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ABSTRACT 

This study investigates the best timing for technological change affecting environmental quality in economic develop- 
ment. We develop a model that addresses the transition of environmental technology from an old system to a new one. 
Findings obtained are innovative in that they depict when as well as how transition to new environmental technology 
occurs. It demonstrates that the timing is endogenous and characterized by the properties of the economy: in particular, 
the optimal technology transition timing depends upon whether the economy is developing or developed. 
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1. Introduction 

Since the 1970s, many researchers have worked on re- 
source and environmental issues relating to economic 
growth. Classical studies that incorporated exhaustible 
resources into the Ramsey model include Dasgpta and 
Heal [1], Stiglitz [2], Solow [3], and others. These stud- 
ies pioneered theoretical investigation of the economic 
growth possible with natural resource constraints. 

In the 1980s, the environment began to be recognized 
as an important factor that determines the trajectories of 
growth. At the same time, the theory of economic growth 
began to change: “endogenous change” became a central 
issue in economic literature: Romer [4], Lucas [5], and 
others, established the “endogenous economic growth 
theory.” These two streams converged in a series of studies 
after the late 1990s, addressing the central role that en- 
dogenous technological change plays in sustainable de- 
velopment. 

Barbier [6], and Tahvonen and Salo [7] developed 
their endogenous growth models combined with resource 
constraints, highlighting the critical role of technology 
policy. On the other hand, Bovenberg and Smulders [8], 
Schou [9], Groth and Shou [10], and Grimaud and Rougé 
[11] introduced “knowledge” or “know-how” into their 
models of production sectors, and discussed how this 
knowledge accumulation would contribute to mitigating 
environmental constraints1. 

Cunha-e-Sá and Reis [15] contributed to the literature 
in their investigation of the optimal timing of adoption of 
new environmental technologies: as the economy grows, 
new pollution-abating technology becomes indispensable; 
it requires investment efforts at the time of deployment; 
the optimal timing will be determined endogenously. In 
fact, they incorporated “environmental quality” and “clean 
technology” into a typical Ramsey-type model. They 
assumed that the level of clean technology could change 
discontinuously once the “upgrade” occurred. Upgrading 
the technology might require costs such as depreciation 
of capital, investment for research and development, and 
the like. Thus, consideration of the net benefit of the 
technology determines the optimal timing of the upgrade. 

While Cunha-e-Sá and Reis underlined the signify- 
cance of “the optimal timing” in the framework of the 
environment and economic growth, some debatable issues 
remain. The most debatable issue is that technological 
change in clean technology is represented by an abrupt 
increase in the level of clean technology. Allowing such 
a sudden change of the technology level implies that the 
change does not require accumulation of some stocks; 
that is, the change is not due to stocks, but is due to the 
temporal flow. More specifically, the nature of techno-
logical change in clean technology in Cunha-e-Sá and 
Reis has nothing to do with any stocks of capital, know- 
ledge, know-how, human capital, etc., and thus cannot be 
endogenously described. This nature contrasts with the 
fundamental idea of modern endogenous growth theory: 
in this theory, one of the key drivers for economic growth is 

1Brock and Taylor [12] and Bretschger and Smulders [13] provide 
comprehensive surveys on relationship between economic growth and 
the environment. Acemoglu et al. [14] introduce an advanced concept 
regarding technology called “directed technological change” and apply 
it to the growth with environmental constraints. intellectual capital. In this respect, their treatment of 
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technological change for clean technology seems old- 
fashioned. Another important issue is their treatment of 
investment cost. In their model, the required cost of tech- 
nological change is represented as a fixed cost, the amount 
of which is proportional to the difference between old 
and new clean technology levels. In addition, it is taken 
into account as a part of the objective function. This setting 
seems strange: as long as we assume a closed economy, 
the investment cost must be paid by somebody in the 
economy, meaning that the objective function should not 
explicitly include the cost; the investment cost should be 
treated as a decline in consumption or in asset holdings. 
Cunha-e-Sá and Reis do not seem to provide any expla- 
nation of this point. For the outline of their model, see 
Appendix 6. 

