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ABSTRACT 

This paper introduces uncertainty theory to deal 
with non-deterministic factors in ranking alterna-
tives. The uncertain variable method (UVM) and 
the definition of consistency for uncertainty com- 
parison matrices are proposed. A simple yet 
pragmatic approach for testing whether or not an 
uncertainty comparison matrix is consistent is 
put forward. In cases where an uncertainty com-
parison matrix is inconsistent, an algorithm is 
used to generate consistent matrix. And then the 
consistent uncertainty comparison matrix can 
derive the uncertainty weights. The final ranking 
is given by uncertainty weighs if they are ac-
ceptable; otherwise we rely on the ranks of ex-
pected values of uncertainty weights instead. 
Three numerical examples including a hierarchi-
cal (AHP) decision problem are examined to il-
lustrate the validity and practicality of the pro-
posed methods. 
 
Keywords: Uncertainty Theory; Uncertain Variable 
Method; Analytic Hierarchy Process; Consistency 
Test; Bounds Modification 

1. INTRODUCTION 

The Analysis Hierarchy Process (AHP) is a multicrite- 
ria decision making (MCDM) technique introduced by 
Saaty [1], that generates the relative weights of criteria. 
The advantages of this MCDM tool are its conceptual 
simplicity and its capability of handling subjective crite- 
ria and inconsistencies in the decision making process. 
As such the estimation of the relative weights of attri- 
butes plays a critical role in MCDM. Saaty [1] proposed 
to use single points as the elements of the comparison 
matrices. Each element reflects the degree of preference 
of one attributes over another and is taken from the 

 1 9, ,1, ,9   ratio scale. However, due to the com- 
plexity and uncertainty involved in real-world decision 
problems and inherent subjective nature of human pre- 
ference judgments, it is always unrealistic and infeasible 
to obtain exact judgments. Then the methods using fuzzy 
or interval judgments for parts or all of the judgments in 
a pairwise comparison matrix are proposed naturally. A 
number of techniques have been developed to use such a 
fuzzy or interval comparison matrix to derive weights. In 
the following section, we summarize the previous works 
and propose our new approach of uncertain variable 
method. 

Van Laarhoven and Pedryce [2] considered treating 
entries in a comparison matrix as fuzzy numbers having 
triangular membership functions and proposed the loga- 
rithmic least squares method to generate fuzzy weights. 
Buckley [3] extended the method to trapezoidal member- 
ship functions. Modifying Van Laarhoven and Pedrycz’s 
method (1983), Boender et al. [4] pointed out a fallacy in 
the normalization procedure for generating fuzzy weights. 
Kwiesielewicz [5] found the extension of Saaty’s priority 
theory. Leung and Cao [6] proposed a fuzzy consistency 
definition with consideration of a tolerance deviation and 
determined fuzzy local and global weights using the ex- 
tension principle. Xu and Da [7] introduced a least devi- 
ation method to obtain a priority vector of a fuzzy prefe- 
rence relation. However, most of the above fuzzy priority 
techniques take little account of inconsistent judgments. 

Saaty and Vargas [8] employed interval judgments for 
the AHP method as a way to model subjective uncer- 
tainty and applied a Monte Carlo simulation approach to 
find out weight intervals from matrices of interval judg- 
ments. At the same time, they also pointed out difficul- 
ties in using this method. Arbel [9] proposed linear pro- 
gramming (LP) model as the prioritization process. Kress 
[10] pointed out that Arbel’s method is inefficient for in- 
consistent interval comparison matrices because no fea- 
sible region exists in such situations. Islam [11] used le- 
xicographic goal programming (LGP) to find out weights 
from pairwise inconsistent interval judgment matrices 
and an algorithm for identification and modification of 
inconsistent bounds was also provided. Linda M. Haines  
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[12] employed a statistical approach to the AHP with 
interval judgments and constructed the distributions on 
feasible regions. Wang, Yang and Xu [13] proposed a 
two-stage logarithmic goal programming method (TLGP) 
for generating weights from interval comparison matri- 
ces and it was also applied to fuzzy comparison matrices 
when they were transformed into interval comparison 
matrices using  -level sets and the extension principle. 
Uncertainty in the preference judgments gave rise to un- 
certainty in the ranking of alternatives as well as diffi- 
culty in determining consistency of preferences. 

