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ABSTRACT

In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided ap-
proximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sided approximation

by the trigonometric polynomials on some classes of Besov spaces in the metric L, (T d )(1 <p< oo) are given.
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1. Introduction

In [1,2], R. A. Devore and V. N. Temlyakov gave the
asymptotic estimations of the best m-term approximation
and the m-term Greedy approximation in the Besov
spaces, respectively. In [3,4], by combining Ganelius’
ideas on the one-sided approximation [5] and Schmidt’s
ideas on m-term approximation [6], we introduced two
new concepts of the best m-term one-sided approxima-
tion (Definition 2.2) and the m-term Greedy-liked one-
sided approximation (Definition 2.3) and studied the
problems on classes of some periodic functions defined
by some multipliers. We know that the best m-term ap-
proximation has many applications in adaptive PDE solvers,
compression of images and signal, statistical classifica-
tion, and so on, and the one-sided approximation has
wide applications in conformal algorithm and operational
research, etc. Hence, we are interested in the problems of
the best m-term one-sided approximation and corre-
sponding m-term Greedy-liked one-sided approximation.
As a continuity of works in [3,4], we will study the
same kinds of problems on some Besov classes in the
paper.

There are a lot of papers on the best m term approxi-
mation problem and the best onee-sided approximation
problem, we may see the papers [7-10] on the best m
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term approximation problem and see [11,12] on the best
one-sided approximation problem.

Let 79 = [O,Zn)d (T1 = [0,2n)) be the d dimensional
torus. For any two elements x = ()c1 3 Xy 5 Xy ) s
y=(3.00. 1, ) €R’  set e (x)=e",
k= (kl,k2,~~,kd ) e 7, where xy denotes the inner prod-
uctofxand y,ie, xy=xy,+x,1,++x,,.

Denote by L, (Td )(1 < p<w) the space of all 2m-
periodic and measurable functions f on R’ for which the
following quantity

p o \VP
171, = (falr () @) 1< p <o,
111, =esssup| /(2] ==

is finite. L, (Td ) is a Banach space with the norm ||||p .
Forany fel, (Td ), we denote by

(k) =ﬁjﬂf(x)ek (x)dv, (ke 27),

the Fourier coefficients of f(see [13]).

For any positive integer m, set n=n(m)= mWJ.
Forany fel (Td), as Popov in [11,12], by using the
multivariate Fejér kernels,

(n/z>”ﬁ[wjz,

i\ nsinx, /2

@, (x):

xz(xl,xz,---,xd)er,

we defined

APM
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T (fox) =T, (f.%)

n-l1 (1)

+> @, (x-2nl/n) sup |f(y)—Tm (f,y)|,

[7|=0 |y=2nl/n|<n/n
and called it to be the best m-term one-sided trigonomet-
ric approximation operators, where and in the sequel the
operator T, (f,x) is the best m-term trigonometric
approximation operators and Z;\; 10 denotes

n-1 n-1 n-1 .
h=02uty=0""" 2t =0 It is easy to see that
f(x)S T (f,x).

Meantime, for any f €L, (T ¢ ), we also defined
gr: (f»x) =& (f’x)

+§(D"(x—2nl/n) sup |f(y)—gm (f,y)|,

|/|=0 |y=2nl/n|<n/n

where g, (f,x)= :ilf(k(i))ek(i) and {f(k(z)}: is
a sequence determined by the Fourier coefficients

{f(k)}kezf’
7 (kW)[2] 7 (k(2))] 2

It is easy to see that two operators 7, and g, are
non-linear. We will see that for any xe 7,
gn(f.x)= f(x) (see Lemma 3.12)).

The main results of this paper are Theorems 2.5 and
2.6. In Theorem 2.5, by using the properties of the op-
erator T, (f,x), we give the asymptotic estimations of
the best m-term one-sided approximations of some Besov
classes under the trigonometric function system. From
this it can be seen easily that the approximation operator
Ty (f,x) is the ideal one. In Theorem 2.6, by using the
properties of the approximation operator g, ( f ,x), the
asymptotic estimations of the one-sided Greedy-liked
algorithm of the best m-term one-sided approximation of
Besov spaces under the trigonometric function system
are given.

