

An Integral Representation of a Family of Slit Mappings

Adrian W. Cartier, Michael P. Sterner

Department of Biology-Chemistry-Mathematics, University of Montevallo, Montevallo, USA Email: sternerm@montevallo.edu

Received January 4, 2012; revised February 17, 2012; accepted February 28, 2012

ABSTRACT

We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in the complex plane. If f(z) is real when z is real and the range of f does not intersect the nonpositive real axis, then f

can be reproduced by integrating the biquadratic kernel $\frac{t(t-1)z^2-z+1}{(1-tz)^2}$ against a probability measure $\mu(t)$. It is

shown that while this integral representation does not characterize the family F, it applies to a large class of functions, including a collection of functions which multiply the Hardy space H^p into itself.

Keywords: Herglotz Formula; Integral Representations; Subordination; Slit Mappings; Hardy Spaces; Multipliers; Hadamard Product

1. Introduction

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, and let $\partial \Delta = \{z \in \mathbb{C} : |z| = 1\}$. Suppose \hat{f} is analytic in Δ with the real part of f nonnegative. Then there is a nondecreasing function μ defined on

[0,2
$$\pi$$
] such that $f(z) = \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + ib$, where b

is a real constant. This representation of such functions by integrating a bilinear kernel against a measure is due to G. Herglotz ([1], pp. 21-24) and ([2], pp. 27-30). In this paper, we examine a family of functions defined on the complex plane with a closed ray removed, which may be represented by integrating a biquadratic kernel against a probability measure (A measure μ is called a probability measure on [0,1] provided μ is nonnegative with $\int_0^1 d\mu(t) = 1$). In what follows, given functions f and g analytic in Δ , we say that f is subordinate to g (written $f \prec g$) provided $f(z) = g(\omega(z))$ for some ω analytic in Δ with $|\omega(z)| \leq |z|$.

2. The Main Results

Theorem 1. Let $\Omega = C - [1, \infty)$, $\Phi = C - (-\infty, 0]$, and let F be the family of functions f having the following properties:

1) f is analytic in
$$\Omega$$
;
2) $f(0) = 1$;

3)
$$f(z) \in R$$
 whenever $-\infty < z < 1$;

$$4) f(\Omega) \subseteq \Phi.$$

Then

$$F \subseteq \left\{ f: f(z) = \int_0^1 \frac{t(t-1)z^2 - z + 1}{\left(1 - tz\right)^2} d\mu(t) \right\},\,$$

where μ is a probability measure.

Proof. Let
$$\varphi(w) = -\left(\frac{1-w}{1+w}\right)^2 + 1$$
. Then φ is an ana-

lytic, bijective mapping of Δ in the w-plane onto Ω in the z-plane with $\varphi(0) = 0$. Let $f \in F$. Then $f(\Omega) \subseteq \Phi$

by 4). Let
$$g = f \circ \varphi$$
, and let $G(w) = \left(\frac{1+w}{1-w}\right)^2$. Then

G is an analytic, bijective mapping of Δ onto Φ with $g \prec G$. Define s(G) to be the collection of all functions h analytic in Δ with $h \prec G$. By a result due to D. A. Brannan, J. G. Clunie, and W. E. Kirwan [3],

$$\overline{co} \ s(G) = \left\{ h \text{ analytic in } \Delta : h(z) = \int_{\partial \Delta} \left(\frac{1 + \overline{\zeta} z}{1 - \overline{\zeta} z} \right)^2 d \nu(\zeta) \right\},$$

where v is a probability measure and cos(G) denotes the closed convex hull of s(G). Let F(z) = -z + 1. Then $F: \Omega \to \Phi$ is an analytic bijection with F(0) = 1. Since $g \in s(G)$,

$$g(w) = \int_{\partial \Delta} \left(\frac{1 + \overline{\zeta} w}{1 - \overline{\zeta} w} \right)^2 d\nu (\zeta)$$

for $w \in \Delta$ and v a probability measure. Since φ is injective with $\varphi(\Delta) = \Omega$, we have

$$g(w) = f(\varphi(w)) = f(z).$$

Copyright © 2012 SciRes. **APM** Hence

$$f(z) = \int_{\partial \Delta} \left(\frac{1 + \overline{\zeta} \varphi^{-1}(z)}{1 - \overline{\zeta} \varphi^{-1}(z)} \right)^{2} d\nu(\zeta)$$

$$= \int_{\partial \Delta} \left(\frac{1 + \overline{\zeta} \frac{1 - \sqrt{1 - z}}{1 + \sqrt{1 - z}}}{1 - \overline{\zeta} \frac{1 - \sqrt{1 - z}}{1 + \sqrt{1 - z}}} \right)^{2} d\nu(\zeta)$$

$$= \int_{\partial \Delta} \left(\frac{(1 + \overline{\zeta}) + (1 - \overline{\zeta})\sqrt{1 - z}}{(1 - \overline{\zeta}) + (1 + \overline{\zeta})\sqrt{1 - z}} \right)^{2} d\nu(\zeta).$$