As is well known, we must test the consistency of 
comparison matrices in the process of generation weights. 
Because of the complexity and uncertainty of real-world 
decision analysis problems and the subjectivity of human 
judgments, it is inevitable to generate inconsistent com- 
parisons. Unreliable weights and ranking orders for al- 
ternatives may be caused by high inconsistency. Then it 
is necessary to check satisfactory consistency in order to 
ensure the rationality of decisions. Only comparison ma- 
trices passing the test of satisfactory consistency can be 
used to derive reliable weights. In this case, Saaty pro- 
posed the use of Consistency Ratio (CR). This consis- 
tency measure is obtained by taking the ratio between 

max n   to its expected value over a large number of 
positive reciprocal matrices of order , whose elements 
are randomly chosen in the 

n
1 9, ,9,1,  . Juan Agu- 

arón and José María Moreno-Jiménez [14] employed 
Geometric Consistency Index (GCI) which can be seen 
as an average of the squared difference between the log 
of the errors and the log of unity. Leung and Cao [6] in- 
troduced the definition of fuzzy consistency and Wang et 
al. [15] proposed the consistency of interval comparison 
matrix both using the concept of feasible region . Al- 
though we can test the consistency of matrices, how to 
modify the inconsistent matrices in order to derive the 
weights of attributes is still not solved. An algorithm pro- 
vided by Islam et al. [11] for identification and modifica- 
tion of inconsistent bounds is used in our paper. With this 
algorithm the inconsistent matrices can be transformed 
into consistent ones without any more information. Due 
to the drawbacks of weights generation approaches men- 
tioned above here we propose a new approach called 
uncertain variable method to derive weights from both 
consistent and inconsistent uncertainty comparison ma- 
trices. 

S

Uncertainty theory, proposed by Liu [16] in 2007 and 
refined by Liu [17] in 2010, provides a new approach to 
deal with non-deterministic factors. Firstly, uncertain 
variable (Liu [16]) instead of precise ratio is used to rep- 
resent human judgments. Then uncertain measure (Liu 
[16]) is used to indicate the belief degree of an uncertain 
event. Subsequently uncertainty distribution (Liu [16]) is 
used to describe uncertain variables in an incomplete but  

easy-to-use way. Based on uncertainty comparison ma- 
trix, priorities are derived by using inverse uncertainty 
distribution (Liu [18]) without any optimization model 
and ranking with a certain confidence level is obtained. 
Finally, consistency of matrices is tested and the inconsi- 
stent matrices are modified. At the end, the reliable 
weights can be obtained. The decision problem model is 
called uncertain AHP [19] when uncertain variable is 
brought in. This paper is focused only on the generating 
uncertainty weights, ranks of alternatives and modifica- 
tion of inconsistent matrices. 

This paper is organized as follows. Section 2 proposes 
the uncertain variable method (UVM) to generate uncer- 
tainty weights from both consistent and inconsistent un- 
certainty comparison matrices. In Section 3, the defini- 
tion of consistency for uncertainty comparison and the 
theorem for checking consistency are expressed, and 
then we develop a simple yet pragmatic approach that 
can be used to test whether an uncertainty comparison 
matrix is consistent or not without solving any mathema- 
tical program. Moreover an algorithm for identification 
and modification of inconsistent bounds is discussed. Se- 
ction 4 provides three numerical examples including a 
hierarchical (AHP) decision problem to show the sim- 
plicity and practicality of the proposed methods. The 
paper is concluded in Section 5. 

2. AN UNCERTAIN VARIABLE METHOD  
(UVM) FOR GENERATING  
UNCERTAINTY WEIGHTS 

As we all know, fuzzy ratios and interval ratios were 
used to describe uncertainty of human judgments in pre- 
vious works. Here in our paper, we introduce uncertain 
variable (Liu [16]) with uncertainty distribution to reflect 
the uncertain nature of expert judgments. 

Let ij  be an uncertain variable represents the ratio 
criterion  over criterion j. We assume that its uncer- 
tainty distribution (Liu [16]) is linear uncertainty distri- 
bution and can be obtained by Delphi method. The con- 
sultation process is as follows: 

i

Q1: What do you think is the minimum ratio criterion 
 over criterion ? i j
A1: a. (an expert’s experimental data  is ac-

quired) 
 ,0a 

Q2: What do you think is the maximum ratio criterion 
 over criterion j? i
A2: . (an expert’s experimental data b  ,1b  is ac-

quired) 
where (a,0), (b,1) represents  
    0,ija a         1ijb  b    , respe- 

ctively. So the uncertainty ratio ij  has an uncertainty 
distribution  ,ij a b . Repeating the steps, we can get a 
matrix given by 
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      (1) 