Including investment cost in the objective function 
causes another problem. In the Ramsey model, the objec- 
tive function is basically the sum of temporal utilities that 
are discounted to the present. It does not have any unit. If 
we want to subtract investment costs from it, the unit of 
the cost—usually in monetary terms—must be transformed 
somehow. The coefficient for the transformation should 
be interpreted as a shadow price of the clean technology 
investment. Thus, it must naturally have a dynamic and 
be determined endogenously. However, in Cunha-e-Sá 
and Reis it is treated as a fixed parameter, but they do not 
provide a clear explanation of this point. 

An analysis of the studies of Cunha-e-Sá and Reis 
provide a promising direction for further research: their 
model may be modified by focusing on the acceleration 
(changes in the growth rate) of clean technology, rather 
than the change in the technology level itself, and also by 
working on a traditional objective function that simply 
consists of the sum of discounted temporal utilities. It is 
our purpose that we explore such a direction. 

This study highlights the choice of timing for techno- 
logical change affecting environmental quality in eco- 
nomic development. Based on the intent and mathemati-
cal treatment of Cunha-e-Sá and Reis, we develop an 
analytical model that addresses the optimal timing of the 
transition of environmental technology from old to new. 

The paper is organized as follows: Section 2 describes 
the model. Section 3 investigates the dynamics of the 
model through dynamic programming and maximum 
principle techniques. Section 4 puts forth three proposi- 
tions and discusses their implications. Section 5 summa- 
rizes and concludes with the study’s findings. 

2. The Model 

The study uses a Ramsey-type model. The economy is 
closed, with no international trade. The population is 
assumed to be constant. Let us define notations as fol-
lows: 

Y: Production output 

K: Capital 
C: Consumption 
Q: Environmental quality 
a: Environmental technology level 

2.1. Representative Agent 

A representative economic agent represents the house- 
hold whose time-additive utility is determined by not 
only consumption (C) but also “environmental quality” 
(Q). More specifically, we define2: 

   1 1
,

1

t t

t t

C Q
U C Q










0 1, 0, 1   ,   

C Q

 (1) 

where σ represents the magnitude of the elasticity of 
marginal utility with respect to t t

 . 
Note that subscript t indicates time in years. This ap- 

plies throughout. 
We impose the following restrictions for the utility 

function to be increasing and strictly concave in Ct and 
Qt

3. 

   1 1, 1        . 

These restrictions determine signs of partial deriva- 
tives of the utility function as follows: 

2 2 0U C0U C   ,    , 0U Q   , 
2 2 0U Qand    . 

The cross derivative is: 

    
2
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U

C Q
C Q

 
 

 
  

t tY AK
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the sign of which remains undetermined. In fact, the sign 
depends on the magnitude of the elasticity of marginal 
utility (σ). We will discuss this point later. 

2.2. Production Sector 

The production sector is described rather in a simple 
manner: we assume that output is proportional to capital 
input; that is: 

.                 (2) 

With this production function, capital accumulation is 
subject to the following: 

2Brock We do not explicitly consider the case of  =1 in this paper. It is 
well-known that the utility function defined in this way approaches 
log(CQμ) as  1. Thus, our analysis implicitly includes the case of 
=1 as a limit. To explicitly include the case in our analysis, we need to 
repeat the same mathematics for the logarithmic utility function. Such 
simple repetition of analysis would not produce any additional implica-
tions while it makes our mathematical description double. It is left to 
the readers. 
3These restrictions are conditions such that the Hessian matrix for the 
utility function is negative definite for all Ct and Qt. For the detail, see 
Appendix 1.
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d dt t tK t AK C 

tC

.                (3) 

2.3. Environmental Quality and Clean 
Technology 

We now introduce the roles of environmental quality and 
technology. We assume that the environmental quality 
(Q) is a function of consumption (C) as well as the “en- 
vironmental technology level” (a). The relationship is 
assumed as follows: 

t tQ a  , 0 .            (4) 

This functional form indicates that environmental 
quality declines as consumption grows, but that it may 
improve as environmental technology progresses. 

The progress of the environmental technology level 
itself may occur as the economy grows. Considering 
capital stock (K) as a proxy of economic growth, we as- 
sume that the growth rates of a and K are proportional to 
each other: 

   d dt ta t a  d dt tK t K . 

Introducing a positive coefficient η, the relation is 
written as follows: 

   d dt ta t a  d dt tK t K . 

