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ABSTRACT 

The paper introduces a stationary vector autoregressive (VAR) representation of the error correction model (ECM). 
This representation explicitly regards the cointegration error a dependent variable, making the direct implementation of 
standard dynamic analyses using standard VAR models possible, particularly with respect to the cointegration error. Of 
course, an ECM does not have an explicit VAR form, and thus, it is not convenient for conducting such dynamic analy- 
ses. In this regard, we transform the original nonstationary VAR model into a VAR model with the cointegration error 
and stationary variables. Finally, we employ the model to dynamically analyze the real exchange rate between the US 
dollar and the Japanese yen. 
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1. Introduction 

The dynamic analysis of the cointegration error and sta- 
tionary variables in the short run is important as the long- 
run equilibrium for practitioners and policy makers. Of 
course, such work is possible through the classical error 
correction model (ECM), which was popularized by 
Engle and Granger (1987). Furthermore, the persistence 
profiles of Pesaran and Shin (1996) and Hansen (2005) 
are also useful alternatives for this purpose. 

Another possible option is to follow the vector autore- 
gressive (VAR) approach of Sims (1980), which is now a 
standard method. In particular, such work may be possi- 
ble if we transform the ECM into a VAR form of the 
cointegration error and stationary variables, which would 
allow the more direct exploitation of the rich tools of 
VAR analyses (i.e., the Granger causality test, impulse 
response analysis, variance decomposition, and optimal 
forecasting). Obviously, an ECM does not have an ex- 
plicit VAR form, and thus, it is not convenient for con- 
ducting such dynamic analyses. 

Then the question is whether we can transform the 
ECM into a finite-order VAR model of the cointegration 
error and stationary variables. In this regard, this paper 
derives a finite-order VAR model with the cointegration 
error that is conformable to the ECM for the short-run 
adjustment. In the VAR model, the cointegration error is 
regarded as a dependent variable, and VAR-type dy- 
namic analyses may be conducted directly. 

Finally, we employ the model to dynamically analyze 

the real exchange rate between the US dollar and the 
Japanese yen. 

The rest of this paper is organized as follows. Section 
2 introduces the model and assumptions. Section 3 dis- 
cusses on the stationary VAR model representation of 
ECMs. Section 4 presents the empirical results, and Sec- 
tion 5 concludes. 

2. Model and Assumptions 

We consider the  -dimensionaland integrated of one 
VAR(p) process of  given by tz

1 1 2 2t t t p t pz z z z t              (1) 

or 
1

1 1
,

p

t t i t ii
z z z t


                    (2) 

where 
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I
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 

      

p      

 

 , 

and t  is an 1  vector of an independently and iden- 
tically distributed disturbance term with a finite variance 

0  , where I
 t tz z
 denotes an -dimensional identity 

matrix and 


1tz    . 
Further we assume the cointegration of Model (1) (e.g., 

Johansen, 1995) as: 

Assumption 

We suppose   , where  and   a rre   
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matrices of the full-column ran  rk . 
Note that Model (2) may be written in an ECM as 

1

1 1

p

t t t ii
z u zi t 


                (3) 

under Assumption 2.1, where t tu z  . 
Model (3) obviously consists of all stationary variables 

of t  and t  under Assumption 2.1. We are now in- 
terested in the dynamic interaction between these vari- 
ables t  and tu . In this regard, we may apply the 
results of Pesaran and Shin (1996) and Hansen (2005). 
However Sims’ (1980) VAR approach is sometimes 
convenient for practical reasons. For instance, the opti-
mal forecasting of the k-th-period-ahead cointegration 
error  is executed mechanically in a VAR system. 

z



u

u

z

t k

Thus, we now show that Model (3) may be represented 
as a stationary VAR model of a part of variables tz  
and  when there is an ECM. tu

3. Stationary VAR Representation of ECM 

To obtain a stationary VAR representation, assume that a 
given cointegration vector is normalized as  , rI    
of the rank , where r   is   rr 

0

r

 . Then a confirm-
able non-singular square matrix can be defined as 

rI
T

I



 
 
 

. 

Noteworthy is that the above lower triangular matrix 
T  transforms the VAR variable  ,t t tz x y    into a 
variable  of tw tx  and cointegration error . tu

 ,t t tTz x u   tw  . 

Note that tx  is the explanatory variable of  in a 
cointegration relation as 

ty

ty xt tu  
z

.We then transform 
the above VAR model (1) of  into a VAR model of 
the variable . In particular, we multiply the  on the 
left of Model (1) and modify the VAR coefficients to get 
the following VAR model: 

t



,

tw T

* *
1 1t t p t pw w w     te          (4) 

where  for  and e T* 1
i iT T    1,2,i p t t . 