Since uncertainty distributions   
 of inverse uncertainty 

ratios ji  cannot be eas- 
ily determined in the sense of definition of uncertain 
measure (Liu [16]). So, in this paper, we just need to 
obtain the uncertainty distributions of upper triangular 
uncertainty ratios, the lower triangular uncertainty ratios 
can be obtained by inverse uncertainty distribution (Liu 
[16]) below 

 ,ji a b
n

1, ,i n  
 1,2, , 1; 1, ,i n j i   

 1, 2, , 1;i n   j
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
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


    




n

    (2) 

where   is the uncertain measure with  0,1  .  
is called uncertainty comparison matrix. 



Crawford and Williams [20] suggested for the Row 
Geometric Mean Method (RGMM), where the priorities 
(without the normalization factor) are given by 

1

1

1,2, ,

n
n

i ij
j

w a i


 
  
 
  n



      (3) 

where wi is the weight of the  attribute. Liu [16] pro- 
posed the concept of strictly increasing function of un- 
certain variables. A real-valued function 

thi

 1 2, , , nf x x x  
is said to be strictly increasing if  

   1 2 1 2, , , , , ,n nf x x x f y y y   

whenever i ix y  for , and  1, 2, ,i n 

   1 2 1 2, , , , , ,n nf x x x f y y y   

whenever i ix y  for  1, 2, , .i n 
Eq.2 can be expressed as  

 
1

1 2
1

, , , , 0

n
n

n j j
j

f x x x x x


 
  
 
  

then f is a strictly increasing function.  
Theorem 2.1 (Liu [17]) Let 1 2, , , n     be inde-

pendent uncertain variables with regular uncertainty dis-
tribution 1 2 , respectively. If , , , n   f  is a strictly 
increasing function, then 

 1 2, , , nf      

is an uncertain variable with inverse uncertainty distribu-
tion 

        1 1 1 1
1 2, , , nf .            

By the Theorem 2.1, we know that  1 2, , ,i i iw f in     

is an uncertain variable with inverse uncertainty distribu-
tion 

   
1 1

1 1

1 1

n n
n n

i ij ij
j j

w   

 

   
i       

   
    (4) 

where  0,1   is the uncertain measure. i  is de- 
fined as uncertainty weight of the th attribute. We con- 
sider the weights acceptable when the ranking order does 
not alter if 

w
i

0.5  . Otherwise experts will be asked to 
provide new judgments. Without any modification or 
new information, we rely on the ranks of expected values 
of uncertainty weights instead. 

Note that the weight i  is an uncertain variable and 
can not be used to test consistency of matrices. So which 
group of weights can be used to check the consistency 
will be asked. Liu and Ha [21] give the expected value 

w

 E   of monotone function of uncertain variables  

   
1

1 1

0
1

d

n
n

ij
j

E  



 
  

 
          (5) 

which is a precise number representing expected value of 
uncertain variable i  (priority of  attribute) in Eq.4. 
However the integral can not be found, only the numeri-
cal solution of the expected value could be calculated by 
computer. 

w thi

3. IDENTIFICATION AND MODIFICATION  
OF INCONSISTENT BOUNDS 

Suppose decision maker (DM) provides uncertainty 
judgments instead of precise judgments for a pairwise 
comparison. It can be denoted by Eq.1. About the above 
uncertainty comparison matrix, we give the following 
definition and theorem: 

Definition 3.1 Let  is an uncertainty comparison 
matrix defined by (1) with 


   1 10 1ij ij ij     and 

   1 0 1ii ii ii     1  for . If the convex 
feasible region 

, 1,2, ,i j n 

      1 1
1 2

1

, , , 0 1

1, 0, 1, 2, ,

w n ij i j

n

i j
i

S w w w w w w

w w j n

 



   

   








 ij

 

is nonempty, then  is considered to be a consistent 
uncertainty comparison matrix. 