Notice that the coefficient determines the rate of envi- 
ronmental technology progress together with that of 
capital accumulation. Thus, if the economy has an inter- 
nal mechanism that changes the coefficient, the mecha- 
nism accelerates the technological progress. The change 
in the coefficient is not necessarily gradual. Rather, it 
may be discontinuous, and may happen in an innovative 
manner. We call this type of discontinuous change in the 
rate of environmental technology progress “transition.” 
Since it is a result of some innovation, we may assume 
that it may happen at one time in the infinite time horizon 
with a huge capital expenditure. The expenditure in- 
cludes not only investing money in the usual way, but 
also scrapping existing physical capital because part of 
the physical capital may become obsolete and old-fashioned 
once such an innovation occurs. 

Let T denote the time of transition. For the purpose of 
mathematical treatment, let us introduce a notation T  
such that: 

,
lim

t T t T
T t  

 . 

Transition of environmental technology is represented 
by an abrupt change of the coefficient that links two 
growth rates of technology and capital stock to each other. 
More specifically, the following relation holds true: 

0

0 1

d d

  d d
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The relation indicates that the environmental technol- 
ogy level (a) is written as a function of capital stock (K) 
as follows: 

0

1

 for ,

  for .

t
t

t

aK t T
a
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           (6) 

TK


denote the capital stock at the time of Let  , 
that is: 

K
,

limT t
t T t T

K
  

. 

As discussed above, the transition is a result of one- 
time expenditure decision that includes scrapping of ex- 
isting physical capital. The expenditure is thus described 
as substantial decline in the present capital. More spe- 
cifically, we assume that following relationship holds true: 

,  0 1T TK K


 for ,
 

for ,

t T

t T


         (5) 

   .          (7)  

The coefficient β represents the rate of depreciation of 
existing physical capital at the time of transition. 

Note that in Equation (6), a  represents an absolute 
level of the technology. While we need to assume a con- 
stant value somehow for it as a modeling frame, the ab- 
solute level itself does not play any important role in the 
model. Only changes in the level play a role. Thus, the 
value of a 

0 1
TT

 itself is not important and may remain unde- 
termined. Instead, we introduce the following restriction: 

K

 K .               (8) 

This restriction indicates continuity of the technology 
level at the very moment of transition T. We assume that 
a

 
 

   0 0,
Max , d , d

t

T t t
t t t tTT C

 is fixed ex post facto so that Equation (8) holds true. 

2.4. Optimization 

Given the above setting, the representative economic agent 
chooses the consumption path as well as the time of tran- 
sition. While the decision for the consumption path is a 
typical optimal control, the decision for the choice of the 
time of transition constitutes an optimal stopping prob- 
lem. The economy follows the optimal solution of the 
following dynamic programming problem. 

K U C Q e t U C Q e t      

 
 

J
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The problem has control variables  0,t t 
 and T 

and a state variable  0,t t 
. Therefore, we can solve 

the problem by the following procedure: 

 C
K

  ( )dt T
t t

 

First step: optimize the value function for a given 
capital stock for after-transition. 

 
 

Max ,
t

T TC
K U C


  Q e t 

 t T
TK e

     (10) 

Second step: optimize the value function for a given 
transition time for the whole time horizon. 

 
 

 
0

Max ,
t

T

t t
C

V T U C Q e dt   

 Max
T



  (11) 

Final step: maximize (11) with respect to T. 

 0J K V T             (12) 

The next section investigates the details of the procedure. 

3. Analysis 

Suppose that technology transition has already occurred 
at time T. Capital stock at the time is fixed at the level of KT. 
The optimization problem thereafter is described as follows: 
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K  is given; t  T. 

To solve the problem, let us introduce the current- 
valued Hamiltonian as follows: 

  
 t t t

1

1

1

1
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H .  (14) 

Note that λt represents a current-valued shadow price 
of capital. 

First order necessary conditions for the optimality are 
written as follows: 

       11 1 1
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  .              (17) 

Combining Equations (15) and (16), we have the fol-
lowing differential equation with respect to t tC K : 

  2

t t t
C K

where 
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Solving Equation (18) with the condition (17), the so-
lution is obtained as follows: 

    
    

1 1
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1 1 1
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.
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(19) 

The above solution shows that the proportion of con- 
sumption to capital stock remains constant after the tech- 
nology transition. This rule suggests that consumption 
and capital stock grow at the same rate after the transi- 
tion. In fact, their growth rates are found as follows: 
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Employing Equations (19) and (20), the integral of (13) 
is obtained as follows: 
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 as Equation (21), we are 
ready to work on (11). Let us rewrite the problem: 
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T is given;  . 

