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ABSTRACT 

In this paper, a Monte Carlo method, which is based on some new simulation techniques proposed recently, is presented 
to numerically price the callable bond with several call dates and notice under the Cox-Ingersoll-Ross (CIR) interest 
rate model. The corresponding algorithms are also presented to practical callable bond pricing. The numerical experi-
ments show that this method works very well for callable bond under the CIR interest rate model.  
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1. Introduction 

A callable bond is a bond that allows the issuer to buy 
back the bonds from the bond holders at pre-specified 
prices on the pre-specified call dates. Therefore, a call-
able bond is a straight bond embedded with a call of Eu-
ropean option (a single call date) or Bermudan option 
(several call dates). However, this option is an integral 
part of a bond, and cannot be traded alone, and hence, its 
prices cannot be observed. Thus, the callable bond pric-
ing must be involved in the pricing problem of the cor-
responding option. 

There are some different approaches for pricing call-
able bonds. The first approach is based on the Black- 
Derman-Toy model, which was presented in [1] (2006), 
with the discrete simulation of binary tree. With the help 
of the risk-neutral valuation, the second approach is to 
obtain a partial differential equation (PDE) subject to 
appropriate boundary conditions based on the equilib-
rium interest rate model. Since it is very difficult to ana-
lytically solve this PDE, some different discretizations 
and different numerical methods have been proposed. 
Büttler in [2] (1995) applied finite difference method to 
find the evaluation of callable bonds. Büttler and Wald-
vogel in [3] (1996) derived an analytic expression for the 
Green's function of the corresponding PDE for certain 
specific interest rate models, and developed a semi-ana- 
lytic method for pricing callable bonds with notice. As 
the further development, the finite volume method was 
used by D’Halluim et al. in [4] (2001), and the finite ele-
ment method was considered by Farto and Vázquez in [5] 

(2005) for the numerically pricing callable bonds with 
notice. Recently, a dynamic programming approach was 
proposed by Ben-Ameur et al. in [6] (2007) for numeri-
cally pricing options embedded in bonds. In this dynamic 
programming approach they used finite difference method 
and solved the Green’s function by conditional distribu-
tions and expectations with piecewise-linear approxima-
tion. 

Meanwhile, in the last decade, many new numerical 
schemes for simulations of interest rate models, espe-
cially, the Cox-Ingersoll-Ross (CIR) interest rate model, 
have been proposed. For instance, the balanced implicit 
method (BIM) was proposed by Milstein et al. in [7] 
(1998), the balanced Milstein method (BMM) was de-
veloped by Kahl and Schurz in [8] (2006). Also, the ex-
act transition distribution method (ETD) is considered to 
simulate the square-root diffusions (e.g. see [9]). Re-
cently, a new splitting-step scheme was presented by 
Ding and Chao in [10] (2009). In this paper, based on 
these new simulation techniques we present a Monte 
Carlo method to numerically price the Bermudan-type 
callable bond with notice. 

This paper is structured as follows. After this introduc-
tion, the interest rate models are reviewed, and several 
numerical simulation techniques are surveyed in Section 
2. Then, based on these simulation techniques, an effi-
cient Monte Carlo method is presented to price the call-
able bond with several call dates and notice under the 
CIR interest rate model in Section 3. The corresponding 
algorithms are presented in this section. Finally, numeri-
cal experiments for a practical callable bond with 10 call 
dates and 2 months notice are provided in Section 4. The *Corresponding author. 
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numerical results of these experiments are also presented 
in this section, as well as some useful conclusions. 

2. Simulations of Interest Rate Models 

Pricing financial derivatives depends on the description 
of the dynamic process of underlying assets. Since the 
underlying asset of callable bond is the interest rate, we 
focus on the mathematical models for the interest rate. 
These models can be divided as single factor models and 
multiple factor models by the number of status variables. 

The first well-known single factor model was pro-
posed by Vasicek in [11] (1977). In this model, the in-
terest rate  is give by the stochastic differential 
equation (SDE):  

 r t

      d dr t r t t W t     d , 

where ,    and   are all strictly positive constants, 
and  is a standard Brownian motion. In detail, W t    
represents the speed at which  r t  reverts back to the 
long-term mean  , while   is the local volatility of 
short-term interest rates. The Ornstein-Uhlenbeck pro- 
cess is employed in this model for its key feature as the 
mean-reverting structure. 

