
Journal of Software Engineering and Applications, 2012, 5, 351-363 
http://dx.doi.org/10.4236/jsea.2012.55041 Published Online May 2012 (http://www.SciRP.org/journal/jsea) 

351

Framework for Extensible Application Testing 

Agnieszka Zielińska 
 

Computer Science Institute, AGH University of Science and technology, Kraków, Poland. 
Email: agnieszka.zielinska@ubs.com 
 
Received February 26th, 2012; revised March 27th, 2012; accepted April 29th, 2012 

ABSTRACT 

In recent years large corporations as well as smaller commercial enterprises have begun to devote increased attention to 
software testing and software quality. This paper introduces a novel tool—the Framework for Extensible Application 
Testing (FEAT), implemented by the author and applicable for automatic generation and execution of test cases. The 
paper discusses system requirements, design, architecture and modes of operation. It also contains a detailed compari- 
son of the FEAT framework with existing test environments, focusing in particular on the STAF/STAX framework. The 
final section is devoted to experimental research into the applicability and efficiency of the presented tools in various 
projects and configurations, as reflected by quality metrics. 
 
Keywords: Software Testing; Quality Assurance; Testing Automation; Framework for Extensible Application Testing 

(FEAT) 

1. Introduction 

In recent years, commercial entities dealing with com- 
ponent software development have shown increased 
concern with software testing and software quality issues. 
Tests need to be frequent, thorough and extensive; 
moreover they need to cover a wide range of use cases 
and potential applications of software components. Test- 
ing processes employ—with ever-increasing frequency— 
automated tools and frameworks, enabling developers to 
reduce the complexity of software solutions and ensure 
their optimal quality. Modern testing environments carry 
many benefits, yet they are not free of certain drawbacks 
and limitations such as language lock-in, poor support for 
inter-scenario dependencies, lack of parallel testing me- 
chanisms for distributed architectures and lack of cen- 
tralized test resource management tools. 

This paper introduces a novel testing environment 
called FEAT (Framework for Extensible Application 
Testing) developed by the author and capable of auto- 
matically testing component software. The environment 
is readily adjustable and can be customized to match the 
requirements of various testing teams. It boasts many 
features which aren’t found in popular testing suites cur- 
rently available on the market. 

The first section of the paper discusses basic issues 
relevant to software testing. This is followed by a discus- 
sion of testing principles and a general description of the 
testing process itself, where we distinguish specific 
modes of testing. Following this discussion, we present 
the key aims of the FEAT automatic testing environment 

—the author’s main contribution to the field. We also 
discuss the general premises on which the system is 
based as well as its architecture. An introduction to the 
development of test scenarios is presented, along with a 
description of test execution in the proposed environment 
[1]. 

Section 4 opens the experimental part of the paper, 
comparing the features of FEAT with those provided by 
popular testing frameworks such as JUnit and TestNG, as 
well as advanced environments, including STAF/STAX. 
We discuss the advantages and drawbacks of each solu- 
tion and present the concepts which have been adopted 
and further elaborated by the author in the scope of 
FEAT. 

Having presented a conceptual outline of the FEAT 
framework we follow through with an analysis of the 
tool’s applicability to two specific IT projects, differing 
with respect to the size of development teams and budg- 
ets. The results of this study are presented in Section 5. 

The paper ends with a recapitulation of the project’s 
goals, conclusions drawn from the above-mentioned use 
cases and prospects for further development of the FEAT 
environment. 

2. Basic Concepts Related to Software 
Testing 

The primary goal of software testing is to identify any 
defects which may be present in the system being devel- 
oped. A defect may occur during any phase of the soft- 
ware design, implementation and maintenance process. It 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 352 

may result from coding errors (also called bugs), omis- 
sions or misinterpretations of the required functionality 
on the part of system developers [2]. 

Testing is a crucial element of software development 
since it guarantees that the application will perform as 
expected in all circumstances. Some testing methodolo- 
gies actually extend this definition by checking whether 
the application doesn’t do more than is expected of it. In 
either case, testing works to protect the user from soft- 
ware errors which may—depending on the circumstances 
—result in loss of time, financial resources or even hu- 
man lives [3]. 

2.1. The Basic Principles of Testing 

Testing typically follows the schema outlined in Figure 
1. This standard is widely applied throughout the IT 
world, and consists of a set of rules defined by respected 
authorities in the field. For instance, Davis mentions the 
following principles of software testing [4]: 
 All tests must reflect client requirements. 
 Testing should be planned far in advance of its actual 

commencement.  
 Testing should follow the Pareto principle (80/20): 

according to this observation 80% of all software er- 
rors are caused by 20% of software components. It is 
the goal of tests to identify these critical components 
and thoroughly verify their correctness. 

 Testing should begin with general assumptions and 
then progress to specific criteria. 

 Exhaustive testing is impractical. 
 Tests yield better results when conducted by third 

parties. 

2.2. Types of Tests 

Two different approaches may be applied to software 
testing. The first is to conduct functional tests, i.e. view 
the system from the user’s perspective and treat it as a 
“black box” which is expected to perform certain tasks. 
In this case the tester is not concerned with the inner  

workings of the software being tested. 
Not surprisingly, such tests are also referred to as 

black box testing [4]. The other approach bases on struc- 
tural tests, where the tester has access to source code and 
may observe the behavior of individual components of an 
application (such as modules and libraries). This mode is 
sometimes called white box testing. A typical example of 
structural testing involves unit tests where the tester (or 
the programmer) develops additional code used solely to 
verify the operation of a specific portion of the applica- 
tion’s production code [4]. 