Again, we introduce the current-valued Hamiltonian, 
and derive first order necessary conditions as follows: 
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( )T T

T T

K K
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 .            (25) 

Because capital stock changes discontinuously at time 
T, so does its shadow price. It is easily shown that: 

   .              (26) 

Notice that Equations (23) and (24) are similar to 
Equations (15) and (16), respectively. The only difference is 
that we replaced 1  with 0 . Thus, they provide a 
similar differential equation to (18): 
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Due to Equations (7), (8), and (26), the values of 

T TC K


and T TC K must satisfy the following: 
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Solving Equation (27) with its terminal condition (28), 
we obtain the following: 
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From Equation (29), we obtain the dynamics that 
capital stock must follow before the transition happens, 
as follows: 
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This enables us to evaluate V(T) in (22), which is a 
task in the next section. 

4. Propositions 

Our final step is to maximize V(T) of (22) with respect to 
T, given Equations (7), (21) and (31). The solution would 
provide the optimal time of transition T*. Although solv-

ing it analytically is not an easy task, examining the 
properties of the solution is rather easy. This is done by 
taking the derivative of V(T) with respect to T. From (22), 
we obtain the following: 

(For the detail, see Appendix 2). 
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To have a finite T*, we must have the following condi-
tions: 

  *d d 0
T T

V T T


 *0 T   if , 

  *d d 0
T T

V T T


 * 0T  if . 

These conditions lead to the following proposition. 
Proposition 1 
For a finite T* to exist, that is, T *  , the following 

condition is necessary: 

  0 01 0A M .         (33)   

 Conversely, if 1 0A M 0 0 



 holds true, 
then the transition to new environmental technology 
never occurs (i.e. T* = ∞). 

(For proof, see Appendix 3). 
Let us examine the implication of the proposition. The 

necessary condition (33) is equivalent to the following: 
A  and Either  1 0 0M 

1
 

Aor   and 0 0M  hold true.  
From Equation (29), we have: 
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which implies: 
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Thus, we have: 

0 0M
 

  
A  if and only if 

1 T T T TC AK C Y
   

 
  

 . 

Notice that T TC Y
 

represents the average consump- 
tion propensity just before the transition. Then, we can 
further translate the condition (33) into the following 
conditions: 
 If 1   holds true, the average consumption pro- 

pensity just before the transition is less than or equal 
to 1  . 
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 If 1  holds true, the average consumption pro- 
pensity just before the transition is larger than or 
equal to 1  . 

As was shown in Section 2,  represents the magni-
tude of the elasticity of marginal utility and determines 
the sign of the cross derivative of the utility function as 
follows: 

 
2U

C Q
 

 
 

  1 11 .C Q    

1

 

When   holds true, the marginal utility with re-
spect to environmental quality (U/Q) turns out to be 
increasing in consumption. (That is, (U/Q)/C > 0.) 
This means that the potential of utility improvement with 
respect to environmental quality improvement is higher 
when the level of consumption is high, than otherwise. 
This also implies that a higher consumption would yield 
a higher marginal value of environmental quality. A 
similar interpretation can result by transposing C and Q: 
the marginal utility with respect to consumption (U/C) 
is increasing in environmental quality, meaning that the 
potential of utility improvement with respect to the in-
crease in consumption becomes higher when the level of 
environmental quality is high. In short, marginal value of 
environmental quality (consumption) becomes higher as 
consumption (environmental quality, rep.) grows. In this 
sense, consumption and environmental quality are com-
plementary in the course of economic development. A 
society prefers more environmental quality improvement 
as its consumption grows. 

On the other hand, when 1  holds true, the mar- 
ginal utility with respect to environmental quality (U/Q) 
is decreasing in consumption. (That is, (U/Q)/C < 0.) 
This means that a higher consumption would yield a 
lower marginal value of environmental quality. Again, 
transposing C and Q, we can say that a higher environ- 
mental quality would yield a lower marginal value of 
consumption. In short, marginal value of environmental 
quality (consumption) becomes lower as consumption 
(environmental quality, rep.) grows. This situation indi- 
cates that consumption and environmental quality are 
inversely proportional values to each other. A society 
considers environmental quality to be less important as 
its consumption grows. 