Note that Model (4) is an observationally equivalent 
form of Model (1) or (3) if t  has a Gaussian distribu-
tion. However, we cannot determine the correct model by 
simply analyzing observed data. 

Then it is helpful to write Model (4) as 
1* *

1 1

p

t t i t ii
w w w te


 

    
*
p





       (5) 

where  and * * *
1 2i i i         * *

1

p

ii
   . 

Then we may simply arrange *  in Equation (5) as 
follows: 

3.1. Proposition 

1* rI

0 ' rI

 
    

  

where 1  is  r r  , 2  is ,r r  and  1 2,     . 
ite from thProo on 3.1. We first wr e 

de
f of Propositi
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    (6) 

by using 

1 0r

r

I
T

I
  

   
  

for the first equality, where 

11π
  12

21 22

π
.

π π


 
 

 

We now represent the submatrices of   in the third 
equality of (6) by using   and  , where    
under Assumption 2.1. For this, note that 

Suppose that Assumption 2.1 holds. Then 

11 12π π

21 22

1 1

2 2

π π

    r

r

I

I

I


  

  
  



    
 

  
    





           (7) 

because the matrix Φ can be written as 

I                          (8) 

from the coefficient definition of (2) for the second 
equality. 

Then the third equality in Equation (7) directly implies 
that 

11 1π rI                        (9) 

12 1π                         (10) 

21 2π                          (11) 

22 2π rI  .                   (12) 

Consequently, if we plug
th

 the submatrices (9)-(12) into 
e last term in Equation (6), then we get following: 

11 12 1 11)   π π r rI I     
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2)  π
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0
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 

The above results 1)-4), together with the equality in 
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(6), proves the claimed result as 

1*

0
r

r

I

I





     

  

from (6). ■  
th the dependent and explanatory variables 

in



Note that bo
 (5), have the nonstationary variables tx  and 1tx   in 

tw  and 1tw  . Thus, we show how we may transform 
del (5) of tw  into a VAR model of a purely station-

ary variable  ,w x u    . 
Mo

t t t

3.2. Theorem 

umption 2.1 holds. Then 

te    (13) 
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The right hand side of (14) may be written as 
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Finally, the term in (15) may be written as 

e

Thus, Model (14) may be rewritten as a p-th order 
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AR model of tw : 

1 1w w 2 2 .t t t p t pw w       te        (16) ■ 

Note the restrictions 

1
1 0p                    (17) 

are imposed on p  from Theorem 3.2, and t px   does 
not appear in Eq on (13). If these restrictio 7) are 
not exploited and the coefficients 1

1
p   is estimated with 

errors, then the efficiency of dyna analyses by using 
these estimated coefficients may be reduced. For instance, 
if we provide forecasts using a VAR model, then fore-
casting mean squared error may be increased not by us-
ing restrictions (17). Campbell and Shiller (1987, Equa-
tion (5)) used the system (13) without referring to the 
VAR model (1) of level variable tz , the rank deficiency 
of matrix 

uati ns (1

mic 

   in Assumption 2.1, and the restric-
tion of Theo as 1

1 0p    of the coefficient rem 3.2 p . 
Further, note that th oving average me vector m odel of 

tw  is defined as   1

t tw L e


    from (13) if  L  
vertible, where ime-lag operato  is in  L denotes a t r and

  1 .p
pL I L L      This is conformable to the 

lary1). 
In the following example, we trans

result in Hansen (2005, Corol
form an ECM into a 

V

3.3. Example 

n ECM representation can be given as 

AR model of stationary variables. 

For a VAR (2), a

1 1 1t t t tz u z                       (18) 

under Assumption 2.1. The second-order VAR represen-
tation of tw  is also possible as 

    11 *
1 1

1

t t
t t
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x x
u e

u uI



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 
           

     (19) 

from Model (14) by using Proposition 3.1. The right- 
hand side of (19) may be written as 

 1 1 1 2 1 2t t t t teu x u u                   (20) 

defining  *
1 1 2,    conformably and 

1 .
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



    

 
 

Finally, the term in (20) may be written as 
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

Thus, Model (19) may be rewritten as a second order 
VAR model of tw : 

w 1 1 2 2t t tw w     te             (21) 

where  1 1 2, ,      and 2 20,     confor- 
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 where mably, ,u t t tw x
  .   ˆ ,t i t i t iw x u    ˆ     where  . Thus we may 

consistently estimate coefficients i  in Model (13) as 

i

ˆˆt i t iu  


Thus 2tx 
8)

 
us, the ECM (1

ble by us- 
in

does not 
appear in Equati  is written 
as a stationary VAR (2) model, as in (21). ■ 

