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ABSTRACT 

Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a 
deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been 
proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry 
environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such 
solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we 
focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant infor- 
mation for design tasks linked to the development of active devices based on this kind of smart material. The non-linear 
response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of 
artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be 
a precise simulation tool for describing IPMC response in dry environments. 
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Modelling and Simulation 

1. Introduction to Ionic Polymer-Metal  
Composites 

Electroactive polymers (EAPs) are smart materials that 
usually exhibit large displacements in response to exter- 
nal electrical stimulation. EAPs behave similarly to bio- 
logical muscles, due to their electro-mechanical coupling, 
and have therefore acquired the nickname of “artificial 
muscles”. Among various classes of EAPs, ionic poly- 
mer-metal composites (IPMCs) are especially interesting 
because they show a large deformation in the presence of 
a very low voltage (1 - 2 V). Additionally, a voltage (in 
the range of milivolts) is generated across the surfaces 
when the sample is subjected to mechanical loading. 
Thus an IPMC has both built-in actuation and sensing 
capabilities.  

An IPMC typically consists of a thin perfluorinated 
polyelectrolyte or ion-exchange membrane (e.g. Nafion) 
sandwiched by electroplated platinum or gold on both 
sides. When external voltage is applied across the IPMC, 
mobile positive ions are drawn to the cathode side by an 
electric field. As a result the cathode side expands with 
respect to the anode, causing an overall bending defor- 
mation of the IPMC until it reaches saturation. When 
alternating voltage is applied, the IPMC undergoes a  

bending vibration at the same frequency as the applied 
voltage. For additional information on the fundamentals 
of IPMCs, among other EAPs, some excellent studies are 
cited in the references section [1-3]. There are a number 
of dynamic processes (e.g. ion migration, water diffusion, 
among others) taking place in IPMC actuation and the 
exact mechanisms are still a subject of active research. 
Several behaviour models, based on the results from cha- 
racterisation tests, have been proposed for simplifying 
design activities [4-7]. Characterisation methods have also 
been studied, for promoting material selection tasks and 
for precisely validating novel manufacturing techniques, 
which can serve as a basis for future standards linked to 
electroactive polymers [8,9]. 

Regarding industrial applications, due to their electro- 
mechanical coupling, large bending displacement, low 
driving voltage, resilience and potential biocompatibility, 
IPMCs have been studied and proposed mainly as actua- 
tors in biomimetic robotics [10,11], medical devices 
[12,13] and micromanipulators [14-16]. Such applica- 
tions benefit greatly when the actuators are manufactured 
following carefully controlled stages and several studies 
have concentrated on optimising the composition and 
processing of these materials [17]. Recent studies have  
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described the development of three-dimensional IPMC- 
based actuators for special applications [18].  

Normally a humid environment is required for their 
best operation, although some IPMCs can operate in a 
dry environment, if a solid electrolyte is used in the ma- 
nufacturing process or after proper encapsulation [19]. 
However, such solutions usually lead to increasing me- 
chanical stiffness and to a reduction of actuation capa- 
bilities, which may require alternative electroactive ac- 
tuators to be selected for several applications.  

In this study we focus on the behaviour of non-encap- 
sulated IPMCs as actuators in dry environments, in order 
to obtain relevant information for design tasks linked to 
the development of active devices based on this kind of 
smart material. The non-linear response obtained in the 
characterisation tests is especially well-suited to model- 
ling these actuators with the help of artificial neural net- 
works (ANNs), as explained in the following section.  

Once trained with the help of characterisation data, 
such neural networks can prove to be a significant simu- 
lation tool for design and control activities, due to their 
precise description of IPMC response in dry environ- 
ments. We believe that the neural network-based approach 
can be of help, not only for design and material selection 
activities, but also for real-time control activities, as a 
remarkable alternative to very recent proposals based on 
genetic algorithms or fuzzy logic [20]. 