Tests may be conducted manually, by the tester, with 
the use of the application’s user interface and a checklist 
of actions, or automatically, where there is no need for a 
human actor. 

While both of the presented divisions focus on the 
means of conducting tests, another distinction can be 
introduced by considering the scope of testing [5]: 
 Unit tests; 
 Integration tests; 
 System tests. 

There is also a division of tests with respect to their 
purpose, which we view as the most interesting of all 
testing hierarchies. It permits us to select tests suitable 
for a given goal. This division is outlined below [6]: 
 Acceptance tests; 
 Functional tests; 
 Regression tests; 
 Performance and stress tests; 
 Installation and configuration tests; 
 Alpha and beta version tests; 
 Usability tests; 
 Failure recovery tests. 

It should be noted that each development phase of an 
IT project can be related to a specific testing phase. This 
relationship is outlined in Figure 2. 

3. The FEAT Component Application 
Testing System 

The initial requirements for our testing tool were gath- 
 

Test cases Test data Test results Test report 

Create test 
cases 

Prepare test 
data 

Run program on 
test data 

Compare results 
with test cases 

 

Figure 1. Software testing [4]. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 353

 
 

Requirements definition 

Component tests 

Integration tests 

System tests 

Acceptance tests 

Architecture design 

Detailed design 

Coding 

DECISION ABOUT 
SOFTWARE CREATION 

SOFTWARE  
ACCEPTANCE 

Mappingg requirements 
to software 

 

Figure 2. The relationship between project development and 
testing phases [4]. 
 
ered by studying the habits and opinions of teams devel- 
oping component software in a major American corpora- 
tion [7]. The presented environment can be applied by 
various corporate development teams to conduct auto- 
mated software testing. 

Following a thorough analysis of requirements we 
have formulated some basic assumptions which underpin 
the FEAT environment, presented in Figure 3: 

1) The environment is to be written in Java; 
2) The environment must enable easy, automated test- 

ing of distributed Java-based component applications 
with focus on simplicity and reusability of tests; 

3) The environment must enable easy, automated test- 
ing of distributed Java-based component applications 
with focus on simplicity and reusability of tests; 

4) The environment should focus on testing the APIs 
exposed by containers and components deployed in such 
containers. Supported containers should include J2EE 
and OSGI application servers as well as any container 
which provides a Java VM-based platform for pluggable 
software modules; 

5) FEAT works by wrapping a test engine in a plug- 
gable module so that it matches the container technology 
in use. Thus, each type of container should correspond to 
a specific wrapping; 

6) The proposed environment does not approximate a 

 

J2EE 
Application 

Application
client 

J2EE 
Application

J2EE 
Application

J2EE 
Application Test tool 

J2EE Application Server

 

Figure 3. Generalized vision of the placement of the proposed 
FEAT testing environment [1]. 
 
JUnitEE-type system as unit tests are, by definition, sim- 
ple and should not depend on external tools. Rather, the 
tests which can be conducted using FEAT can be arbi- 
trarily complex and scalable; 

7) The author focuses on developing universal com- 
ponents from which tests can be constructed and which 
can themselves be reused in various projects. Test de- 
velopers must be prevented from creating implicit de- 
pendencies between tests; 

8) The environment should support a flexible hierar- 
chy of tests and permit results to be archived in ways ap- 
propriate for a given IT project and selected testing meth- 
odology; 

9) When creating a specific test case, the developer 
should focus on abstract actions (e.g. install a product; 
verify the integrity of a database etc.) rather than on spe- 
cific, platform-dependent implementations (taking into 
account the operating system, DBMS, application server 
etc.) In other words, the environment should conceal tech- 
nical details from the user, relegating them to a separate 
(hidden) layer; 

10) The system should ensure access to the test execu- 
tion environment and facilitate interaction of tests with this 
environment (contrary to unit tests, which do not require 
access to such an environment); 

11) The system should provide a selection of useful 
auxiliary features such as file downloads, logging, result 
storage etc.; 

12) The system should feature advanced visualization 
of results and generation of testing reports; 

13) The system should introduce a mechanism for 
automatic removal of test engines and/or other resources 
(e.g. databases), restoring the initial state of the tested 
environment; 

14) The system should support pluggable installation 
and execution layers (such as SSH and STAF), response- 
ble for deploying test engines on remote machines. The 
transport layers used for remote execution of tests should 
also be pluggable (e.g. RMI, servlets, custom protocols 
based on serializable Java objects etc.) [1]. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 354 

3.1. System Overview 

A general overview of the architecture of the FEAT test-
ing environment is presented in Figure 4. Below we de-
scribe the basic principles of its operation [1]: 
 The Controller receives test Scenarios; 
 The Scenerio Manager scenarios (which may be 

written in an arbitrary programming language) and 
converts them to Java classes; 

 Classes are forwarded to the Test Execution Core 
which executes the scenarios by invoking test frag- 
ments on appropriate test engines, deployed on re- 
mote hosts; 

 The Resource Manager should gather information on 
the resources available for testing, including hosts, 
databases, application servers etc. The Test Execu- 
tion Core should reserve selected resources (on de- 
mand) and assign them to a given scenario (by sup- 
plying its description). Resource access is query- 
based: for example, the user may request a machine 
with DB2 v9.1 and WebSphere v6.1 installed. Thus, 
test developers only indicate generic requirements in- 
stead of selecting specific machines for testing; 

 The Resource Manager may be extended with 
plugins and/or interface with an external management 
system (for the purposes of reserving access to hosts); 

 Test Engines are installed on remote machines. Once 

tests are complete, these engines are automatically 
uninstalled to restore the local environment to its ini- 
tial state; 

 Test Engines execute test fragments and return re- 
sults to the Test Execution Core from which they are 
dispatched to the Results Manager; 

 The Results Manager may also be extended with 
plugins, for example to write results to files, custom 
databases etc.; 

 The Visualizer be attached to the Results Manager in 
order to display graphical representations of test re- 
sults. 