Theorem 3.1  is a consistent uncertainty compa- 
rison matrix if and only if it satisfies the following ine- 
quality constraints: 



         1 1 1 1max 0 0 min 1 1

for all 1,2, ,

ik kj ik kj

k n

     

 

   
  (6) 

Proof. If  is a consistent uncertainty comparison 
matrix, it means the convex feasible region w  is non- 
empty and there is no contradiction among the following 


S
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inequality constraints: 

   1 10 1 , 1,ik i k ikw w i k n      2, ,    (7) 

   1 10 1 , 1kj k j kjw w k j n      , 2, ,

1

n

  (8) 

Multiplying (7) by (8) leads to the following inequali-
ties 

       1 1 1 10 0 1

, , 1,2, ,

ik kj ik kj

i j k n

     

 
   

     (9) 

Since (9) holds for any 1,2, ,k  
1

, it follows that  

        1 1 1max 0 0 min 1 1ik kj ik kj
          holds for  

all .  , , 1, 2, ,i j k n 
Inversely, if (6) holds for all , then  , ,i j k
   1 0 1w w   

p

,

,

n

1ij i j ij  holds for any . 
So, w  is nonempty and  is a consistent uncertainty 
comparison matrix in the sense of Definition 3.1. 

, 1, 2, ,i j n 
S 

We can check the matrices whether they are consistent 
or not by the Definition 3.1, however it computes ineffi-
ciently when the order of matrix is large. So an algorithm 
proposed by Islam et al. [11], 


1

1 1

n n

ij ij
i j i

a p

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              (10) 
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 1 0 0i ij j ij ijw w n p      
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1, 2, , 1; 1, , ,

i ij j ij ijw w n p

i n j i

     
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

 

where  0, 0, 0.ij ij ij ij ij ijn p n p p p    
wAfter calculating the weights i  by UVM from un- 

certainty comparison matrix, the ratios i jw w  for all i  
and  may or may not belong to the interval  j

   1 10 , 1ij ij
   ijp. The  or  reflects the devia-  ijp

tion i jw w  exceeding the set . It is     1 10 , 1ij ij
   

clear that the matrix is consistent if and only if 0a  . 
With the bounds of the set being modified, the value of 

 can approximate 0. The algorithm proposed by Islam 
et al. [11] for modification of inconsistent bounds can 
find out the most inconsistent bound. Then modify the 
lower bound or upper bound or both lower and upper 
bounds and calculate the value of a, if , we repeat 
the steps below, otherwise we stop. Finally the consistent 
judgments are constructed. The steps are as follows: 

a

0a 

Step 1. Calculate the expected weights of alternatives 
by (5). If , then go to Step 2, otherwise stop. 0a 

Step 2. Find out the matrices   1 0ij n n
L 


   and  

  1 1ij n n
U 


   taking the lower and upper bounds from 

the , respectively. 
Step 3. Bring the matrices  and   ij n n
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



 ij n n
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Four cases may appear, 

(i)    1 10 , 1 1 , 1ij ij ijc d    ij  

(ii)    1 10 , 1 1 , 1ij ij ijc d    ij  

(iii)    1 10 , 1 1 , 1ij ij ijc d 
ij     

(iv)    1 10 , 1 1 , 1ij ij ijc dij
      

for 1,2, , 1; 1, ,i n j i n     . 

Step 4. Construct the matrices 

     
   

1 1

1 1

0 0 1
0

1 0 0 1
ij ij

ij ij

if

if

 

 

    

 
 

1
ij
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1

1 1
ij ij

ij
ij ij

c if c
c

c if c

   
 

Same notations are used for the upper bound case. 
Step 5. Calculate the absolute deviations  

 1 0 *ij ij ij ijc      and  1 1 *ij ij ij ijd     , for  

all 1, 2, , 1;i n   1, ,j i n   , where “*” denotes 
the “–” in cases (i) and (iv) and the “+” in cases (ii) and 
(iii) in Step 3. ij  and ij  are 0 in cases (i) and (iv) 
and 2 in cases (ii) and (iii). 

Step 6. Find out the maximum of all the deviations 

ij  and ij , 1, 2, , 1; 1, ,i n j i n     . If pq  is 
maximum, then modify  1 0pq

 , otherwise if pq  gives 
the maximum value, vary . If pq pq 1 1pq

 1  0 0c  , 
then  1 0pq  should be increased, otherwise the modi- 
fied value should be decreased. Similar treatment follows 
for the matrix of upper bounds. 



Go to Step 1. 
After introducing the UVM and algorithm for modify- 

cation of inconsistent bounds, we show the whole pro- 
cess below. The whole process introduced for generating 
uncertainty weights and expected weights from uncer- 
tainty comparison matrices is summarized in Figure 1. 

4. NUMERICAL EXAMPLES 

In this section, we offer three numerical examples that  
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Uncertainty Comparison Matrices

Consistent ?

Acceptable ?