2. Artificial Neural Networks for Modelling  
Complex Systems 

Artificial neural networks or ANNs are designed to emu- 
late the behaviour of biological or natural neural net- 
works. Each artificial neuron or node in the network has 
connections with other neurons from which it receives or 
passes on information. Each connection is assigned a 
specific weight and each neuron exhibits an actuation 
threshold and a characteristic input/output function. A 
basic characteristic of neural networks is their ability to 
“learn” when subjected to a learning process. That is, by 
taking existing data (inputs and results) an appropriate 
set of weights and thresholds is reached for the network 
to be able to reproduce the desired behaviour. 

Once trained, ANNs work as an input/output system 
with their ability to manage multiple outputs, which 
makes them particularly suited to simulating complex sy- 
stems. They have marked applications in different areas 
such as philosophy, psychology, economics, engineering 
and science in general [21,22]. Certain materials that are 
especially suited to modelling and simulation when arti- 
ficial neural networks are used are the so-called multi- 
functional, active or “smart” materials that are capable of 
responding in a controllable manner to different external 
physical or chemical stimuli by modifying some of their 
properties (this is the case with IPMCs, as a result of 

their coupling electromechanical properties). Because of 
their sensitivity or actuation capability, these materials 
can be used to design and develop sensors, actuators and 
multifunctional systems, and having a tool that enables 
their behaviour to be properly simulated is of the utmost 
relevance [23].  

The properties of these active materials assist inte- 
grating multiple functions into a system, which, com- 
bined with the major advances in micro and nanofabrica- 
tion Technologies, has promoted the expansion in the last 
two decades of the so-called micro-electro-mechanical 
systems or “MEMS”. These are systems based on the in- 
tegration of functions and on the reduction of size in or- 
der to achieve optimised responses in time and cost for 
both materials and processes. Modelling these microsys- 
tems usually requires a thorough knowledge of various 
domains (mechanical, electrical, thermal, fluidics, mag- 
netic…) and since their response usually exhibits marked 
non-linear effects, the analytical models can become too 
complicated to be of any practical use.  

To resolve these difficulties some researchers have 
started to use neural networks to obtain models that en- 
able the in-service performance of these Microsystems to 
be approached. An example worth pointing out is the 
application of ANNs to modelling (for their subsequent 
real-time control) a micro heat-exchanger in which the 
thermal, fluidic, electrical and mechanical couplings were 
an obstacle to obtaining an accurate analytical model 
[24-26].  

Other researchers have also shown the usefulness of 
using neural networks for analysing the information fur- 
nished by sensors that monitor the behaviour of complex 
systems. Anomaly detection has been applied for a real- 
time prediction of the behaviour of the system being mo- 
nitored and thus locate any problems by comparing the 
measurements recorded by the sensors [27,28]. 

Their use has also proved to be of use for processing 
the information from sensors (or sensor networks) that 
are sensitive to a range of stimuli and recognise the type 
of stimulus that has generated a particular response, such 
as previously described for mobile robots with audio- 
tactile microsensors [29] and for therapeutic robots with 
multiple pressure sensors, electrical field and temperature 
[30].  

We are of the opinion that the application of artificial 
neural networks to the modelling and simulation of ionic 
polymer-metal composites, or IPMCs, as electroactive 
actuators and the examination of the effects of their re- 
maining in dry environments is a novel approach that 
may be an acceptable alternative to the use of complex 
analytical models for the design and control tasks of 
these smart material-based devices. The materials and 
methods used are described in the following sections 
before referring to the results from IPMC characterisa- 
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tion and the subsequent training of the artificial neural 
networks for the response of these electroactive poly- 
mers.  

3. Materials and Methods 

3.1. Materials 

The IPMC used to evaluate the response of this kind of 
material in a dry environment was supplied by Environ- 
mental Robots Inc. (www.environmental-robots.com), 
whose electroactive polymers stand out for the repeat- 
ability of the results, due to their using high-quality ma- 
nufacturing processes, some of which are protected under 
patent.  

According to the manufacturer, these polymeric artifi- 
cial muscles are primarily thought for actuation in air but 
they also work immersed in water, in ionic liquids or in 
contact with biological tissue. Typically the bending/ 
flexing artificial muscles, in cantilever mode, have a tip 
motion of more than 10 mm/V while drawing a maxi- 
mum current of about 150 mA. These bending/flexing 
IPMCs can also respond to various dynamic voltage sig- 
nals such as sinusoidal, square wave, and triangular wave, 
among others. If they are bent, flexed or squeezed under 
a normal pressure, they generate a signal up to values of 
2 - 4 mV. 