@

of f in the decreasing rearrangement, i.e.,

2. Preliminaries

For each positive integer m, denote by X the non-
linear manifold consists of complex trigonometric poly-
nomials 7, where each trigonometric polynomial 7 can
be written as a linear combination of at most m exponen-
tials e, (x), keZ’. Thus TeX, if and only if there
exits A < Z¢ such that |A| <m and

T(x) = kze/:\Ckek (x),

where |A| is the cardinality of the set A.
Let D be a finite or infinite denumerable set. Denote
by [,(D)(1< p<o) the space of all subset of some

complex numbers X = {x } ~ with the following finite
) jeD

Copyright © 2012 SciRes.

lp norm
Ip
P
"X”lp(D) ::(Z|xj| j ,1< p<oo; ||X||]x ::s.up|xj.|.
JjeD JjeD

For any fel, (Td), let {f(k)}k s be the set of

Fourier coefficients of f. As in the page 19 of [14], de-
note by

I, =7 0l

the /, norm of the set of Fourier coefficients of /.
Throughout this paper, let 7, denote the set of the
trigonometric polynomials of d variables and degree n
with the form T :Z‘k‘gnf (k)e, and A (7,) denote
the set of all trigonometric polynomials 7 in 7, such
<L

that
{f(k)}kezd ,q(zd)

Here we take as f"(k) =0 if |k| >,
|k| = max{|kl|,|k2|,~-, kd|}.

Definition 2.1. (see cf. [1]) For a given function f, we
call

"T"Aq(T”) =

ou(f), = jnt |7 -7,

the best m-term approximation error of f with trigono-
metric polynomials under the norm L,. For the function
set Ac Lp (Td), we call
o, (4),=supo,(f),
feAd
the best m-term approximation error of the function class
A with trigonometric polynomials under the norm Ly,
Definition 2.2. (see cf. [3,4]) For given function f, set

Z; ::{T|T622m,Tzf}. The quantity
o, (f)p = inf f—T"p

Tes),

m

is called to be the best m-term one-sided approximation
error of f with trigonometric polynomials under the norm
L, For given function set Ac L, (Td ), the quantity

o (4), =50, (1),
is called to be the best m-term one-sided approximation
error of the function class A with trigonometric polyno-
mials under the norm L),

Definition 2.3. (see cf. [3,4]) For given function f, we
call g ( f ,x) (given by relation (2)) the Greedy-liked
algorithm of the best m-term one-sided approximation of
funder trigonometric function system. For given function
set AcL, (Td), we call

a (4), =suplf ~ g (£.x)],
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the Greedy-liked one-sided approximation error of the
best m-term one-sided approximation of function class A
given by trigonometric polynomials with norm L,,.

As in [1,15], denote by BY(L,), a>0, 0<g,s<w,
the Besov space. The definition of the Besov space is
given by using the following equivalent characterization.

A function fis in the unit ball U (Bf (Lq )) of the Besov

space B (Lq), if and only if there exist trigonometric
polynomials R, (x):= zlkl<2,cjkek (x), such that

S (x)=207 R, (x) and

185

Here Z, ={0,1,2,---}. Inthe case 1< g <o0, wecan

take R, = f, = -12 f(k)e, j=1, fy=71(0)e,
2 <k|<2/

k= (ko kyo k)€ 2 k| = max {[k ||| |k, [} -

We define the seminorm as the infimum

By (L)
over all decompositions (3) and denote by U (Bf (Lq ))

the unit ball with respect to this seminorm.
Throughout this paper, for any two given sequences of

non-negative numbers {a, } ot { ,6’"}ec , if there is a non-

negative constant ¢ independent of all n, such that
a, <cf,, then we write o, < f,. If both «a, < g,

‘(2‘/(1 ”R./"q)_f0 <L A3) and B, < a, hold, then we write «, < f,.
(2. Forany 1< p<ow, 0<q,s<o,set
11
dl——|, 0<g<p<2andl<p<g<om,
q9 P,
a(p.q)= i Q)
max {—,—} s otherwise,
q 2
and
ﬂ( )‘_ d+a(p,q), 0<g<p<landl<p<g<omo, )
pa)= a(p,q), otherwise.