The testing environment is configured in two phases. 
Phase one involves configuring the controller by deter- 
mining which Resource Manager and which Result 
Manager it should interact with; which mode it should 
operate in and which services it should expose. This con- 
figuration does not directly influence tests. Phase two 
focuses on verifying the correctness of the test scenarios, 
checking their dependencies, determining the order in 
which tests should be executed etc. 

3.2. System Architecture 

One of the key aspects of FEAT is its layered architect- 
ture. Each layer is dedicated to a specific goal and may 
interact with other layers in pursuit of that goal. The lay- 

 

 

D
at

ab
as

e 
Pl

ug
in

 

Tests Execution Core
Test  

Engine 

Resources  
Configuration 

Test  
Engine 

Resource 
Manager 

Scenario 
Manager 

Result database Result File

Test Results

Scenarios 

Fi
le

s 
Pl

ug
in

 

Results Manager Test Machine 2 

Test Machine 1 Controller 

 
 

 

 

java object for
accessing 
resources 

java object 
representing

scenario 

J2EE Application
Sever 

 

Figure 4. General architecture of the FEAT testing environment [1]. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 355

 
ers depicted in Figure 5 are briefly discussed below: 

1) Transport Layer: executing Java code on remote 
hosts; 

2) Deployment Layer: installing test engines on re- 
mote hosts; 

3) Services: services such as file download, file trans- 
fer etc.; 

4) Resources: various resources, including test hosts, 
databases, application servers etc.; 

5) Test Engine API: an API facilitating access to 
lower layers (Transport Layer, Deployment Layer, Ser- 
vices, Resources). It manages these layers and exposes 
their functionality to upper layers (Test fragments and 
installers and Test Scenarios); 

6) Test fragments and installers: this layer executes 
test fragments (each test fragment is an atomic unit, in- 
dependent of other fragments); 

7) Test Scenarios: this layer executes entire test sce- 
narios. 

3.3. Development of Test Cases 

At this point it seems appropriate to explain how test 
scenarios are created. Each test scenario corresponds to a 
specific test case and consists of the following elements  
 Scenario identifier (ID); 
 Scenario name; 
 Textual scenario description; 
 Dependent scenarios (which need to be executed prior 

to the given scenario); 
 Programming language in which the scenario has 

been implemented; 
 Name of class implementing the scenario; 
 Resources required for the test scenario to execute 

(resource name, resource class and—optionally— 
other parameters such as version number). 

A sample XML file describing two simple scenarios is 
presented below: 
<?xml version=“1.0” encoding=“UTF-8”?> 
<testsuite> 

<scenario id=“scen_20” 
name=“Scenario1”> 
<description>Test if database is cor-
rectly installed</description> 
<code 
type=“java”>mytests.TestDBConnn</code> 
<resource name=“DB” 
class=“feat.resources.Database” re-
quired=“true”/> 
</scenario> 
<scenario id=“scen_21” name=“Scenario2” 
depends=“scen_20” > 
<description>This scenario tests 
creation of database 
schema</description> 
<code 
type=“jython”>dbscenario.py</code> 
<resource name=“DB” 
class=“feat.resources.Database” re-
quired=“true”> 
<property name=“type”>DB2</property> 
<property name=“version”>9.1</property> 
</resource> 
</scenario> 
</testsuite> 

The <testsuite> tag indicates a test suite and 
contains a separate <scenario> tag for each scenario 
which belongs to the given suite. The <description> tag 
contains a textual description of the scenario. Each sce- 
nario must also specify a list of required resources by 
supplying their abstract names For instance,  

<resource name=“DB”  
class=“feat.resources.Database”  
    required=“true”/>  
means a database with the name DB2, managed by the 
feat, resources, database class. This database is required 
for the test scenario to operate (required = “true”). 

In addition, each scenario follows a specific course of 
action which may be described using various languages 

 
 

Transport Layer 

Test Scenarios 

Tset fragments and installers 

Peployment Layer Services Resources 

Test Engine API 

 

Figure 5. Layered architecture of the FEAT testing environment [1]. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 356 

 
(for example, by a Java class or a Jython script). The 
required language and the name of the scenario file are 
given as: 
<code 

type=“jython”>dbscenario.py</code> 
Test scenarios may be bundled in test suites and may 

also specify internal dependencies (for instance, “if a 
given scenario fails, do not execute these dependent sce- 
narios”). Such dependencies are expressed via the de- 
pends attribute in the scenario description. For example, 
the following description 
<scenario id=“scen_21” 

name=“Scenario2” depends=“scen_20” > 

3.4. Test Execution Process 

Given the proposed architecture, automatic execution of 
tests in the FEAT environment proceeds according to the 
following plan [1]: 

1. Controller initialization: 

1.1. Loading resources. 
1.2. Installation of test engines on remote hosts. 

2. Scenario enactment: 
2.1. Loading scenario. 
2.2. Converting scenario to Java object. 
2.3. Enactment of the next waiting scenario: 

2.3.1. Allocating resources. 
2.3.2. Retrieving/creating test fragments. 
2.3.3. Executing test fragments on test engines. 
2.3.4. Retrieving results. 
2.3.5. Uninstalling test engines installed by the 

scenar. 
2.4. Collating scenario results. 