For the characterisation tests two simples (films) of 
IPMC were used, coated with Pt (5 - 10 m electrode 
thickness), in sizes of 20 mm × 5 mm × 0.2 mm and all 
with similar properties, each of which was characterised 
following the procedure set out below. 

3.2. Methods 

Each characterisation test consisted in connecting an IPMC 
film to a signal generator (Figure 1) so that the voltage 
and frequency from a square signal applied between the 
sides of the film could be controlled as well as the re- 
cording of the deformations attained (Figure 2).  

This signal generator was purchased as part of the 
“Deluxe Complimentary Package” from Environmental 
Robots Inc. During the tests the period of the signal ap- 
plied to the IPMC films was set at 14 s, which was suffi- 
cient for the films to reach their maximum deformation. 
The signal had a square wave form with a half cycle at 
4.5 V and a half cycle at –4.5 V, which enabled the re- 
sponse of these actuators to be analysed when they bent 
in different directions.  

In preparation for the characterisation tests, the two 
IPMC films were kept immersed in water for 48 hours to 
ensure a correct homogeneous hydration. To evaluate the 
influence of the time passed in a dry environment on the 
response of the IPMC, different measurements were 
taken for each film that corresponded to times of 1, 10,  

 

Figure 1. Kit for ionic electroactive polymer study. Supplied 
by Environmental Robots Inc.  
 

 

Figure 2. Activation of IPMC film. Supplied by Environ- 
mental Robots Inc. 
 
30, 60 and 90 minutes of its being removed from the wa- 
ter. 

The way the films are positioned is also important. It is 
best to place them parallel and upright so as to avoid any 
imbalance in the different directions of actuation as a 
result of their own weight. The characterisation tests 
were performed at a temperature of 26˚C under a con- 
trolled relative humidity of 10% ± 2%. The tests were 
recorded on video using a digital camera so that the re- 
sults could then be evaluated.  

3.3. Support Software 

Although different commercial software is available that 
is specifically intended for the construction, training and 
simulation of artificial neural networks, (Stuttgart Neural 
Network Simulator, Emergent, JavaNNS, Neural Lab, 
Genesis and others), we chose to use Matlab® R2009b as 
support software. 

Matlab® (The Mathworks Inc.) is a high level pro- 
gramming language that is equipped with an interactive 
environment that helps it carry out complex calculation 
tasks more simply and directly than using traditional pro- 
gramming languages. It is widely-used in universities, in 
part due to the ease with which information can be ex- 
changed with other data analysis programs and spread 
sheets like Excel and even other programming languages 
like C or Java.  

It is also closely linked to the powerful Simulink® tool, 
a multi-domain simulation platform based on dynamic 
and embedded systems models. Simulink® comes with an 
interactive graphic environment and a set of customis- 
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able block libraries that allow designing, simulating, im- 
plementing and testing a wide variety of systems with 
time variation. These include mechanical systems and 
communication, control, signal processing and video and 
image systems. It is especially suitable for analysing the 
effects of modifying the different factors that influence 
the behaviour of complex systems due to the fact that the 
global system can be divided into simpler subsystems (in 
the form of blocks with inputs and outputs). 

be used as an alternative to other approaches based on 
the use of genetic algorithms.  

The results of the tests to characterise IPMC response 
in a dry environment and the subsequent simulation of 
this behaviour using artificial neural networks are de- 
tailed in the next sections before presenting the main 
conclusions and the proposals for follow-up. 

4. Characterisation Results for IPMC  
Response in a Dry Environment For this study we have used Matlab® R2009b because 

it has the major advantage of including the Neural Net- 
work Toolbox™ 6.0.3. as a work tool specifically in- 
tended for use with neural networks in tasks such as the 
approximation of functions, pattern recognition or the 
identification and control of markedly non-linear systems 
[31]. The aforementioned library not only enables neural 
networks to be constructed, trained and simulated with 
the support of the numerous functions already explained, 
but also enables .m files, that can be incorporated into 
more complex programs, to be directly obtained as well 
as .mdl models that can be integrated as independent 
blocks into more complex simulators programmed with 
the aid of Simulink®. Its teaching applications are also 
outstanding in a whole range of scientific-technological 
disciplines [32]. 