Uncertainty Weights
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Expected Weights

Generating Uncertainty
    Weights by UVM

   Modifying and Generating
Uncertainty Weights by UVM

 

Figure 1. Process for generating priorities from uncertainty 
comparison matrices. 
 
are examined using the proposed UVM and modification 
algorithm and show their applications. The uncertainty 
distributions are obtained by Delphi method. Some com- 
parisons with other existing methods will be made when- 
ever necessary. 

Example 1 Consider the following interval compari-
son matrix that was examined by Arbel and Vargas [22] 
and Wang et al. [13]. 

     
     
     
     

1 2,5 2, 4 1,3

1 5,1 2 1 1,3 1,2

1 4,1 2 1 3,1 1 1 2,1

1 3,1 1 2,1 1, 2 1

A


 
   
  
 



 

It has been known that A  is a consistent interval 
judgments matrix, which was confirmed using the goal 
programming model given by Wang et al. [13]. Subse- 
quently Wang et al. derived the interval weights and ran- 
king by two-stage logarithmic goal programming method  

(TLGP), . The percentage is  
100% 63.62% 76.42%

1 2 4w w w w   3

called degree of preference which represents criterion  
is preferred over criterion . We can find out that the 
interval comparison matrices can be transformed easily 
into uncertainty comparison matrices as given in Eq.1, 
so the corresponding uncertainty comparison matrix of 

i
j

A  is 

     
   

 

12 13 14

23 24

34

2,5 2,4 1,3

1,3 1,2

1 2,1

1

1

1

1



 

 

  
 










 

Before testing the consistency of , we should de- 
rive the expected values of uncertainty weights using 
Eq.5. So the normalized expected values of uncertainty 
weights are . Using the 
formula Eq.10,  is obtained and  is consis- 
tent uncertainty comparison matrix. So we can directly 
use the UVM. By the Eqs.2 and 4, Table 1 shows the  



0.190.4514, 0.2134, 0.1388, 63
0a  

Table 1. Uncertainty weights in Example 1. 

α Criterion 
weights 0 0.1 0.2 … 0.8 0.9 1

Criterion 1 0.3047 0.3738 0.4032 … 0.5274 0.5422 0.5560

Criterion 2 0.2026 0.2073 0.2103 … 0.2114 0.2103 0.2091

Criterion 3 0.1703 0.1609 0.1525 … 0.1159 0.1115 0.1073

Criterion 4 0.2865 0.2580 0.2341 … 0.1453 0.1360 0.1276

 
weights with different uncertain measures, from which it 
is clear that criterion 1 is the most important because its 
weight is greater than weights of all the other criteria 
with  0,1  . To provide a complete ranking order for 
the four uncertainty weights, a directed diagram is de- 
picted in Figure 2, from which it is quite clear that the 
ranking order is generated to be 1 2 4 3  w w w w  
 0.4 if , which is same as rankings given by Wang 
et al. [13] using TLGP, but our ranking order provides 
the information about uncertain measure of preference, 
which reflects uncertain nature of the ranking. We can 
say that the ranking is credible. 

Example 2 Consider the following decision analysis 
given by interval comparison matrix, which was investi- 
gated by Kress [10], Islam et al. [11] and Wang et al. [9] 

     
     
     
     

1 1, 2 1, 2 2,

1 2,1 1 3,5 4,5

1 2,1 1 5,1 3 1 6,8

1 3,1 2 1 5,1 4 1 8,1 6 1

A

 
 
   
  
 

3

 

Naturally, the uncertainty comparison matrix can be 
expressed as 

     
   

 

12 13 14

23 24

34

1, 2 1, 2 2,3

3,5 4,5

6,8

1

1

1

1

 
 
   
  
 

  
 


  

Kress [10] and and Islam et al. [11] showed that this 
interval comparison matrix A is inconsistent, which can 
be further confirmed using the algorithm proposed above. 
The problem of weight determination from  is calcu- 
lated expected weights are (0.3150, 0.3922, 0.2226, 
0.0701), respectively, with . Using the UVM 
proposed in Section 2, the preference relations without 
modification can be obtained and plotted in Figure 3. 



0.6973a 

Since the value of  is positive, we apply the algori- 
thm for identification of the inconsistent bounds. The 
maximum values among all ρij and ηij are 34

a

3.6834   
and 34 3.7705  , respectively. Perhaps the experts gave 
the judgment  3, 4A  carelessly. Changing this judg- 
ment  34 6,8  to  2,334  the modified set of weights 
as (0.3246, 0.4042, 0.1773, 0.0939) with 0.2608a   
can be got. Since  is still positive, we compute the  a
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Figure 2. Preference relations in Example 1. 
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Figure 3. Preference relations without modification in Example 
2. 
 
deviationsρij and ηij and it is found that 23 1.4349   
and 14 1.8206   are the maximum among the devia- 
tions. We take the new bounds  1

23 0  2  and  1
14 1 4  . 