Intuitively speaking, a society with the condition of 
1   is said to care about the environment in conjunc-
tion with consumption growth while one with the condi-
tion of 1  is not. 

Combining these interpretations for 0 0M  and  
together, Proposition 1 is interpreted in words as follows: 

Interpretation of Proposition 1 
For the transition to occur within a finite time horizon, 

the economy must be in either of the following two situa- 
tions: 

 The economy highly prefers environmental quality in 
conjunction with consumption growth, and its current 
average consumption propensity is lower than a cer- 
tain value (1  ). 

 The economy prefers consumption to environmental 
quality, and its current average consumption propen-
sity is higher than a certain value (1  ). 

Interpreting Proposition 1 in this way, we may surmise 
how the transition occurs. For the former case above, a 
lower consumption propensity indicates a higher saving 
rate. This implies that the economy wants to make the 
investment to develop capital stock. That is to say, the 
economy is in the phase of capital accumulation. Con-
versely, in the latter case above, the economy is depreci-
ating its capital stock due to its higher average consump-
tion propensity. In short, while technological transition 
may occur in the course of capital accumulation in the 
former case, it may also occur with capital depreciation 
in the latter case. 

This conjecture is in fact justified by the following 
proposition. 

Proposition 2 
Suppose that   1 0A M 0 0 

1

 holds true. If 
the following conditions hold true: 

Either   and 
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then there exists an optimal transition time T* such that 0 
< T* < ∞, which is obtained by solving the following 
equation: 
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Moreover, the capital stock at the time is provided as 
follows: 

  1 1 0
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1 1 1 1 .
T
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      (37) 

(For proof, see Appendix 4.) 
Knowing Equation (37), we can rewrite conditions (34) 

and (35) as follows: 

if  , 0 T

K K 




1

 must hold true, and     (38) 

if  , 0 T

K K 


  must hold true.         (39) 

Similarly, Equation (36) is equivalent to the following: 
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This equation indicates that for sufficiently large T*, 
the following approximation holds true. 
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In addition, if δ  holds true4, then a further ap- 
proximation is obtained: 

* 0 0A M
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This approximation shows that: 
for 0 T

K K 


 , A M  0 0 1T e , i.e., 0 0A M  , and 
for 0 T

K K 



,    1T

0 0A Me , i.e., 0 0A M  . 
However, we have already assumed that 

  0 01 0A M    

is a sufficient condition for the existence of a finite T*. 
Thus, we find the above conditions are equivalent to 
conditions (38) and (39). Finally, we realize that Equa- 
tion (40) is approximately consistent to conditions (38) 
and (39). 

Another interesting finding is the independence of 

T
K 


 from the initial capital stock 0

 K . In fact, Equation 
(37) indicates that 

T
K 




 is a constant value and does not 

depend upon 0K . This means that no matter from what 
level the economy starts growing (or shrinking), the tran-
sition of environmental technology occurs at the same 
capital stock level. That is to say, whether the economy 
is developed or developing, the transition occurs in the 
same economic conditions. 

Our next attention, then, naturally proceeds to how the 
economy reaches the fixed capital stock level. We can 
find the answer from conditions (38) and (39): from these 
conditions, we can consider two types of dynamic be- 
havior. 
 In the case of 1  , capital stock Kt increases and 

reaches the fixed level 
T

K 


  from below. 
 In the case of 1 , capital stock Kt declines and 

reaches the fixed level 
T

K 


  from above. 
These are depicted as Figures 1 and 2. When 

 
Figure 1. Capital path for the case of 1 > σ. 

 

*T  
 

Figure 2. Capital path for the case of 1 < σ. 
 
Such an economy must have once developed a large em-
pire on the earth. Historical examples include the Holy 
Roman Empire and the British Empire. 

We have already discussed the meaning of  above: 
whether  is less or greater than the unity divides the 
economy which cares about the environment in conjunction 
with consumption growth from the one which prefers 
consumption to environmental quality. In the former econ- 
omy, as consumption grows, more environmental quality 
is needed. This motivates innovation in technology that 
improves environmental quality. On the other hand, in 
the latter economy, declining consumption motivates 
innovation. The reason for consumption declining is that 
the economy has been consuming its own assets. To re- 
cover the decline in utility, environmental quality im- 
provement becomes necessary. 