This section sets out the results of the IPMC film charac- 
terisation tests carried out in line with the methods de- 
scribed previously. To show the results of the tests, we 
defined the bending angle by taking two straight lines: 
the line formed on joining the end point of the IPMC film 
with its clamping point and the mean longitudinal line of 
the actuator film when at rest (with zero bending angle). 
The angle formed by these two straight lines forms the 
bending angle taken into account and the evolution of 
which we have included in the figures.  

Figure 3 reflects how the maximum bending angle 
recorded by the IPMC in its actuation cycle evolves dur- 
ing the time it is out of water and takes account of the 
bending towards positive angles (upper curve), as well as 
the bending towards negative angles (lower curve). The 
mean values for the two tests performed have been taken 
(each one with an actuating film) and error lines have 
also been included that take account of the standard de- 
viation of the measurements taken for the times evalu- 
ated outside the water. 

So, having set up the neural network to simulate the 
behaviour of the target system, in this case the IPMC- 
based actuators, it is easy to use in already existing pro- 
grams and simulators (to analyse the most complex glo- 
bal system), possibly by replacing the code for an analy- 
tical expression modelled by this subsystem by the code 
associated with the ensuing neural network or it can also  The maximum bending in both directions presents a 

Time outside water (min)

IPMC Response Evolution in Dry Environment

y = –4.8456·ln(x) + 26.056
R 2  = 0.9995
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Figure 3. IPMC response outside water: evolution of maximum and minimum values for bending degree. 
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markedly exponential decline with the passage of the 
time the actuator is out of water. Also included in Figure 
3 are the equations that approximate this evolution with 
regression coefficient values that are close to one.  

Thus, in the first 10 minutes in the open air, the actua- 
tor shows a reduction of around 50% of its maximum 
bending capability. After 90 minutes out of the water the 
maximum bending angle values recorded are less than 5˚. 
This is indeed a small value for this kind of material but 
may be sufficient for a range of applications where it is 
wished to use IPMCs as micro-manipulators. 

Certain asymmetries can also be observed in the be- 
haviour of the actuator, since the angle bent towards 
positive values is revealed to be around 30% greater than 
the angle bent towards negative values, a difference that 
was maintained throughout the tests. We believe that 
these asymmetries may be due to the structure and che- 
mical behaviour of the actuator’s internal polymeric film 
which may favour an exchange of ions in one direction 
and hinder it in the other.  

Figure 4 represents two full actuation cycles of an 
IPMC film when a square signal is applied between its 
sides. The signal frequency applied to the IPMC films 
was set at 14 s, which is sufficient for the films to reach 
their maximum deformation, as can be seen from the 
bending angles shown. In fact, the last two pieces of 
bending angle data for each of the half periods shown 
reveal almost identical values. The signal is in the form 
of a square wave, with half a cycle at 4.5 V and half a 
cycle at –4.5 V, and has been shown as superimposed on 
the lines that show the evolution of the bending angles. 

It can be observed that as the time passes in the dry 
environment, the actuator response shows a fall in am- 
plitude (as Figure 3 has already shown) and gradually 
becomes slower and smoother. The cited asymmetries 
are clear throughout the actuation cycle with a slower 
response being observed towards the negative values of 
the bending angle than towards the positive values. 

It is once again important to emphasise the need to 
perform thorough characterisation tests when working 
with any kind of smart materials for the development of 
new devices, as since we are usually dealing with newly 
available materials, their sensing and actuating properties 
are not usually fully known. The characterisation sheets 
that are generally supplied by the manufacturers often do 
not contain sufficiently detailed information to be able to 
use these materials without any additional characterisa- 
tion processes. The information received often comes 
from theoretical simulations that must be tested in order 
to evaluate whether a material is viable for a specific 
application or device. 

