes are not completely 
linearly separable as shown in Figure 1(a) which com-
plicates and degrades the classification phase. Therefore, 
FLD algorithm is applied after PCA resulting in a better 
between-class scatter as shown in Figure 1(b). Conse-
quently, the classification results should be greatly im-
proved. 
 

 
(a) 

 
(b) 

Figure 1. (a) The resultant data after PCA 
for the two-class problem; (b) The resultant 
data after PCA-FLD. 
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2.3. Nearest Neighbor Classifier 

The Nearest Neighbor is a simple yet a robust classifier 
where an object is assigned to the class to which the ma-
jority of the nearest neighbors belong. It is important to 
consider only those neighbors for which a correct classi-
fication is already known (i.e., training set). All the ob-
jects are considered to be present in the multidimen- 
sional feature space and are represented by position vec-
tors where these vectors are obtained through calculating 
the distance between the object and its neighbors. The 
multidimensional space is divided into regions utilizing 
the locations and labels of the training data. An object in 
this space will be labeled with the class that has the ma-
jority of votes among the k-nearest neighbors. The algo-
rithm of the nearest neighbor classifier can be summa-
rized as follows: 
- In the training phase, the feature vectors and their class 

labels are found as    1 1, , , ,n nx x   where each 

i  is a label that belongs to one of the classes 
, , ,1 2 c   . 

- In the testing phase, the distance of a testing vector to 
the training vectors is computed and the closest 
training sample is chosen. Then, the testing sample is 
labeled according to the label of the nearest neighbor. 

3. PROPOSED CAD ALGORITHM 

In this section, the framework of the breast cancer com- 
puter aided detection system is developed. PCA algo-
rithm is used as a decorrelation-based module followed 
by FLD as a dimensionality reduction and a feature ex-
traction module. Finally, a KNN classifier is used to 
classify the testing sub-images into normal or abnormal. 

Mammographic images from the MIAS database were 
used, which has a total 203 normal mammograms and 
119 suspicious ones. A total of 144 images were cropped 
and scaled to 50 × 50 pixels from the database forming 
72 normal and 72 suspicious sub-images. A total of 3 
training sets are created. Each training set consisted of 48 
sub-images: 24 suspicious and 24 normal sub-images. 

The proposed CAD system consists of a training phase, 
testing phase, and classification phase. The following 
steps summarize the training phase: 
- Each sub-image in the training set is converted into a 

column vector gk where 1,2, , 48.k  

1,2, ,k  

 Then, a train-
ing matrix Gjk is formed by placing the sub-images as 
columns where j = 2500 and 48.   

- Row-wise mean of the matrix Gjk is computed which 
results in a column vector A. 

- A matrix Bjk is formed by repeating the column vector 
A number of times equal to number of the sub-images 
(i.e., 48).  

- The deviation of each sub-image from the row-wise 
mean of the sub-images is calculated per Djk = Gjk – 

Bjk.. 
- The covariance matrix of Djk is computed using 

Eq.4: 
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where m is the number of rows in A (i.e., 48). 
- The eigenvalues λ and eigenvectors V of the matrix 

Cmm are computed using the PCA algorithm accord-
ing to Eq.5. This result in m eigenvectors and m ei-
genvalues sorted in a descending order. 

mmC V V                   (5) 

- The centered sub-images matrix Djk is projected onto 
the Eigenspace per Eq.6. 

T
mm jkY V D                  (6) 

- Two types of scatter matrices are used in this step. 
The first one is the within-class scatter matrix WS  
representing the scatter of a single class and the sec-
ond one is the between-class scatter matrix BS  re- 
presenting the scatter of different classes: 
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where C represents number of classes, i  is the mean 
of samples in class i where i = {1, 2}, and   is the 
mean of all samples in the training matrix. Both BS  and 

 are of dimension 48 × 48. WS
- A linear transformation matrix W is computed as: 
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the between-class scatter while minimizes the within- 
class scatter and  1 2, , ,i w w  mw w  is the set of m Ei-
genvectors and m eigenvalues of BS  and W . The 
transformation W is another projection into the Eigen-
space 
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A number of eigenvalues is retained (Nev) along with 
their corresponding Eigenvectors (Vfe) where the di- 
mension of Vfe is M × Nev. 
- The matrix Ymm is projected onto the Fisher linear 

space Zpq using the Eigenvectors Vfe as shown in 
Eq.8. 