Now any standard dynamic analysis is possi

on (21). Th

g Model (13). Note that avariable  ,t i t i t iw x u   
    

for 0,1,2, ,i p   is known as long as the  
vect

z

  with variables ˆ t iw   by using the OLS, where the 
variable t px   should be excluded from the regression. 
Finally, we may conduct standard dynamic analyses by 
using the VAR model  cointegration

or   (and thus t i t iu z  ) is known. Thus we 
may consistently estimate c icients i  in Model 
(13) as ˆ

i  with variables t iw

1 1 2 2ˆ ˆ ˆ ˆt t t p t pw w w w       te          oeff

  , using inary least 
square (O ) method. However mind that the variable 

t p

ord where 
LS  re

x   should be excluded from this regression. 
n we may conduct standard dynamic anaThe lyses by 

 1
20,  .p

p       

In this case, we may still conduct standard dynamic 
analyses and draw inferences from stationary VAR 
analyses because ̂  may be considered as known   
because of its rapid convergence. See Hamilton (1994) 
for a nice review on this issue. 

us

te

where 

ing the VAR model 

ˆw w  1 1 2
ˆ

t t w   

ˆ 0,  p  

Suppose cointegration vector 

2
ˆ ˆt t p     pw

 r

 1
2ˆ p  . 

4. Application: An Impulse Response 
Analysis of the Real Exchange Rate I,    is not known 

and estimated as  ˆ ˆ , rI    with sup onsistency as 
 1/2 ˆ 0pn     nsen (1995)] where n is a 

Then t iw   should be replaced by  

er-c
 [c.f., Joha

r. 
The US is highly concerned about the potential exchange 
rate manipulation by East Asian countries for their trade sample numbe
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Figure 1. Impulse response analysis for USA-JAPAN PPP (response to cholesky one S.D. innovations ± 2 S.E.). 
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rplussu . Krugman and Baldwin (1987) provide a classic 

study of this issue. See also Clarida and J. Gali (1994). 
The logic behind this manipulation can be explained by 
the law of one price (LOOP). Let tp , *

tp  and tf  de-
note the log of the price level in the ), the g of 
the Japanese price level ( *P ), and the nomi al yen/dollar 
exchange rate (

US ( P
n

lo

F ), respe ively. The LOOP states that ct
* 1FP P   and t at the same goods should be sold at the 

s both at home and in foreign countries, where 
prices are converted into local prices at prevailing ex-
change rates. Here if the exchange rate 

h
same price

F  is manipu 
lated as F  through state intervention, then t is possible 
that 

 i
* 1FP P   in the short run, where *FP P  is the 

relati f the foreign good. Then the er price 
of the home country good may induce a trade surplus. 

Then the question is whether any exchange rate 

ve price o eap

or 
pri

ch

ce shock would have a statistically meaningful effect 
on the real exchange rate (a cointegration error if the real 
exchange rate is I(0)). To address this question, we con- 

struct a VAR model of  *, ,t i t t tw p p u 
    in (13), 

where t

ly, we conduct se response analys

an

les 

*

Final  an impul
t t tu p p f    and  1, 1, 1    . 

is on 

tu  by using the Model (13). An ECM (3) does not have 
 explicit VAR form, and thus, it is not convenient for 

conducting such impulse response analysis. For this, we 
employ monthly data for the period from January 1998 to 
December 2008. We excluded the recent global financial 
crisis because of a possible structural break. 

We conduct unit root tests for the variab *
tp , ,tp  

,tf  and tu . The results of the KPSS test do n re  
null hy othesis of stationarity at the 1% level for the 

cointegration error tu  in the yen/dollar exchange rate. 
However, the null hy thesis of a unit root cannot not be 
rejected for the other variables. In a VAR model of 
 *, ,p p f  , we obtained order 2 by using the Akaike 

 criterion, and the results of the Johansen test 
reject the null hypothesis of no cointegration at the 1% 
level. The possible number of ordering for the identifica-
tion of structural shocks is 6 for the trivariate model, and 
we investigate all these cases. However, changing the 
order has no influence on the results. Thus, we report 
only the result for the identification order  

*
t t tp p u    . The impulses from the 

change rate have significant effects on 
the Yen/Dollar real exchange rate. See Figure 1 for the 
results of the impulse response analysis. 
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