For the unit ball U (Bf‘ (Lq )) of the Besov spaces

B? (Lq ) , Devore and Temlyakov in [1] gave the follow-
ing result:

Theorem 2.4. (c.f [1]) For any 1<p<w, 0<gq,
let a(p,q) be defined as in (4). Then, for
a> a(p,q) the estimate

(o 1) e )

P

s<o0,

is valid.

In this paper, we give the following results about the
best m-term one-sided approximation and corresponding
Greedy-liked one-sided algorithm of some Besov classes
by taking the m-term trigonometric polynomials as the
approximation tools. Our results is the following theo-
rems.

Theorem 2.5. For any 1< p<w, 0<gq, s<oo, let
,B(p,q) be defined as in (5). Then, for a >ﬁ(p,q),
we have

ou (v (B (L)),

Theorem 2.6. For 1< p<cw,

(#/2) 24 szn(smnx /ZJ

nsinx, /2

1<g<w, 0<s<o

7o @, (x)dx

4) follows from above equalities.
Similarly, we have

Copyright © 2012 SciRes.

and for o > ﬁ(p,q), we have
~a/d+(1/q=1/p), + a ~ajd+(1/q-1/2),
m < a (U(BS (Lq )))p <m q ’
when 1< p<2 and

m—a/d+(l/q—l/2)+ < a; (U(Bf (L,, ))) < m—a/d+max{l/q,l/2} ,

when 2< p<oo.

3. The Proofs of the Main Results

In order to prove Theorem 2.5 and Theorem 2.6, we need
following lemmas for @, (x).
Lemma 3.1. For the d variable trigonometric polyno-
mial @, (x) of degree n above, we have
)If xeT’ then ®@,(x)20;
D)If |x|<m/n then @, (x)>1;
n-1
3) > @, (x—2nl/n)<C,, where C; is a constant in-
[]=0
dependent of #;
4 [,
dependent of n.

Proof. We only prove 4).
If 0<t<m, then from t/n<sint/2<t/2, we have

dx <C / n®, where C, is a constant in-

d d 1 2
- (l/n)zd I—Un(smnx /2} x n_zdl_[nj;n/z(smy,J dy, =
- i=1 Vi

=1

i

Lemma 3.2. For 1< p<ow, a, 20, leZ! thereis
positive constant C independent of n, such that
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nz_i @, (x-2ml/n)q,

1]=0

determined by the properties of free variables in the

=0 neighborhood of zero, we have

}l/ﬂ Proof. For the integral properties of @, (x) mainly

E C{(Zn/n)d S

n—=l1
> @, (x—2nl/n)
=

V\ 0

» p
Ln Etb (x—2nl/n)a ] dx}

n 2
V\ 0 (3/2)"a H(nsin(xl.—2nll./n)/2)2

1
e
et
|

n | sin (n(xi—ani/n)/Z)de

<

R (x,. —271711'/”)/2)

I/p p
n—=1 d n—1
< >al[]n ]Inn " (sm y’J dyl} {(271’/11) > af } .

=0 =l l i =

The proof of Lemma 3.2 is finished. By Lemma 3.1 2) and Remark 1.1, we have

Proof of Theorem 2.5. First, we consider the upper f(x) < Ty;r (f,x) and Trr:r (f’x) is a linear combina-

estimation. For a given function felL € set
8 s ( ) "€ 2 tion of at most 2m exponentials ¢, (x), keZ?.

T, (f>x) y

o When p=w, g=2, s=o0, by Definition 2.2, we
=T,+» ®, (x—2mul/n) sup |f(y)—Tm (y)| have