The Vasicek’s model has two significant failings. First, 
the interest rate can become negative; Second, empirical 
evidence suggests that the volatility of  is not con-
stant as 

 r t
 , but is an increasing function of  r t  in-

stead. The first single factor model that possesses non- 
negative interest rate is the CIR model, which was pro-
posed by Cox, Ingersoll and Ross in [12] (1985). In this 
CIR model the interest rate  r t  follows the following 
SDE:  

        d dr t r t t r t W t     d .     (1) 

This model embodies the feature that the volatility is 
an increasing function of  r t . In this paper we focus on 
this model. 

Although the application of the Yamada’s condition 
reveals that the SDE (1) has a unique non-negative solu-
tion  r t  for any given initial value 0 0r  is dif-
ficult to find an explicit formula for this solution. Thus, 
many practical applications lead to the numerical simula-
tion of the CIR model. However, this involves two pro- 
blems: The first one is that the numerical simulation 
would yield negative value in the general discretization 
of SDE (1); The second one is that, since the diffusion 
coefficient is not globally Lipschizian, the convergence 
of the general discretization for SDE (1) is not guaran-
teed. 

  , it

ments in Section 4. 

be a positive integer. In the 
fo

In the last decade, many efficient new numerical 
schemes have been proposed for the CIR model (1) with 
positivity preservation. In the following, we survey these 
schemes, which are employed in the numerical experi-
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 indepen
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alanced implicit method (BIM) was proposed by 
Milstein et al. in [7]. The discretisation of the CIR model 
(1) by the BIM is given by  
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The adv e o
vation

antag f this algorithm is the strict positivity 
p , comparing the conditional preservations of 
the two methods above. Howeve  ETD method suf-
fers so great cost of computational time, and it also 
seems to be relatively unsuitable in our numerical ex-
periments. 

Recently, an efficient splitting-step scheme for the 
CIR ) was pro ed by Ding and Chao in [10]. 
This new scheme, which is called the DC scheme here, is 
given as  

reser
r, the

 model (1 pos


2

2
1 1 1

1
2 4kr r e   
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Figure 1. The call dates and the corresponding notice dates 
of Bermuda ca ble bond. 
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with 2 22     and the sum of the risk premium 
 , which is a parameter. Also, we can approximate the 
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 by apNow, plying the simulation technique to the in-
terest rate  r t  and using the Monte Carlo method to 
approximate the corresponding integrals  ; ,E i j  and  

the corresponding probabilities     ; ,P J j J i   , we  
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4. Numerical Experiments 

In this section, we do numerical experiments vi
thods to price a callable bond issued by the Swiss Con-
federation with an annual coupon of 4.25%. Here  is 

er 2

a our me-

0t
Decemb 3, 1991, and Jt  is December 31, 2012. The 
protection p riod is 10 years until year 2002. The notice 
pe

e
riod is two months. And the call prices are  

1 5 1J JX X    , 6 1.005JX   , 7 1.01JX   ,  
1.0158JX   , 1.029JX    and 1.025X  , resp10J ec-

From [3], the model parameters for the CIR model are 
tively. 

0.54958046  , 0.38757496  , 0.0348468515  . 
80589The initial interest rate 0 0.07522r  , and th
k-even interest rates

0.0179273733 ,  
8817260 ,  

e price 
of straight bond i
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92562 , *
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6 10 0
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-even interest rates

J J     , which 
are given in . Although the break-even interest rates 
can be obtained via our methods by Equa ), the 
results are lack of precision. There ults 
from [3] directly and these break  are 
computed by Equation (7). 
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Table 1. Numerical results for four methodsa. 

DC ETD Nb = 240 BIM BMM 

Callable bondc 0.8814 0.7967 0.8089 0.8575 

Call optiond –0.07 0.0147 0.0025 –0.0461 

Errore 8.33E–2 1.40E–3 1.08E–2 5.94E–2 

Table 2. Numerical results for different Ns via BMM me- 
thoda.  

40 0 0 Nb  2  48 96

Callable bond  0. 0.8009 7974 c 7967 0.

Call option  0.0147 0.0105 0.014 
e 40E E–03 

d

Error  1. –03 2.80 7.00E–04 

Table 3. Numerical results for different Ns via DC methoda.  

0 Nb 240 480 96

Callable bondc 0.8089 0.8058 0.7976 

Call optiond 0.0025 0.0055 0.0138 

Errore 1.08E–02 7.70E–03 5.00E–04 

 
aAll prices of callable bond are computed by the ave- 

rage over 50,000 simulating
b

 paths.  
N i he si-

mula nterest rate.  
c es for allab d are ed

s its e 1 resu
s of be ll all e

v  
Error is the absolute difference between callable bond 

s 1-3 give the price of this callable bond via dif-
ferent simulation methods. All results in the num
experi s show t MM and  schemes are more
e the Mo rlo met rks
v r prici ble bon

5. Acknowledgements 

of Macau for supporting their work G136(Y1-L2)- 
FST1 D, SRF02 10S/11T/ /FBA). 