T
pq fe mmZ V Y                 (8) 

where the dimension of Zpq is Nev × 48. 
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On the other hand, the testing phase can be sum- 
marized in the following steps: 
- A total of three testing sets are used where each test 

set consists of 48 sub-images: 24 normal and 24 ab-
normal sub-images.  

- Let the testing set be represented as  1 2 48, , ,t t t . 
- For each testing sub-image kt , the difference be- 

tween the sub-image and the mean of the training set 
A is computed using Eq.9. 

, 1, 2, ,t
jk kt A k M              (9) 

- The difference γjk is projected onto the Eigenspace 
Ymm and the Eigenvectors space Vfe as shown in 
Eq.10. 

T T
pq fe mm jP V Y k              (10) 

For the classification phase, two classes are assumed: 
one class for the abnormal sub-images and the other one 
for normal sub-images. First, the Euclidean distance be-
tween the testing matrix Ppq and each column of the 
Fisher linear space Zpq is computed. This distance pro-
vides an accurate measure for the classification phase. 
Then, the nearest neighbor to the test sample is selected 
based on the calculated distances in the previous step. 
Then, the testing sub-image is assigned to the class of the 
nearest neighbor. 

4. RESULTS AND DISCUSSION 

The literature reported that number of retained Fisher 
values for the classification stage should be limited to be 
one less than number of classes [4]. However, for the 
two-class problem the retained Fisher values should be 
increased to improve the classification stage [9]. There- 
fore, in this work, 11 Fisher values are retained which 
have been determined as a result of experimental evalua-
tion as discussed below. 

Table 1 shows the results of the proposed CAD algo- 
rithm. Algorithm accuracy is defined as the ratio between 
number of correctly classified testing sub-images and 
total number of testing sub-images. A total of 72 sub- 
images were used for the testing phase. As Table 1 indi-
cates, the proposed CAD algorithm has classification 
accuracy over 91.67% in all the three test sets with aver-
age classification accuracy of 93.06%. Table 1 also in-
dicates average false negative (FN) rate, an abnormal 
mammogram classified as normal mammogram, and 
false positive (FP) rate, a normal mammogram classified 
as abnormal mammogram, of 6.94% and 0%. 

PCA is employed globally to uncorrelate the training 
data where all the principal components are retained. 
However, PCA uncorrelates the first few principal com-
ponents in the transformed data while the rest of the 
components are still highly correlated. On the other hand, 
FLD is used as a dimensionality reduction and feature 

Table 1. Classification accuracy, FP, and FN rates of the three 
test sets. Each set consists of 24 normal and 24 abnormal sub- 
images. 

Test Set FN FP Accuracy 

1 6.25% 0% 93.75% 

2 8.33% 0% 91.67% 

3 6.25% 0% 93.75% 

 
extraction module. FLD is applied, which uses the basis 
provided by the PCA, to generate a new set of basis for 
the classification stage. FLD uncorrelates the data again 
by taking into account the different classes present in the 
data. This dual transformation into the Eigenspace un- 
correlates the data two times which should greatly im-
prove the classification results. 

In testing set no. 1, three abnormal images were not 
correctly classified: one has architectural distortion while 
the others have spiculated masses. In testing set no. 2, 
four abnormal images were not correctly classified: three 
have microcalcifications while the other one has spicu-
lated masses. In testing set no. 3, three abnormal images 
were not correctly classified: two have Architectural 
Distortions while the other one has spiculated masses. 
Microcalcifications are very hard to detect as they are 
very small and are non-palpable. Spiculated masses have 
irregular shapes with sharp edges and thus pose a big 
challenge for detection. Architectural distortions are one 
of the most commonly missed signs of breast cancer. 
Two third of cancer is related to architectural distortions 
that have positive margins. 

The proposed CAD system uses several parameters 
that impact the performance and accuracy of results such 
as the number of selected principal components (PC), 
number of retained Fisher values, and number of nearest 
neighbors. 

Figure 2 shows the impact of retaining different num- 
ber of principal components on the classification accu-
racy for testing sets 1 to 3. These results indicate that 
selecting all the principal components achieves the high-
est accuracy. Thus, PCA is used in this work to decorre-
late the data without reducing its dimensionality. Even 
though most of the information is contained in the first 
few principal components, discarding the least signifi-
cant principal components may result in loss of informa-
tion depending on the application. 