i1=0 |y=2al/n|<n/n

,(x=2nl/n) sup |f-T|

J

ol w) < Lt (lroris
- ) |75

feu(BY( 111=0 |y=2nl/n|<n/n
( L (7N
<0 (U(Bg (Lz))) + sup > @, (x-2al/n) sup |f-T,, (f)‘ =5 +S,,
* er(B;j(Lz)) /=0 |y=2nl/n|<n/n o
where we have written n=2" in (7). S =0 (U(Ba (L ))) <2 ®)
By the conditions of Theorem 2.5, for any given natu- : 7 = e
ral number m, we have a > a(p,q)=d/2. Notice that For any f e U(B;Z (Lq )), by Lemma 3.2, under the
1/g—max{1/p,1/2} =0 in Theorem 2.4. Thus, condition of Theorem 2.5, we have
n—=1 n=1
S,= sup [>. @, (x—2nl/n) sup f(y)—Tz,,,d (f,J/)‘ = sup [> D, (x—2nl/n)aq,
reu(BE(z,))llin=o |y=2ml[nl<n/n o feu(BE(1,))lli=o 0 )
< (@atfn) 1| £ (2) =T (fo3)], <[/ =], <27,
where a,:= sup |f(¥)=T,. (/> y)‘ quence {R ; (x)}olc , of the trigonometric polynomials of
|y=2nl/n|<m/n J=
By the monotonicity of o, and (8), (9), we have coordinate degree 2’ such that £ (x):= Z/ R (x), and
o (U(B*(L <m™ M, (10) . =
(v (B (), elel) | =t

When p=g, s=co, for any er(Bf‘ (Lq))’ then, In particular, take R,(x)=T,(f,x),
by the definition of Besov classes, there exists a se- R, (x)szj (f,x)—sz,1 (f,x), j=123;-

Copyright © 2012 SciRes. APM
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Here the operator 7, (f,x) are the best m-term trigo-
nometric approximation operators in (1). From the rela-

+ sup
er(Bg (L ))

<« sup Z 277
./'eU(B"’(L ))/ m+l

Jj=m+l

Here gq,

2k (y)‘ Under the

condition of Theorem 2.5, it is easy to see that

= Sup\y72nl/n|ﬁn/n

= > 2/ <2 (12)

Jj=m+1

©

Next, we will estimate S;. Set h(y)=2."_ R (),

and

n—1 Vp n=l
( ) [ J.U (2ni/n,n/n) lpde [ZJ. U(2nl/n,n/n)

1|=0 1]=0

n=l
S(IZ—:‘)JU(Z”’/"ﬂ/n)y Sup (|h(y)—h

eU(an/n,n/n)

|f—g||p] <h. (u(B(1,)

@, (-—2nl/n)  sup

tion between linear approximation and non-linear ap-

proximation and Lemma 3.2, we have

P

SR, (v)

J=m+1

|y=2nl/n|<n/n

’ (11
2/“R, " +  sup ni(l)n (-—2ml/n)aq,
reu(BE(ry))llin=o »

/=0

) n-1 iy
< ) 27 +{(2n/n)d Za,”} =5/+5,.

/p

7 (hi/n), = { de[ sup

yeU(x,2n/n)

p
|h(y)—h(x)|] dx}
Since the measure of the neighborhood
U (2wj/n,afn)=T]" {2]’% I ZL —} is (2n/n)",
n

non on
so, by the definition of Besov classes and Minkowskii
inequality, we have

I/p
o) @)

EU(an/n n/n)

1/p
o+ h())’ de

» p
h(y)—h
{;)I U(2nl/n,z/n) £ygu(§l7;lll/),,’n/n)| (y) (x)U } {;)I U(2nl/n,n/n)

I/p
x)|p dx}

» /p vy
< {J.Td (yeus(lxlﬂgn/nJh(y)—h(x)U dx} +{Iﬂ |h(x)|p dx}/ =7, (hY/n) +|A], -

Forafixed g =g, 10, 11y) eZ, set

oM L .
D" =——————_ By the mathematical induction

H My Ay Hd
Ox{"oxy? -+ Ox}

on d, it is easy to see that

L (hYn), ( i
s=m+1 P s=m+1|u|=1
o d
< Z Zn I/t\2s\/t\2 sa (Zm

s=m+1|u|=1

By the conditions of Theorem 2.5, and a > d, we have
7 (h/n), <27

Copyright © 2012 SciRes.

Rs,l/n] <Y Zn “per | < 3 Zn iy

7 (R1/n) < Zn

!

Notice that n=2". From the properties of smooth

modulus [12] and Bernstein inequality, we have

s=m+1|u|=1

R|| )<<2’”“22 Ha=d)

From (11), (12) and (3), we have
||h||p <2,

APM
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So

Sy= sup S;(f)<r(hl/n) +[|n] <27 (13)
_/eU(B;:(Lq))

For sufficiently large m, by (12), (13) and the

monotonicity of o, we have

o (U(Bg (L, ))) <m (14)

P

The upper estimations for the other cases can be ob-
tained by the embedding Theorem. In detail, we may
show them in the following.