REFERENCES 

 

s the number of time-discretized points in t
tion of i

All figur  the c le bon  round  to four 

 
ignificant dig from th 5-digit lts.  

dAll price the em dded ca option per fac
alue. 

e

price and 0.7981, which is given in [3].  
Table

erical 
 
 

ment hat B  DC
fficient than others. And nte Ca hod wo
ery well fo ng calla ds. 

The authors thank the Research Committee of University 
(MYR

SYC1-D 3/09-

[1] Z. L. Zheng and C. F. Kang, “Pricing and Hedging of 
Chinese Interest Rate Derivatives,” Peking University
Press, Beijing, 2006. 

[2] H.-J. Buttler, “Evaluation of Callable Bonds: Finite Dif-
ference Methods, Stability and Accuracy,” The Economic 
Journal, Vol. 105, No. 429, 1995, pp. 374-384.  
doi:10.2307/2235497 

[3] H.-J. Buttler and J. Waldvogel, “Pricing Callable Bonds 
ction,” Mathematical Finance, 

. 8, No. 1, 
2001, pp. 49-77. doi:10.1080/13504860110046885

by Means of Green’s Fun
Vol. 6, No. 1, 1996, pp. 53-88. 

[4] Y. D’Halluin, P. A. Forsyth, K. R. Vetzal and G. Labahn, 
“A Numerical PDE Approach for Pricing Callable 
Bonds,” Applied Mathematical Finance, Vol

  

[5] J. Farto and al Techniques for 
Pricing Callab Applied Mathema- 

C. V’azquez, “Numeric
le Bonds with Notice,” 

tics and Computation, Vol. 161, No. 3, 2005, pp. 989- 
1013. doi:10.1016/j.amc.2003.12.079 

[6] H. Ben-Ameur, M. Breton, L. Karoui and P. L’Ecuyer, 

.  
6.06.007

“A Dynamic Programming Approach for Pricing Options 
Embedded in Bonds,” Journal of Economic Dynamics 
and Control, Vol. 31, No. 7, 2007, pp. 2212-2233
doi:10.1016/j.jedc.200  

ol. 35, No. 3, 1998, pp. 

[7] G. N. Milstein, E. Platen and H. Schurz, “Balanced Im-
plicit Methods for Stiff Stochastic Systems,” SIAM Jour-
nal on Numerical Analysis, V
1010-1019. doi:10.1137/S0036142994273525 

[8] C. Kahl and H. Schurz, “Balanced Milstein Methods for 
Ordinary SDEs,” Monte Carlo Methods and Applications, 
Vol. 12, No. 2, 2006, pp. 143-170.  
doi:10.1515/156939606777488842 

[9] P. Glasserman, “Monte Carlo Methods in Financial En-
gineering,” 2nd Edition, Springer, New York, 2004. 

[10] D. Ding and C. I. Chao, “An Efficient Numerical Scheme 

Term 
 Economices, Vol. 5, No. 

for Simulation of Mean-Reverting Square-Root Diffu-
sions,” Journal of Numerical Mathematics and Stochas-
tics, Vol. 1, No. 1, 2009, pp. 45-55. 

[11] O. Vasicek, “An Equilibrium Characteriaztion of the 
Structure,” Journal of Financial
2, 1977, pp. 177-188.  
doi:10.1016/0304-405X(77)90016-2 

[12] J. C. Cox, J. E. Ingersoll and S. A. Ross, “A Theory of the 
Term-Structure of Interest Rates,” Econometrica, Vol. 53, 
No. 2, 1985, pp. 385-408. doi:10.2307/1911242 

 

 

http://dx.doi.org/10.2307/2235497
http://dx.doi.org/10.1080/13504860110046885
http://dx.doi.org/10.1080/13504860110046885
http://dx.doi.org/10.1080/13504860110046885
http://dx.doi.org/10.1080/13504860110046885
http://dx.doi.org/10.1016/j.amc.2003.12.079
http://dx.doi.org/10.1137/S0036142994273525
http://dx.doi.org/10.1137/S0036142994273525
http://dx.doi.org/10.1137/S0036142994273525
http://dx.doi.org/10.1515/156939606777488842
http://dx.doi.org/10.1515/156939606777488842