Figure 3 shows the impact of retaining different num- 
ber of Fisher values on the classification accuracy for 
testing sets 1 to 3. These results indicate that selecting 11 
or 12 Fisher values achieves the highest accuracy. 

In this work the nearest neighbor, which has already 
been classified from the training data, is used in making 
the decision to which class the testing sub-image belong. 
This value is chosen as it provides the best results as 
shown in literature for the two-class problem [4]. 

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 
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(a) 

 
(b) 

 
(c) 

Figure 2. (a)-(c) Number of selected principal components 
impact on classification accuracy for Testing Sets no. 1, 2, 3 
while the other parameters are kept fixed. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a)-(c) Number of selected fisher values impact on 
classification accuracy for Testing Sets no. 1, 2, 3 while the 
other parameters are kept fixed. 
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Table 2. (Top) Comparison between PCA and PCA-FLD algorithms for testing sets 1-3. (Bottom) 
Comparison between FLD and PCA-FLD algorithms for testing sets 1-3. 

Testing Set No. 1 Testing Set No. 2 Testing Set No. 3 
PC 

PCA PCA-FLD PCA PCA-FLD PCA PCA-FLD 

11 60.41% 79.16% 55.16% 60.41% 37.5% 41.67% 

20 58.33% 68.75% 22.91% 43.75% 39.58% 41.67% 

30 43.75% 72.91% 52.08% 54.16% 43.75% 47.91% 

40 45.83% 89.58% 58.33% 64.58% 56.25% 56.25% 

48 77.08% 93.75% 66.67% 91.67% 91.67% 93.75% 

 

Testing Set No. 1 Testing Set No. 2 Testing Set No. 3 
Fisher Values 

FLD PCA-FLD FLD PCA-FLD FLD PCA-FLD 

1 56.25% 89.58% 52.08% 91.67% 54.16% 54.16% 

4 60.41% 89.58% 56.25% 91.67% 52.08% 89.58% 

9 43.75% 89.58% 50% 91.67% 56.25% 93.75% 

11 41.67% 93.75% 50% 91.67% 52.08% 93.75% 

15 43.75% 91.67% 50% 91.67% 52.08% 72.91% 

 
Table 2 shows results of the proposed CAD algorithm 

against PCA and FLD algorithms for the various testing 
data. The average accuracies of PCA, FLD, and PCA- 
FLD are 78.47%, 47.92%, and 93.06% where all the 
principal components and eleven Fisher values are re-
tained. These results indicate that the proposed PCA- 
FLD algorithm outperforms PCA and FLD algorithms 
for all the testing sets. The improvements of PCA-FLD 
algorithm over PCA and FLD algorithms are 18.59% and 
94.2% which indicates that performance of the FLD al-
gorithm can be greatly improved if data is preprocessed 
by PCA. 

5. CONCLUSIONS 

Our framework for the proposed CAD system is based 
on integrating PCA, FLD, and KNN classifier. PCA is 
used to uncorrelate the data whereas FLD is used for 
dimensionality reduction and feature extraction. The in- 
tegration of PCA and FLD results in a dual transforma-
tion in the Eigenspace that improved the classification 
accuracy. 

The performance of the proposed CAD system is com- 
pared against the individual performance of PCA and 
FLD. Extensive simulations using 144 sub-images were 
performed. The results indicate that integrating PCA and 
FLD algorithms improves PCA algorithm accuracy of 
18.59% and FLD algorithm accuracy of 94.2% in all 
testing sets. 

The ability of the proposed framework to correctly 

classify mammograms depends upon various factors in-
cluding the proper cropping of images, number of re-
tained principal components, number of retained Fisher 
values, and number of nearest neighbors taken into con-
sideration. The framework implementation resulted in 
the highest accuracy when all the principal components 
and eleven Fisher values were retained, and one neighbor 
is considered. Results also indicate that PCA reduces the 
computational complexity of the between-class and 
within-class scatter matrices.  

Future work may consider other biological features 
that can be integrated within the framework to help 
automate the parameters selection process. The proposed 
algorithm can be further enhanced by modelling the 
problem as a multiclass problem through including three 
classes: normal, malignant, and benign. Malignant re-
gions have well defined boundaries whereas benign re-
gions do not have such a characteristic. This fact can be 
utilized to improve the classification phase. This study 
can be taken to a further step by testing the algorithm on 
other mammographic databases. The integration of PCA 
and FLD improves the classification accuracy but in-
creased the computational complexity of the CAD algo-
rithm. 
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