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ABSTRACT 

Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless 
sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can 
affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be dam- 
aging to the final outcome, as it may result in removing useful information that can benefit the decision making process. 
Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. 
For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node 
level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise 
and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to 
converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low 
power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while 
fused datasets can still be used to make reliable decisions. 
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1. Introduction 

Many wireless sensor network datasets suffer from the 
effects of acquisition noise, channel noise, fading, and 
fusion of different nodes with huge amounts of data [1-3]. 
At the fusion center, where decisions relevant to these 
data are taken, any deviation from real values could af- 
fect the decisions made. Presented here is the theoretical 
background with examples showing the performance and 
merits of this novel approach compared to other alterna- 
tives [4-6]. Digital signal processing algorithms, on the 
other hand, have long served to manipulate data to be a 
good fit for analysis and synthesis of any kind. For the 
wireless sensor networks a special wavelet-based ap- 
proach has been considered to suppress the effect of 
noise and data order. One of the advantages of this ap- 
proach is in that one algorithm serves to both reduce the 
data order and remove noise. The proposed technique 
uses the orthogonality properties of wavelets to decom- 
pose the dataset into spaces of coarse and detailed signals. 
With the filter banks being designed from special bases 
for this specific application, the output signal in this case 
would be components of the original signal represented 
at different time and frequency scales and translations. A 
detailed description of the techniques follows in the next 
section. 

2. Wavelet-Based Transforms 

Traditionally, Fourier Transform (FT) has been applied 
to time-domain signals for signal processing tasks such 
as noise removal and order reduction. The shortcoming 
of the FT is in its dependence on time averaging over 
entire duration of the signal. Due to its short time span, 
analysis of wireless sensor network nodes requires reso-
lution in particular time and frequency rather than fre-
quency alone. Wavelets are the result of translation and 
scaling of a finite-length waveform known as mother 
wavelet. A wavelet divides a function into its frequency 
components such that its resolution matches the fre-
quency scale and translation. To represent a signal in this 
fashion it would have to go through a wavelet transform. 
Application of the wavelet transform to a function results 
in a set of orthogonal basis functions which are the time- 
frequency components of the signal. Due to its resolution 
in both time and frequency wavelet transform is the best 
tool for detection and classification of signals that are 
non-stationary or have discontinuities and sharp peaks. 
Depending on whether a given function is analyzed in all 
scales and translations or a subset of them the Continu-
ous (CWT), Discrete (DWT), or Multi-Resolution Wave- 
let Transform (MWT) can be applied. 

An example of the generating function (mother wave- 
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let) based on the Sinc function for the CWT is: 
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The subspaces of this function are generated by trans- 
lation and scaling. For instance, the subspace of scale 
(dilation) a and translation (shift) b of the above function 
is: 
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when a function x is projected into this subspace, an in- 
tegral would have to be evaluated to calculate the wave- 
let coefficients in that scale: 
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And therefore, the function x can be shown in term of 
its components: 
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Due to computational and time constraints it is impos- 
sible to analyze a function using all of its components. 
Therefore, usually a subset of the discrete coefficients is 
used to reconstruct the best approximation of the signal. 
This subset is generated from the discrete version of the 
generating function: 
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Applying this subset to a function x with finite energy 
will result in DWT coefficints from which one can 
closely approximate (reconstruct) x using the coarse co- 
efficients of this sequence: 

   , ,, .m n m n
m Z n Z

x t x  
 

   t  

The MWT is obtained by picking a finite number of 
wavelet coefficients from a set of DWT coefficients. 
However, to avoid computational complexity, two gen- 
erating functions are used to create the subspaces:  

Vm Subspace:    2
, 2 2m m

m n t t   n   

and 
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From which the two (fast) wavelet transform pairs 
(MWT) can be generated: 
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In this paper the DWT has been used to suppress noise 

and reduce order of data in a wireless sensor network. 
Due to its ability to extract information in both time and 
frequency domain, DWT is considered a very powerful 
tool. The approach consists of decomposing the signal of 
interest into its detailed and smoothed components (high- 
and low-frequency). The detailed components of the sig-
nal at different levels of resolution localize the time and 
frequency of the event. Therefore, the DWT can extract 
the coarse features of the signal (compression) and filter 
out details at high frequency (noise). DWT has been 
successfully applied to system analysis for removal of 
noise and compression [8,9]. In this paper we present 
how DWT can be applied to detect and filter out noise 
and compress signals. A detailed discussion of theory 
and design methodology for the special-purpose filters 
for this application follows. 

3. Theory of DWT-Based Filters for Noise 
Suppression and Order Reduction 

DWT-based filters can be used to localize abrupt changes 
in signals in time and frequency. The invariance to shift 
in time (or space) in these filters makes them unsuitable 
for compression problems. Therefore, creative techniques 
have been implemented to cure this problem [7-12]. Th- 
ese techniques range in their approach from calculating 
the wavelet transforms for all circular shifts and selecting 
the “best” one that minimizes a cost function [7], to using 
the entropy criterion [10] and adaptively decomposing a 
signal in a tree structure so as to minimize the entropy of 
the representation. In this paper a new approach to can-
cellation of noise and compression of data has been pro-
posed. The Discrete Meyer Adaptive Wavelet (DMAW) 
is both translation- and scale-invariant and can represent 
a signal in a multi-scale format. While DMAW is not the 
best fit for entropy criterion, it is well suited for the pro-
posed compression and cancellation purposes [12]. 

The process to implement DMAW filters starts with 
discritizing the Meyer wavelets defined by wavelet and 
scaling functions as: 
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The masks for these functions are obtained as: 
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As these two masks are convolved, the generating 
function (mother wavelet) mask can be obtained as: 
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Decomposing the re-normalized signal  ,m kc
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where for every integer k, integers  can be 
found to satisfy the inequality: 

1 2, , ,k k k
qn n n according to the conventional DWT, will result in the 

entire DMAW filter basis for different scales: 
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The corresponding values from mother wavelet mask 
can then be taken to calculate: 4. Experimental Results 
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, Figures 1 and 2 show the experimental results for this 

work. As is evident from these two figures, a signal can 
be decomposed in as many levels as desired by the ap- 
plication and allowed by the computational constraints. 
Levels shown from top to bottom represent the coarse to 
detailed components of the original signal. Once the sig- 
nal is decomposed to its components, it is easy to do  

where 
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i in k i         q  

and 
 

 

Figure 1. Decomposed signal showing all the components. 
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Figure 2. Threshold and coefficients of the decomposed signal. 
 
away with pieces that are not needed. For instance, noise, 
which is the lower most signal in Figure 1 can be totally 
discarded. On the other hand, if compression is necessary, 
all but the coarse component (upper most element, below 
the original signal) can be kept and the rest of the mod- 
ules discarded. This signal alone is a fairly good ap- 
proximation of the original signal. Figure 2 shows the 
thresholds and coefficients of the signal being filtered. 

5. Conclusions and Future Work 

As expected from the theory, the DMAW filters per- 
formed well under noisy conditions in a wireless sensor 
network. The decomposed signal could be easily freed up 
from noise and reduced down to its coarse component 
only. This could be reduction by several orders of mag- 
nitude in some cases. Future plans include the application 
of these filters to fused datasets and comparison between 
the two approaches. Additionally, the results of these 
study can be used in the decision making stage to realize 
the difference this approach can make in speed and effi- 

Future work will address issues su

ciency of this process. 
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