Therefore, in the event of using this kind of material as 
actuators out of water, control systems must be borne in 
mind right from the design stage that will let this infor- 
mation be included and analyse in which operating curve 
the IPMC is to be found, according to the time it has re- 
mained in a dry environment. To enhance the results, it 
may be advisable to incorporate irrigation devices (drops, 
sprays…) to maintain these actuators in optimal operat- 
ing conditions. For this purpose, it can also be useful to 
use artificial neural network-based simulators to supple- 
ment theoretical models or fuzzy logic-based models, as  

 

IPMC Response Evolution in Dry Environment
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Figure 4. IPMC response evolution outside water. 
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will be examined in the following section. 

5. Modelling IPMC Behaviour Using  
Artificial Neural Networks 

In order to prepare, train and fit the tests and validate and 
simulate the different neural models, the Matlab® R2009b 
Neural Network Toolbox™ interactive tool was used to 
fit the “nftool” functions. It was decided to make a com- 
parison of neural networks, all with 1 hidden layer and an 
increasing number of neurons, including values from 5 
up to 100 neurons.  

In the different models the input layer has 2 inputs, 
cycle time (seconds, for a total of 30 s, corresponding to 
two bending cycles of IPMC) and the time out of water 
(in minutes, for a total of 90 minutes under water stud- 
ied), while the results layer gives a single value or output 
that corresponds to the bending angle of the IPMC film. 
The sigmoid function was chosen as transfer function, 
both for the hidden layer and the results layer. It was the 
structure generated by Matlab® R2009b that was charged 
with normalising the inputs in the range [0,1], so as to 
optimise the calculation results with the “mapminmax” 
tool, which usually leads to faster learning and training 
(Gad-el-Hak, 2002). 

The tests performed furnished 280 samples, of which 
70% (146 data items) were used to train the neural net- 
works—15% (47 data items) as validation during the 
training process to analyse when it was appropriate to 
carry out this training and the remaining 15% (47 data  

items) to test the training undergone. Training was car- 
ried out using the Levenberg-Marquardt backpropagation 
method. After training the neural networks, the response 
of each one was simulated by entering all the time cycle 
conditions (seconds) as inputs and all the time cycle con- 
ditions and the time the actuator was out of water (mi- 
nutes), so as to be able to compare the outputs from the 
networks with the bending angle values measured in the 
tests.  

The goodness of the simple linear regression among 
the simulation data and the test results is remarkable. In 
the case of 10 neurons in the hidden layer, regression 
coefficient values greater than 0.97 were obtained, both 
for the data used in the training, for the data used in the 
validation, and for the data used to evaluate the artificial 
neural network. The regression coefficient or R is the 
slope of the line obtained using linear least squares fitting 
for the set of points ANN estimation vs trial results, 
hence the nearer to 1, the better simulation results. It is 
important to mention that the results are not unique since 
they depend on the values selected (random) by the pro- 
gram for the various training, validation and network 
testing processes. Different training processes can slightly 
change the results but not in any relevant way for this 
study. On the other hand, Figure 5 shows how the num- 
ber of neurons influences the network regarding impor- 
tant aspects of the simulation results, such as the regres- 
sion coefficient and the mean square error. It can be seen 
that with more than 10 neurons the quality of the results 
scarcely improves, whereas above 40 neurons the errors  

 

 

Figure 5. Influence of neuron number in the values for mean square error (%) and regression coefficient (R), obtained when 
comparing results from tests and from ANN-based simulation. 
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begin to rise to unacceptable figures. This, together with 
the increase in calculation time for larger numbers of 
neurons provides grounds for considering 10 to 20 neu- 
rons to be optimal numbers for this particular case study. 
Finally, the 10 neuron model was chosen as the most 
representative option and this model was used to simu- 
late IPMC behaviour throughout two actuation cycles (28 
seconds in all) for different times out of water. Simula- 
tions were performed out of water that went from 0 to 90 
minutes, with 1 minute intervals between the different 
simulations. This enabled the information obtained in the 
tests to be extended and a more detailed prediction of the 
behaviour to be made. The simulation results are shown 
in Figure 6. The fit between the simulation results and 
the test data is satisfactory in general terms. Figure 6, 
resulting from the simulations performed with the artifi- 
cial neural network, shows results that were to be ex- 
pected according to the test data recorded in Figures 3 
and 4. The possibility of using neural network as a tool 
for simulating IPMC behaviour is particularly promising 
for design tasks that require evaluating the capabilities of 
this material as an actuator in dry environments. 