3. Closing and uninstalling engines. 

3.5. Testing Progress Report 

While test scenarios and test fragments are executing on 
remote hosts, it is possible to monitor their progress and 
results via a Web-based interface. To this end, the Jetty  

 

 

Figure 6. Testing progress report [1].   

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 357

 
web server is used to serve a website at http://localhost: 
8088. Key configuration info is available under the Gen- 
eral tab: 
 Main: information about the system on which tests 

are being executed: version of the FEAT testing en- 
vironment, build version of the tested application, 
elapsed testing time, ID and full name of the operat- 
ing system, Java environment version, JAVA_HOME 
value, total RAM, free RAM and number of available 
processor cores; 

 Scenarios: information on the executing test scenar- 
ios: scenario ID, programming language (Java, Py- 
thon etc.), scenario name; 

 Test Fragments: information on individual test frag- 
ments which make up the scenarios: fragment name, 
class, platform, resources utilized; 

 Execution: information on the current state of the 
executing scenarios (Scenarios) and test fragments 
(Test Fragments). This menu also enables users to 
view execution logs (Log browsing) (Figure 6). 

4. Comparison of JUnit, TestNG, 
STAF/STAX and FEAT Tools 

Let’s assume that we have been tasked with testing 
component software developed by a large corporation. 
The development team consists of experts from around- 
the world, operating in various time zones. Let us fur- 
thermore assume that a test build of the software is cre- 
ated daily around 1:00 a.m. Tests are to be divided into 
the following phases [1]: 
 BVT (Build Verification Tests)—performed each 

time a new build is deployed; 
 CVT (Component Verification Tests)—if BVT pass 

successfully. CVT consist of regression tests con- 
ducted on a range of hosts with different configure- 

tions; 
Which tool—JUnit, TestNG, STAF/STAX or FEAT— 

would ensure the most efficient, most reliable and fastest 
testing under the proposed conditions? In order to answer 
this question, let’s analyze the information presented in 
Figure 7, which lists individual testing stages and the as-
sociated benefits of each testing environment. 

As can be seen, the highest efficiency—both for BVT 
and CVT—is provided by the FEAT environment. Tests 
can be performed automatically, with no human interact- 
tion, and may occur at any time (e.g. immediately upon 
the deployment of a new build, even late at night). When 
the testers come to work on the following day, they can 
peruse an automatically generated report detailing the 
conducted tests. It should be noted that the FEAT envi- 
ronment combines the benefits of the solutions presented 
in the previous sections. It derives its support for small 
test fragments from JUnit and inherits support for test 
suites from TestNG. In addition, it enables automatic 
execution of individual steps of the testing process; thus 
it shares many features with the STAF/STAX environ- 
ments frequently used in large corporations [8]. 

It is the goal of FEAT to fully automatize testing, in- 
cluding preparation of the testing environment. This is 
why the author has extended the proposed tool with addi- 
tional features such as automatic installation and execu- 
tion, file transfers, automatic allocation of testing re- 
sources and centralized logging. 

We can therefore conclude that the FEAT environment 
exhibits all the attributes of a self-contained automatic 
software testing solution and that—in terms of novel 
features—it compares favorably to the environments and 
tools currently available on the market. It can be ex- 
pected that the concepts upon which FEAT bases will 
one day become standard practice in commercial and open- 

 
 

Test monitoring 

Test execution 

Small, reusable test fragments 

Development of comliacted scenarios 

Development of tests in multiple languages 

Dependent tests 

Complex test execution 

Complex test scenarios 

Assignment of test machines 

File transfer between machines 

Installation of new application version for tests 

Allocation of test resoures 

Logs and resuit analysis 

Support for exchangeable modules 

JUnit TestNG STAF/STAX FEAT 

YES YES YES YES

YES

YES 

YES 

YES 

YES 

YES YES 

YES 

YES 

YES 

YES 

YES YES

YES 

YES

YES 

NO

NO

NO 

NO 

NO 

NO

NO NO

manual

manual 

manual 

manual 

manual

manual 

manual manual 

manual 

manual 

manual 

manual 

manual 

manual manual 

manual 

manual 

manual 

automatic 

automatic 

manual 

automatic 

automatic

automatic 

automatic 

automatic

automatic

automatic

 

Figure 7. Comparison of JUnit, TestNG, STAF/STAX and FEAT [8,9].  

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 358 

 
source testing solutions, including those employed by 
large IT enterprises. 

Comparison of Test Implementations in 
STAF/STAX and FEAT Environments 

Compared to STAF, FEAT is better suited for Java-based 
environments since it does not require additional virtual 
machines to operate. As FEAT may be executed in any 
Java virtual machine, no additional code is required to 
perform mediation between the internal interface of the 
tested application and the testing environment itself. 