If 2<g<p<o, then "",, < ||||00 . So for any

(zm 1, "q );

£ <1, forall jeN. Thus,
2 lg

fe U(B;f (Lq )) , by <1, we have

1.(‘

27

nia "fj"2 < "f/"q <1. Hence we have

1L,

following embedding relation
U(Bs (L)< U(B:(Ly))-
By (10), we have

o (U(Bg (Lq)))p <o, (U(B2(Ly))), <m™.

<1, ie, fe U(Bjj (L, )) So, we have

Lo

If 0<g<2< p<ow, then forany;and
fe U(BO‘Z (Lq )), by (3), we have 2/* ||fj||qsl (if g takes

different values, replacing f; by 7,, does not influ-
ence the proof). So by Nikol’skii inequality (see [1], p.
102) for the inequality), we have

2]052—fd(1/‘1-1/2) "f/ || <pla
Iz

f/.||q <1.

Hence feU (Bf ~4a-1/2) (Lq )) and we have follow-

ing embedding formula
U(Bf’ (Lq )) - U(Bffd(l/q—l/z) (L, ))
By (10) we can get

o, (U(B_f” (Lq )))p <o, (U(Bsa-d(l/q—l/z) (L, )))

< m—a/d+(l/q—l/2) ]

©

If 0<g<p<2, thenforany;and

f eU(Bf‘ (Lq )), we have (2‘/(1 "f,”q )“::0

<1. By
lS

Nikol’skii inequality we have

Copyright © 2012 SciRes.

<

‘ (2./a " 1, "q );

Thus we have following embedding formula

U(Be(L,))cu (B (1)),

s

(2.m2—jd(1/q71/p) " /, " )
4

o]
n:O 1.(‘ lS‘

By (14), we have

o (v(B:(L,)))

<o (U(Ba-d(l/q—l/p)+ (L )))
=%Ym s P

p P

< m—a/d+(l/q—l/p)+ ]

If 1< p<g<oo, then, for any er(Bf‘(Lq)), by

‘(2.;(1 ” 1, "q );

jeN. So there hold 2/°

[1s1,)

<1, we have 2/

%,

<1, for any

s

£, <275, <t and

<1. Therefore, we have
Lo

u(B:(L,))cu(Be(L,)).

By (14) we have

on(U(B (L)) <on(U(B(L,))) <m™".

P P

The upper estimation is finished.
By the definition of o, and o, |, the lower estima-
tion can be gotten from Theorem 2.4, and the following

relation
o 06 (1), 2057 (1)

P

Proof of Theorem 2.5 is finished.
Proof of Theorem 2.6. First, we consider the case
1< p<2< g <. By Definition 2.2 and 2.3, we have

708 (1)), <en (5 (1)),
<a;(U(Br(z,), 9

% (U(Bf (Lq )))2 '

By Theorem 2.5, we have

o (U(Bf’ (L ))) o g4 Wa-Y),

q
p

When 1< p<2, for 1<¢g<2, by Theorem 2.5, the
upper estimation is

o, (U(Bf (Lq )))2 < a2,

From (15) we can get

APM
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o (o((1),

. “ ~afd+(}/g-1)2),
<o, (u(B (2, )))2 <m .
(16)
When 2<p<w, 1<g<2, by the relation between
best m-term approximation and Greedy algorithm [7], we

have

"f -g, (f)"p < m‘l/zfl/”‘am (f) .

V4

amn

I/ -g.

“(U(B*(L =
(Zm( ( s ( ‘1)))17 <f€u?2’p(%))

<m VTV

+
p

When 2< p<o, we consider the case 2<g<oo.
By the "fj"2 S"fj o we have
U(B! (L)) U(Bf (, )) (20)
By (19) and (20), we can get
a; (U (B (L, ))),, <a; (U(BY(L, ))),, <m I,
21

In the following we will give the lower estimation. By
Definition 2.3, we have

a; (U (B (L, )))p > a,,, (U(Br (L, )))p .

And by Theorem 2.4, we have
oo (1)

P

when 1< p<2 and
al (U(Bf (L, )))

when 2< p<oo.
This finishes the proof of Theorem 2.6.

> Wl—oz/d-*—(1/1]—1/2)4r

p
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