The study has enabled the use of artificial neural net- 
works for modelling IPMC behaviour in dry environ- 
ments to be validated, providing data from methodically 
conducted tests are used for training these networks. In- 
deed, the fit is fairly satisfactory, even with a small num- 
ber of neurons (10 - 15) for which regression coefficient 
values of R ≈ 0.98 - 0.99 are obtained and mean square 
errors of MSE ≈ 9% - 11%. The mean square error or 
MSE measures the average of the squares of the “errors”, 
being the error the amount by which the value implied by 
the estimator (in this case artificial neural network) dif- 
fers from the quantity to be estimated (in this case result 
from trials). If these results are compared with those of 
recent research based on the use of identification tech- 
niques using genetic algorithms [20], for which values of  

R ≈ 0.99 and MSE < 30%, we can state that the use of 
artificial neural networks for simulating these effects 
constitutes a supplementary alternative that is well worth 
examining. 

6. Main Conclusions and Future Work 

The study has shown the important influence of the time 
outside an ionic liquid medium on the mechanical re- 
sponse of ionic polymer-metal composites when they 
receive an electrical stimulus. The maximum amplitude 
of the deformations obtained by these actuators exhibits 
an exponential decline which leads to a 50% reduction in 
their actuation capability during the first 10 minutes of 
their being out of water. This has considerable implica- 
tions when designing electroactive actuator-based de- 
vices. Some asymmetries and non-linearities recorded in 
the behaviour of these smart materials and in their re- 
sponse in dry environments may turn out to be complex 
to model. This encourages the use of tools such as artifi- 
cial neural networks. Once these neural networks had 
been properly trained by means of information from the 
characterisation tests, they were able to be used to simu- 
late the behaviour of these actuators at every instant of 
their actuation cycle while considering a time range for 
being out of water that is sufficiently ample for the ma- 
jority of applications put forward. 

It is important to point out that the neural network- 
based approach does not aim to replace the use of com- 
plex analytical models. They have been proved to be 
highly valuable for understanding the couplings between 
the thermal, electrical and mechanical properties of these 
materials and their subsequent response under ideal con- 
ditions. Our proposal is to use these neural models to 
supplement theoretical-analytical models when evaluat- 
ing the behaviour of these polymer-metal composites in 
wide ranges of application, even in dry environments  

 

 

Figure 6. ANN-based simulation of IPMC response outside water (using 10 neurons in hidden layer). 
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where the effects of the non-linearities are particularly 
marked and can lead to over-complex analytical models. 
Additionally, once a neural network has been created and 
trained, by using Matlab’s Neural Network ToolboxTM, .m 
and .mdl files can be obtained directly and be integrated 
as sub-systems into more complex Matlab programs and 
Simulink models. This makes it much easier to design 
devices that use these materials as actuators and to com- 
pare alternatives when selecting a specific transducer. 

We hope that the neural approach put forward here, 
together with the information from the tests performed 
will be of help to other researchers involved in the design 
tasks of new devices based on the properties of these 
materials as electroactive actuators. We believe it would 
be interesting to analyse the possible use of models with 
various neuron layers as a way of optimising the relation 
between accuracy and calculation time. It would also be 
interesting to carry out a more detailed study of how the 
results of the different fits influence the training method 
and the percentages of data used for training, validation 
and verification.  

Although the work has focused on characterising, mod- 
elling and simulating IPMCs as electromechanical trans- 
ducers, we believe it could also be interesting to use 
neural networks to simulate the global performance of 
future complex devices that integrate these materials into 
some actuator sub-system as well as for analytical tasks 
and their real-time control. It is our desire to be able to 
dedicate future efforts to these tasks and we hope to be 
able to collaborate with other researchers as a source of 
continuous improvement. 
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