STAF only supports communication via basic strings 
and lists. In contrast, FEAT enables transfer of configu- 
ration parameters, data and test results as serialized Java 
objects with arbitrary internal structure. During devel- 
opment of tests, syntactic verification occurs at the com- 
pilation stage, and not—as in STAF—at runtime [10]. 

When preparing tests in an IDE (such as Eclipse) the 
programmer may take advantage of the code autocom- 
pletion feature to find out which arguments are required 
for a given test fragment. This reduces the need to con- 
sult documentation and increases code reusability. 

STAF is a highly generic environment, built upon the 
notion of agents and services deployed therein. Efficient 
development of tests requires users to deploy an addi- 
tional layer of testing logic suited for a particular project. 
In contrast, FEAT aims to support creation of tests “out 
of the box”. As the test suite grows and matures, it may 
be extended by adding (or exchanging) plugins, installers 
or fragments, usually with no need to rewrite code [10]. 

FEAT defines a selection of interfaces and contracts 
which need to be implemented by the test code. This 
feature results in reusable modules which can be repur- 
posed not only within the context of a specific project, 
but in the scope of an entire enterprise (or branch 
thereof). 

Software testing often calls for examining the same 
functionality under various hardware and software con- 
figurations (different operating systems, application con- 
tainers, databases etc.) FEAT supports this goal by sepa- 
rating the generic test scenario from implementation- and 
configuration-specific details. Test fragments may be 
differentiated into versions, depending on the engine in 
which they’re executed. Moreover, each scenario may be 
executed on various sets of resources, which enriches the 
set of test configurations without calling upon the user to 
develop additional scenarios. 

Finally, FEAT supports central management of re- 
sources used in tests. The Resource Manager module may 
be swapped while the central database remains unchanged. 
This feature mitigates the problem of having several 
testers share a single machine and interfere with one an- 
other’s work. 

5. Experimental Assessment of the Manual 
Software Testing Process with 
STAF/STAX as Compared to FEAT 

In the following subsection of our work, we will discuss 
the software testing process on the basis of two distinct 
use cases [1]: 
 a small enterprise employing up to 5 developers and 

testers with overlapping areas of responsibility, ap- 
plying the MSF methodology.  

 a large corporation with a well-defined organizational 
structure and clearly delineated developer/tester re- 
sponsibilities, applying the RUP software develop- 
ment methodology. This use case is based on infor- 
mation acquired from a large real-world international 
corporation. 

For each of the presented cases we will briefly de- 
scribe the testing methodology, development team com- 
position and software being produced. Following a pre- 
liminary analysis of the project team, we will assess the 
time required to manually perform tests using STAF/ 
STAX and FEAT. This will enable us to compare the cost- 
effectiveness of test preparation and execution phases. 

Our analysis will yield conclusions regarding the ap- 
plicability and effectiveness of selected tools for different 
teams and software projects. 

5.1. Quality Metrics 

Published works [11,12] propose a great variety of met- 
rics and quality assessment methods which may be ap- 
plied by gauging the cost and expected duration of a pro- 
ject—e.g. COCOMO (COnstructive COst MOdel) or the 
function points method. For the purposes of the presented 
work, we will only discuss some basic quality metrics 
and means to determine the percentage of undiscovered 
errors. Particular attention should be devoted to the qual- 
ity of the testing process itself—its effectiveness and the 
reliability of the results it yields – as these values enable 
us to determine the quality of the software being tested.  

The following metrics may be used when assessing the 
quality of testing [13]: 
 Requirements Coverage metric: numerical assess- 

ment of the portion of requirements which have suc- 
cessfully passed tests. The following formula applies: 

RC = no. of requirements (P, I, E, S)/no. of require- 
ments (A, T). 

This metric may be derived at many stages in the test- 
ing process, to determine the coverage of code by planned 
(P), implemented (I) or executed (E) tests. Moreover, it 
can be used to assess how many requirements have 
passed tests successfully (S). This value may be com- 
pared to the total number of requirements (A) or to the 
number of requirements which were subjected to testing 
(T). In the context of testing quality, the requirements 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 359

coverage metric can serve as the coefficient of tested 
requirements, namely: 

RC = no. of tested requirements (E)/total no. of re- 
quirements (A). 
 Code Coverage metric: this metric enables us to de- 

termine the fraction of source code subjected to test- 
ing. It is given by the following formula: 

CC= no. of executed code units/total no. of code units. 
The number of code units is defined as the number of 

lines of code or, alternatively, as the number of potential 
control paths that can be traversed. Source code should 
be understood as an expression of the developer’s inten- 
tions; however it must be noted that even complete code 
coverage and absence of errors do not warrant a good 
match between the resulting software and the end user’s 
requirements. 
 Defect Removal Effectiveness metric, usually given as: 

DRE = no. of errors identified during testing/total no. 
of identified errors. 

The total number of identified errors is the sum of the 
number of errors identified during testing and the number 
of errors identified following testing (i.e. during deploy- 
ment or during production runs involving the end user). 

This metric indicates how efficient the testing process 
is in identifying errors; however in order to accurately 
derive it we must remain aware of how many errors are 
identified by end users. Thus, our assessment must be 
based on historical data and take into account the ex- 
periences of similarly competent testing teams working 
on similar projects with the use of similar testing meth- 
odologies. 

The Defect Removal Effectiveness metric is applied 
by the CMM (Capability Maturity Model) to assess the 
maturity of an IT enterprise. 