By 3) $f(z) = f(\overline{z})$ whenever $z \in (-\infty,1)$. Since Ω is symmetric about the real axis, by the identity theorem $f(z) = \overline{f(\overline{z})}$ throughout Ω . Let $X = \{\zeta \in \partial \Delta : \operatorname{Im} \zeta \leq 0\}$. For any measurable subset A of

X define
$$v^*(A) = 1/2(v(A) + v(\overline{A}))$$
. We have

$$f(z) = \frac{1}{2} \left[f(z) + \overline{f(\overline{z})} \right]$$

$$= \frac{1}{2} \int_{\partial \Delta} \left\{ \left(\frac{(1+\overline{\zeta}) + (1-\overline{\zeta})\sqrt{1-z}}{(1-\overline{\zeta}) + (1+\overline{\zeta})\sqrt{1-z}} \right)^{2} + \left(\frac{(1+\zeta) + (1-\zeta)\sqrt{1-z}}{(1-\zeta) + (1+\zeta)\sqrt{1-z}} \right)^{2} \right\} d\nu(\zeta)$$

$$= \int_{X} \frac{\left(\left[\operatorname{Re} \zeta \right]^{2} - 1 \right) z^{2} - 4z + 4}{\left(\operatorname{Re} \zeta + 1 \right)^{2} - 4 \left(\operatorname{Re} \zeta + 1 \right) z + 4} d\nu^{*}(\zeta)$$

$$= \int_{-\pi}^{0} \frac{1/4(\cos^{2}\theta - 1)z^{2} - z + 1}{\left(1 - \frac{1+\cos\theta}{2}z \right)^{2}} d\sigma(\theta)$$

$$= \int_{0}^{1} \frac{t(t-1)z^{2} - z + 1}{(1-tz)^{2}} d\mu(t).$$

where $\sigma(\theta) = v^*(e^{i\theta})$ and $\mu(t) = \sigma(\cos^{-1}(2t-1))$. This integral representation does not characterize F, as the following theorem shows.

Theorem 2. Suppose $f: C-[1,\infty) \to C$ is defined via

$$f(z) = \int_0^1 \frac{t(t-1)z^2 - z + 1}{(1-tz)^2} d\mu(t)$$

where μ is a probability measure.

1) If μ has support $\{0,1\}$, then $f \notin F$.

2) If μ is a point mass, $f \in F$ if and only if μ has support $\{0\}$ or $\{1\}$.

Proof. Let f be as defined in the theorem. Suppose μ has support $\{0,1\}$, and the weight at 0 is a, where $a \in (0,1)$. Since μ is a probability measure, the corresponding weight at 1 is 1-a. We have

$$f(z) = \frac{az^2 - 2az + 1}{1 - z}$$
. Since $0 < a < 1$, the value $z = 1 + \sqrt{1 - 1/a}$ lies in the domain of f , and is mapped to the origin in the w -plane. Therefore $f \notin F$, proving 1).

Observe that point mass at 0 gives f(z) = -z + 1 and point mass at 1 gives $f(z) = \frac{1}{1-z}$, each of which is an analytic bijection from Ω onto Φ , and clearly in F. Suppose μ has support $\{t\}$, where 0 < t < 1. Then

$$f(z) = \frac{t(t-1)z^2 - z + 1}{(1-tz)^2}.$$

Let

$$\zeta(t) = \frac{1 + \sqrt{1 - 4t(t-1)}}{2t(t-1)}.$$

Then $\zeta'(t) = 0$ precisely when t = 1/2. It follows that ζ lies in the domain of f for each $t \in (0,1)$, and $f(\zeta) = 0$. Therefore $f \notin F$.

3. An Application

In [4], T. H. MacGregor and M. P. Sterner investigate multipliers of Hardy spaces of analytic functions using asymptotic expansions and power functions of the form $(1-z)^{-b}$, where b is a complex constant. A subclass of F which multiplies H^p into H^p is given in the following theorem. Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ are analytic in Δ . Then the Hadamard product of f and g is defined by

$$(f*g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$$

for $z \in \Delta$. We say that f multiplies H^p into H^p provided $f^*g \in H^p$ whenever $g \in H^p$.