1  
holds true (Figure 1), the capital accumulation is rather 
typical: it gradually increases with time. On the other 
hand, when 1  holds true (Figure 2), the capital stock 
declines, which does not seem like typical growth. For 
the economy to be able to take such a path, it must have 
already developed sufficiently. In fact, the economy pos- 
sesses huge capital, and is only consuming the capital. 

Finally, let us examine the sensitivities of the solution 
with respect to parameters that determine the evolution 
of environmental technology. The following proposition 
is obtained: 

Proposition 3 
4Brock Notice that δ is defined as (30). It approximates unity when the 
difference between η0 and η1 is very small (i.e. η0 ≈ η1) and the utility 
function is close to logarithmic one (σ ≈ 1). 

 Suppose that 1 0A M 0 0   holds true, and 
thus that there exists the optimal T* such that 0 < T* < ∞. 
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Furthermore, suppose that the following approximations 
hold true: 

 

1 0   and 1 0  . 
Then, the derivatives of 

T
K 



  and T* with respect to 

1 0  have signs as follows:  

 1 0

d
0

d
T

K 



 

, and            (41) 

 1 0

d

d

T 


 

0  for 1  ;
 1 0

d
0

d

T 


 

 for 1  . (42) 

(For proof, see Appendix 5.) 
As defined in Equation (5), 1  and 0  are new and 

old coefficients, respectively, that link the growth rate of 
capital to that of the environmental technology level. The 
proportion 1 0 

1

 represents the degree of the innova-
tion. Intuitively, it tells how beneficial the transition to 
the new environmental technology is to the economy. 
Thus, it is easy to predict that a larger value of the pro-
portion would make the optimal capital stock level for 
the transition smaller. Equation (41) clarifies this point. 

The indications of (42) are consistent to (41). When 
 , capital stock starts growing from a lower level 

and approaches the level of 
T

K 


, which was shown by 
(38) and in Figure 1. Thus, a smaller 

T



K 


 would make 
the time of the attainment earlier. In contrary, when 



1 , initial capital stock is sufficient to the economy, 
as shown by (39), and no accumulation is needed. De-
clining capital stock eventually approaches the level of 

T
K 


 as was shown in Figure 2. Thus, a smaller 

T
K 



  
would delay the time of the attainment. 

These observations are depicted in Figures 3 and 4. 

5. Conclusions 

This study investigated the optimal timing of the transi-
tion in environmental technology from old to new, along 
with economic growth. The economy enjoyed consump-
tion as well as environmental quality; thus, transition to 
an innovative environmental technology may benefit the 
economy, while the transition may impose a huge cost to 
the economy. Consideration of net benefit yields the op-
timal timing. The same idea has been proposed by 
Cunha-e-Sá and Reis (2007). We developed a model dif-
ferent from theirs in that: 
 we focused on the acceleration (changes in the growth 

rate) of environmental technology, which is triggered 
by capital stock; and 

 our treatment of the cost for the transition is rather 
simple, and thus helps reduce ad hoc parameters rep-
resenting costs in the model. 

We obtained three propositions depicting when as well 
as how the transition of environmental technology occurs. 
The timing is endogenous and is characterized by the 
properties of the economies, in particular whether the 

T*' *T  

 

 

Figure 3. The impact of the change in η1/η0 for the case of 1 
> σ. 
 

*T  *'T   

Figure 4. The impact of the change in η1/η0 for the case of 
1 < σ. 
 
economy is developing or developed. Findings are sum-
marized as follows: 

1) The primary determinant of whether the transition to 
new technology is needed or not is the degree of comple-
mentarity between environmental quality and consumption. 
A secondary determinant is the average consumption 
propensity. The necessity of the transition implies either 
a high degree of complementarity with a low consump-
tion propensity or negative complementarity (i.e., inverse 
proportionality) with a high consumption propensity 
(Proposition 1). 

2) Given the necessity of the transition to new tech-
nology, it may occur in two possible ways. One is that an 
environmentally developing economy would accumulate 
social capital and invest it in the development of the new 
technology. The other way is that a matured economy 
with sufficient capital and a high consumption rate would 
realize the need for environmental quality improvement 
eventually (Proposition 2). 