5.2. Case Study 1: Small Enterprise 

5.2.1. Team Description 
The small enterprise development team consists of 8 
persons, one of whom plays the role of product manager, 
project manager and release manager. That person is re- 
sponsible for planning, estimating the duration of project 
phases, assigning tasks, overall project management and 
release deployment. Four persons are employed as de- 
velopers while the three remaining team members are 
testers who nevertheless actively participate in develop- 
ment (due to manpower limitations). Their assignments 
may change depending on the circumstances. Each team 
member handles clearly defined tasks. Team roles are 
mutually dependent and shared. The team applies the 
MSD (Microsoft Solution Framework) methodology. 

5.2.2. Project Outline 
The project is driven by client demands and has a spe-

cific timeframe for each implementation phase as well as 
a final deadline for software delivery. The client is par-
ticularly concerned with meeting this deadline while en-
suring high quality of the delivered software.  

Unfortunately, due to the lack of sufficient manpower, 
the team finds it difficult to meet all of the client’s re- 
quirements. 

5.2.3. Methodology 
The team applies the MSF (Microsoft Solution Framework) 
methodology, developed by Microsoft Consulting Ser- 
vices and known throughout the world as an established 
standard for the development of IT projects by Microsoft 
and its partners. 

In general, the project can be considered a success if it 
is realized within budget and in agreement with the pre- 
determined deadlines. 

5.2.4. Tool Effectiveness Analysis 
How should this type of project be handled, given the 
specified methodology, requirements and team composi- 
tion? The most significant problem seems to be the rela- 
tively small size of the team and, in particular, the need 
to intermittently engage testers in development of addi- 
tional features. The question arises: how to optimally 
exploit the available resources? The following analysis 
begins with a phased implementation plan. 

First, let us assume that the team does not perform any 
automatic testing. All tests need to be conducted manu- 
ally. Whenever new features are introduced, regression 
tests must take place, given the strong dependencies be- 
tween any new features and existing system components. 
While such tests are being conducted, testers cannot par- 
ticipate in further development, due to their relatively 
high workload. Two different scenarios may be applied 
at this point: 
 Testers focus on manual tests run in parallel with im- 

plementation. This ensures better product quality but 
at the cost of missing deadlines (testers cannot engage 
in development and the team is reduced to four active 
developers—cf. column 1 in Figure 8). 

 A single tester focuses on testing while the remaining 
two collaborate with developers on implementation of 
new features. The project proceeds as scheduled, 
however it may fail to meet client requirements due to 
the relatively low testing coverage (column 2 in Fig- 
ure 8). 

 Thus, given a manual testing regimen, it seems un- 
likely that all the goals of the project can be met. Ei- 
ther the project will be delayed or the quality of the 
delivered software will be compromised.  

Let us now consider the potential advantages of ap- 
plying automatic testing tools in the scope of this project: 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 360 

 200

180

160

140

120

100

80

60

40

20

0

Time for tests (%) Time for development (%) 

1                       2 

T
im

e 
[%

] 

 

Figure 8. Comparison of project implementation time given 
manual (1) and automatic testing (2) [1]. 
 
 During the initial implementation phase all three test- 

ers design automatic tests of expected features, basing 
on the conceptual system design. Implementation 
proceeds slowly. 

 Once the tests are implemented, testers may devote 
their attention to development of additional features 
while devoting only a small percentage of their work- 
load to analysis of test results. This greatly speeds up 
further development. 

Automatic tests can proceed in parallel with imple- 
mentation throughout the duration of the project (column 
2 in Figure 9). As testers are not required to personally 
execute and monitor tests, they can devote more of their 
time to implementation work. 

Let us now analyze the project from the perspective of 
IT industry standards: 
 Number of requirements: 150; 
 Number of implemented classes: 80; 
 Lines of code: 80 classes * ca. 1000 lines = 80000 

lines; 
 Lines of test code: 60 classes * ca. 1000 lines = 60000 

lines; 
 Under these conditions the implemented tests would 

cover approximately 90% of code, exposing appro- 
ximately 94% of all errors and covering approxima- 
tely 130 requirements; 

 The quality metrics, as given by formulas presented 
in Section 5.1, would therefore equal: 

RC = 130/150 = 0.86 
CC = 72,000/80,000 = 0.9 
DRE = 0.94 

5.2.5. CONCLUSIONS 
From the above analysis and the derived quality metrics  

 120

100

80

60

40

20

0

Time for automatic tests results analysis (%) (1) and time for 
automatic tests execution (5) (2) 

Time for development (%)

1                      2 

T
im

e 
[%

] 

Time for automatic tests implementation (%)  

Figure 9. Manual tests: 1—deadline missed, acceptable 
software quality; 2—deadline met, insufficient software 
quality [1]. 
 
it follows that automatic testing would enable this project 
to be delivered on time, with no undue impact on soft- 
ware quality. Thus, automatic testing proves efficient and 
highly desirable from the business standpoint. No other 
testing environment seems to fulfill the stated require- 
ments of this project, given the circumstances under 
which it is being implemented.  

5.3. Case Study 2: Large Enterprise 

5.3.1. Team Description 
This use case bases upon data gathered while working 
with automatic testing tools in a large real-world corpo- 
ration. The development team consists of developers, 
testers and a project manager. The role of each team 
member is explicitly defined. The team is geographically 
distributed; some members operate in Poland while oth- 
ers are based in the USA. The impact of the FEAT on 
business goals will be assessed based on data from two 
real-life IT development projects. 