Theorem 3. Let μ be a finite complex-valued Borel measure defined on [0,1] and let

$$f(z) = \int_0^1 \frac{1}{1 - tz} d\mu(t) (z \in \Delta).$$

Then f is a multiplier of H^p into H^p for every p>0. Moreover, there is a constant C_p depending only on p such that $\|f^*g\|_{H^p} \leq \|\mu\|C_p\|g\|_{H^p}$ for all $g \in H^p$. *Proof.* Let f be as described in the hypotheses of the

Proof. Let f be as described in the hypotheses of the theorem, and suppose $g \in H^p$ for some p > 0. Then for $z \in \Delta$ and $r \in [0,1)$ we have

$$(f*g)(rz) = \frac{1}{2\pi} \int_0^{2\pi} f(ze^{-i\theta}) g(re^{i\theta}) d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \int_0^1 \frac{1}{1 - tze^{-i\theta}} d\mu(t) g(re^{i\theta}) d\theta$$
$$= \int_0^1 \left\{ \frac{1}{2\pi} \int_0^{2\pi} \frac{g(re^{i\theta})}{1 - tze^{-i\theta}} d\theta \right\} d\mu(t).$$

By Cauchy's formula,

$$g(z) = \frac{1}{2\pi i} \oint_{|\xi|=r} \frac{g(\xi)}{\xi - z} d\xi (|z| < r, 0 < r < 1)$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{g(re^{i\theta})}{1 - \frac{z}{r}e^{-i\theta}} d\theta.$$

Hence

$$(f*g)(rz) = \int_0^1 g(rtz) d\mu(t).$$

Therefore for $0 \le \rho < 1$ and $0 \le \varphi < 2\pi$ we have

$$(f^*g)(\rho e^{i\varphi}) = \int_0^1 g(\rho t e^{i\varphi}) d\mu(t).$$

Let $G(\varphi) = \sup_{0 \le x < 1} |g(xe^{i\varphi})|$ for $0 \le \varphi < 2\pi$. Then G is the Hardy-Littlewood maximal function for g, and so lies in $L^p[0,2\pi]$ ([5], p. 12). Moreover, there is a constant C_p depending only on p such that

 $\|G\|_{L^p} \le C_p \|g\|_{H^p}$ (In fact, for $p \ge 1$, $C_p = 1$). Since $0 \le \rho < 1$ and $0 \le t \le 1$, we obtain

$$\left| (f^*g) (\rho e^{i\varphi}) \right| \leq \int_0^1 \sup_{0 \leq x \leq 1} \left| g(xe^{i\varphi}) \right| \left| d\mu(t) \right| = G(\varphi) \|\mu\|$$

Hence

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \left(f^* g \right) \left(\rho e^{i\varphi} \right) \right|^p d\varphi \leq \frac{1}{2\pi} \int_0^{2\pi} \left| G(\varphi) \right| \mu \|^p d\varphi \\
\leq \|\mu\|^p C_p^p \|g\|_{H^p}^p.$$

Therefore

$$\sup_{0 \le \rho < 1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| (f * g) (\rho e^{i\varphi}) \right|^{p} d\varphi \right\}^{1/p} \le \|\mu\| C_{p} \|g\|_{H^{p}}.$$

If we restrict the measure μ to be a probability measure, then the formula implies the analyticity of f on

 $C-[1,\infty)$, the value of f is unity at the origin, and f(z) is real when z is real $(-\infty < z < 1)$. Finally, observe that the range of f is contained in $C-(-\infty,0]$. To see this last statement, fix $z \in C-[1,\infty)$. Then $\{tz: 0 \le t \le 1\}$ is the line segment from 0 to z. Hence $\left\{\frac{1}{1-tz}: 0 \le t \le 1\right\}$

is the arc of the circle determined by 1, $\frac{1}{1-z}$, and 0,

having endpoints 1 and $\frac{1}{1-z}$ and not including the ori-

gin. Since μ is a probability measure, $\int_0^1 \frac{1}{1-tz} d\mu(t)$

lies in the circular segment which is the closed convex hull of that arc, and this circular segment does not intersect $(-\infty,0]$. Hence each such multiplier function f lies in F.

REFERENCES

- P. L. Duren, "Univalent Functions," Springer-Verlag, New York, 1983.
- [2] D. J. Hallenbeck and T. H. MacGregor, "Linear Problems and Convexity Techniques in Geometric Function Theory," Pitman Publishing Ltd., London, 1984.
- [3] D. A. Brannan, J. G. Clunie and W. E. Kirwan, "On the Coefficient Problem for Functions of Bounded Boundary Rotation," *Annales Academiae Scientiarum Fennicae. Se*ries AI. Mathematica, Vol. 523, 1972, pp. 403-489.
- [4] T. H. MacGregor and M. P. Sterner, "Hadamard Products with Power Functions and Multipliers of Hardy Spaces," *Journal of Mathematical Analysis and Applications*, Vol. 282, No. 1, 2003, pp. 163-176. doi:10.1016/S0022-247X(03)00128-8
- [5] P. L. Duren, "Theory of H^p Spaces," Academic Press, New York, 1970.