3) The relationship between the optimal timing of the 
transition and the degree of the technology innovation 
depends upon the differences between the above two 
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cases. For the former case, a higher degree of innovation 
leads to an earlier transition. However, for the latter case, 
the relationship is the opposite: a higher degree of inno- 
vation leads to a delay of the transition (Proposition 3). 

These propositions depict how the acceleration (changes 
in the growth rate) of clean technology, rather than the 
change in the technology level itself, occurs. We believe 
this concept is innovative and thus addresses a possible 
direction of future research. 
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Appendices 

Appendix 1: Restrictions 

We impose the following restrictions for the utility func- 
tion to be increasing and strictly concave in C and Q． 

 1 1,  1 .        

These restrictions determine the signs of partial de-
rivatives of the utility are as follows: 

 1 0Q C    U
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The cross derivative is: 
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2
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the sign of which remains undetermined. 
The utility function U(C, Q) is strictly concave if and 

only if the Hessian matrix is negative definite for all (C, 
Q). That is: 

0CCU   and 0CC CQ
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Thus, this leads to the following: 
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Then, we obtain the following restriction: 
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Appendix 2: Derivation of (32) 

We can rewrite Equation (22) as 
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Taking the derivative with respect to T, we have: 
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Arranging terms, we obtain the following: 
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Taking the limit of Equation (29) as t T , we ha
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Thus, we have: 

10

0

.
T

T

C

K M




 
       

           (29’’) 

Then, using Equations (7), (28) and (29’’), the above 
Eq

 

uation (22’) leads to the following: 
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Appendix 3: Proof of Proposition 1 
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Suppose that   0 01 0A M     holds true. 
 (31), we have: 
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This leads to the following: 
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Taking the limit for T to infinity, Equation (32) leads 
to
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This implies that for infinitely large T, V(T) is not de-
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Appendix 4: Proof of Proposition 2 

easing, meaning that: 

When   1 0A M    holds tru0 0 e, 
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With these sufficiency conditions, the optimal T is 
ded as a solution of the following: yiel
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Then, we finally obtain Equation (36). 
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Appendix 5: Proof of Proposition 3 

It is noted that when    and 1 0   hold true, 
approximates  1 0 , that is: 
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Taking derivatives for the both sides of the last equa-
tion ect to 
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From Equation (36), co at 

 . 

υ, γ, and f represent the quality upgrade at T, the marginal 
cost of the technology adoption, and fixed costs, respec-

y. Other notations are t e same with those of our 
study, presented in the article. 

One of main differences between the model above and 
ours is the definition of vironmental quality. Another 
difference is the existence of the last term (γυ + f) in (A. 
1), representing the total cost of technology adoption. 

The model leads to the value function as a function of 
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Again, taking the derivatives for the both sides of the 
last equation ect to 
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Examining the property of the value function, Cuwith resp 1 0  yields the llow-
ing: 
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tice that the sign of the derivative is determined by 
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If δ < 1, then V(T) is increasing in T, and the country 

never adopts new technology, or, T* = ∞. 
Proposition 2 
Let δ > 1. If (1) σ < 1, it is always better to ado

technology within a finite period T than to never adopt it. 
In particular, it is optimal to adopt it immediately if 

e-Sá and Reis addressed the following propositions: 
Proposition 1

pt new 

No 0/  TV , for T = 0. For (2) σ > 1, the country either 
adopts it immediately or never adopts it. Athe sign of 0 0M . Since we are assuming  

  0 01 0A M  A   , the sign of 0 0M , a  nd Proposition 3 
that of 1   are always same. Thus, (42) is evident. 

Appendix 6: Summary of Cunha-e-Sá and Reis 
(200

Given the results in Proposition 2, for δ > 1 and σ < 1, 
and 0 < T* < ∞, the capital level at the optimal timing of 
ad ented by the following: option is repres  

7) 

This section summarizes the study of Cunha-e-Sá and 
Reis (2007). 

Their model is described as follows:    
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Proposition 4 
For δ > 1, σ < 1, and 0 < T* < ∞ when technology 

adoption is anticipated, prior to its adoption, the growth 
of consumption and capital accelerates. Moreover, envi-
ronmental quality decreases. 
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