5.3.2. Project Outline 
The goal of the project is to deliver a custom component 
to external clients. The team applies the RUP (Rational 
Unified Process) iterative methodology. Extensive test- 
ing of the product, covering as much of its functionality 
as possible, is critically important. Tests are to be divided 
into the following phases: 
 BVT (Build Verification Tests)—performed each 

time a new build is deployed; 
 CVT (Component Verification Tests)—performed if 

BVT pass successfully; 
 IVT (Integration Verification Tests)—integration 

tests; 
 SVT (System Verification Tests)—system-wide tests; 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 361

 RT (Regression Tests). 
Proper testing coverage is a prerequisite of suitable 

QA (Quality Assurance). 

5.3.3. Methodology 
As mentioned above, the development team applies the 
RUP (Rational Unified Process) methodology, whose 
principles, advantages and drawbacks are outlined in Sec- 
tion 2 of this paper. 

5.3.4. Tool Effectiveness Analysis 
The analysis of the effectiveness of testing tools is based 
on real-world data acquired from a corporation: 
 Test scenario: Selected scenario from the BVT; 
 Condition: full automation of test scenario, including 

environment configuration, post-test cleanup and col- 
lation of test results for analysis; 

 As depicted in Figure 10; 
 Duration of a single test scenario: 

♦ when using SSH, JunitEE and ant: 28 h—a sig- 
nificant portion of that time has to be devoted to 
proper implementation of the test, preparation of 
the testing environment and post-test cleanup; 

♦ when using the FEAT environment: 8.7 h;  
 Time saved: 28 h - 8, 7 h = 19.3 h for a single test 

scenario; 
 50 requirements per functionality; 
 2 to 5 (average: 3.5) scenarios per requirement = 175 

test scenarios; 
 Number of implemented classes: 120; 
 Lines of code: 120 classes * ca. 1000 lines = 120000 

lines; 
 Lines of test code: 200 classes * ca. 1000 lines = 

200,000 lines; 
 

 30 

25 

20 

15 

10 

5 

0 

Time for results analysis 
Automation with SSH       Automation with FEAT

T
im

e 
[h

ou
rs

] 

Time for test execution 

Time for test scenario implementation  

Figure 10. Manual tests with SSH and JUnit and with 
FEAT. 

 Under these conditions the implemented tests would 
cover approximately 95% of code, exposing ap- 
proximately 97% of all errors and covering approxi- 
mately 48 requirements; 

 The quality metrics, as given by formulas presented 
in Section 5.1, would therefore equal: 

RC = 50/48 = 0.86 
CC = 114,000/120,000 = 0.95 
DRE = 0.97 

 Business impact: 
♦ 3377.5 h saved (175 * 19.3 h);  
♦ 422 PD (Project Days) or 84 PW (Project Weeks) or 

21 PM (Project Months) or nearly 1.8 PY (Project 
Years) saved; 

♦ costs reduced by 211K USD (assuming 120KUSD/ 
PY). 

5.3.5. Conclusion 
The above analysis suggests that FEAT-type automated 
testing environments carry advantages for large-scale IT 
projects as they ensure repeatability and increased quality 
of tests while saving time and reducing costs. This trans- 
lates into significant improvements both in terms of qual- 
ity metrics and business competitiveness. 

6. Summary 

The main goal of the presented work was to develop a 
custom environment called FEAT (Framework for Ex- 
tensible Application Testing), which could be used to 
automatically test component software while ensuring 
high adaptability to the requirements of various testing 
teams The presented environment can be applied to eas- 
ily and automatically test distributed component applica- 
tions written in Java, with focus on simplicity and reus- 
ability of tests. It focuses on tests of APIs provided by 
containers and components deployed therein. Supported 
technologies include J2EE and OSGI application servers 
and all other containers which provide a pluggable com- 
ponent-based system operating within the Java VM. The 
presented environment does not attempt to emulate 
JUnitEE as unit tests are, by definition, simple and 
should not call upon external dependencies. Tests con- 
ducted with the use of FEAT may be arbitrarily complex; 
however, we wish to stress the tester’s ability to develop 
universal components which can be assembled into tests 
of various software systems. In addition, FEAT provides 
support for a flexible testing hierarchy where results can 
be logged and presented in accordance with the require- 
ments of specific projects and specific testing method- 
ologies. In developing a test case, the tester focuses on 
abstract actions (such as: “install a product” or “verify 
the integrity of a database”) while omitting low-level 
implementation details, relating to given operating sys-  

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 362 

tems, database management systems or application serv- 
ers. In other words, the proposed environment relegates 
all technical aspects to a separate layer which is con- 
cealed from the end user. FEAT provides a testing envi- 
ronment and ensures suitable interaction between this 
environment and the tests themselves (contrary to unit 
tests which do not require any such environment). More- 
over, FEAT comes with a set of useful support services, 
including on-demand file transfer, logging, collating re- 
sults etc. It also contains an advanced visualization sub- 
system which may be used to generate testing reports [1]. 

The FEAT environment combines the advantages of 
several other testing platforms mentioned in this paper. 
For instance, it derives the notion of small test fragments 
from JUnit and the ability to compose test suites from 
TestNG. In addition, it enables automatic execution of 
individual steps of the testing process thus it shares many 
concepts with the STAF/STAX environments frequently 
used by large corporations. 

It is the goal of FEAT to fully automatize testing, in- 
cluding preparation of the testing environment. This is 
why the author has extended the proposed tool with addi- 
tional features such as automatic installation and execu- 
tion, file transfers, automatic allocation of testing re- 
sources and centralized logging. 

The use case analysis presented in Section 6 indicates 
that automatic testing environments, including FEAT, 
can be beneficial both for medium-scale and large IT en- 
terprises. Such environments facilitate the testing process, 
increasing its reproducibility and efficiency, while con-
serving the financial resources assigned to the project 
and thus improving the enterprise’s competitiveness. 

The FEAT environment exhibits all the attributes of a 
self-contained automatic software testing solution. In 
terms of novel features it compares favorably to the en- 
vironments and tools currently available on the market. 
We can conclude that the concepts underpinning this 
environment will one day become standard practice in 
commercial and open-source testing solutions, including 
those applied in large IT enterprises. 

The FEAT environment, in its current form (as pre- 
sented in this paper), is a complex, feature-rich system. 
Even so, its modular architecture supports further exten- 
sions which can be implemented by developing addi- 
tional modules. One example of such an extension would 
be to swap the application container for a Web browser. 
Under such circumstances, the testing plugin would be 
installed directly in a specific browser (Internet Explorer, 
Mozilla Firefox etc.) and verify that a given Web page 
has been correctly rendered by the browser. In order to 
perform this test it would take a screenshot of the 
browser window and then analyze its contents with the 
use of image recognition algorithms. 

Another possible extension might involve a groupwise 

resource manager, which would monitor (via a dedicated 
database) all the resources available to a group of testers, 
including test hosts, application servers, databases and 
external services. It could also support a booking system, 
enabling each tester to reserve access to certain resources 
for a specified amount of time. The resource manager 
would then ensure that no single resource is simultane- 
ously assigned to two different testers. It might manage 
resources on a project-wide or company-wide basis while 
delivering reports and recommendations (for instance, if 
a given test host with a specific operating system proves 
to be a highly contested resource, it might issue a request 
for another such machine to be provided to the testing 
teams). 

The FEAT testing environment could also provide 
virtualization capabilities, particularly important for large 
corporations. To this end it could be extended with a 
dedicated subsystem responsible for managing virtual 
system images and instantiating them on test hosts, as 
required by testers. 

In the context of potential wide-scale adoption of 
FEAT, it might prove beneficial to create a database of 
tests and toolsets, facilitating rapid development of new 
tests and easy configuration of working environments. 
This feature could be supported by a custom module or 
by an existing software solution such as TPM (Tivoli 
Provisioning Manager). 

Yet another possible extension would be to develop 
custom testing plugins for popular IDEs such as Eclipse, 
NetBeans or Visual Studio. Configuring tests would then 
be supported by a dedicated user-friendly GUI where the 
tester might select items from a menu and arrange them 
using a drag&drop mechanism. Tests could also be exe- 
cuted from within the IDE itself, in a way similar to 
JUnit integration in the Eclipse environment [1]. 

Clearly, the FEAT environment, as developed by the 
author and presented in this paper, could be extended in 
numerous ways, resulting in a highly complex and adap- 
table framework. 

REFERENCES 

[1] L. Pobereżnik and A. Zielińska, “Automatyzacja Procesu 
Testowania Oprogramowania Komponentowego W Het- 
erogenicznym Środowisku Produkcyjnym,” AGH, Kraków, 
2008. 

[2] G. J. Myers, C. Sandler, T. Badgett and T. M. Thomas, “Sz- 
tuka Testowania Oprogramowania,” Helion, Gliwice, 2005. 

[3] W. Hetzel, “The Complete Guide to Software Testing,” 
John Wiley & Sons, New York, 1988. 

[4] I. Sommerville, “Inżynieria Oprogramowania,” WNT, War- 
szawa, 2003. 

[5] R. Patton, “Software Testing,” 2nd Edition, Sams, Indian- 
apolis, 2005. 

Copyright © 2012 SciRes.                                                                                 JSEA 



Framework for Extensible Application Testing 

Copyright © 2012 SciRes.                                                                                 JSEA 

363

[6] W. E. Perry, “Effective Methods for Software Testing,” 3rd 
Edition, John Wiley & Sons, Indianapolis, 2006. 

[7] J. D. McGregor and D. A. Sykes, “A Practical Guide to 
Testing Object-Oriented Software,” Addison-Wesley Pro- 
fessional, Upper Sadle River, 2001. 

[8] C. Beust and H. Suleiman “Next Generation Java Testing: 
Test NG and Advanced Concepts,” Addison Wesley, San 
Francisco, 2007. 

[9] A. Hunt and D. Thomas, “JUnit. Pragmatyczne Testy Jed- 
nostkowe W Javie,” Helion, Gliwice, 2006. 

[10] STAF/STAX documantation, 2009.  

http://staf.sourceforge.net/docs.php 

[11] C. Y. Laporte, “An Overview of Software Quality Con-
cepts and Management Issues,” Hershey, 2005. 
http://profs.logti.etsmtl.ca/claporte/Publications/Publicati
ons/Duggan_Chapter_SQA.pdf 

[12] L. Westfall, “Defect Removal Effectiveness,” Austin, 1996. 
http://www.westfallteam.com/Papers/defect_removal_eff
ectiveness.pdf 

[13] S. H. Kan, “Metrics and Models in Software Quality Engi-
neering,” 2nd Edition, Addison-Wesley Professional, Bos-
ton, 2003. 

 

 