Repeating the steps above, the final modified set of ex- 
pected weights are obtained as (0.3469, 0.3452, 0.2243, 
0.0836) with . The modified uncertainty compari- 
son is  

0a 

     
   

 

12 13 14

23 24

34

1,2 1, 2 2,7

1,5 2,7

2,

1

1

1

6

1



  



  
 













 

Until now we can apply the UVM to calculate the un-
certainty weights with different uncertain measures and 
the results are recorded in Table 2. A directed diagram is 
depicted in Figure 4, from which it is quite clear that the 
ranking order is given by 1 2 3 4 ,  
which is different from the preference relations without  

w w w w    0.4if  

Table 2. Modified uncertainty weights in Example 2. 

α Criterion 
weights 0 0.1 0.2 … 0.8 0.9 1 

Criterion 1 0.2857 0.3081 0.2857 … 0.4026 0.4120 0.4207

Criterion 2 0.2857 0.3121 0.2857 … 0.3709 0.3728 0.3741

Criterion 3 0.2857 0.2611 0.2857 … 0.1746 0.1675 0.1610

Criterion 4 0.1429 0.1187 0.1429 … 0.0518 0.0477 0.0442
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Figure 4. Modified preference relations in Example 2. 
 
modification. Islam et al. [11] gave the ranking  

1 2 3 4w w w w   . In Islam’s lexicographic goal pro- 
gramming (LGP) method, the upper triangular judgments 
of A  are used for priorities. However the lower trian- 
gular judgments of A  are applied, which provide com- 
pletely the same information, then a different point esti- 
mate would be obtained. It is likely to be flawed. Wang 
et al. [13] showed the final ranking  

74.75% 76.07% 100%

2 1 3w w w   4w . In that TLGP method, the  

ranks of alternatives is based on inconsistent interval 
comparison matrices and minimizing the deviation vari- 
ables but no optimal minimum is given. We fail to rank 
the two alternatives when the degrees of preference are 
equal to 50%. The results given by TLGP are doubtful. 

Example 3 The problem is about a government 
agency’s goal (G) to rank chemicals A1, A2, A3 in terms 
of their level of harm to the environment. The goal is 
affected by three criteria with criterion C1: Air, C2: Water, 
and C3: Soil, see Figure 5. 

The uncertainty distribution matrices for the three cri- 
teria as well and for the three alternatives are summa- 
rized in Table 3. Before checking the consistency of the 
matrices, we can not derive the priorities using any 
methods. However the expected weights can be obtained 
by Eq.5 and shown in Table 4, from which four uncer- 
tainty comparison matrices all turn out to be inconsistent.  
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Figure 5. Hierarchy structure in Example 3. 
 
Table 3. Uncertainty comparison matrices in Example 3. 

   
 

12 13

23

1, 2 2,3

1

1

: 1

1

2,2G

 
 
 
 
 

 
   

   
 

12 13

231

1

: 1

1 4,1 2 1 5,1 3

1 3,1 2

1

C

 
 
 
 
 

 
  

   
 

1

2

12 3

23

2, 4 3,5

1 2,2

1

: 1

1

C

 
 
 
 
 

 
   

   
 

12 13

233

1

: 1

1,2 3,5

2,

1

4C

 
 
 
 
 

 


 
Table 4. Expected weights and deviation α in Example 3. 

C1 C2 C3 a 
Chemicals 

0.4334 0.3040 0.2626 0.0917 

A1 0.1653 0.5416 0.4671  

A2 0.3110 0.2389 0.3651  

A3 0.5237 0.2195 0.1678  

a 0.0590 0.1169 0.0364  

 
The proposed algorithm is used to modify the bounds of 
matrices and new uncertainty comparison matrices are 
recorded in Table 5. Table 6 gives both local and global 
expected weights. It is can be seen that the expected 
weights indicate the ranking 1 3 2 . Based on 
the consistent matrices, the UVM are used to generate 
the local and global priorities. In this paper, 

A A A 

 1
ij   

can be treated as precise number with 0  . So the 
syn- thesis of weights is similar with that in conven-
tional- AHP. Comparisons with original matrices without 
modi- fication are depicted in Figures 6 and 7.  

Note that, in Figure 7, the ranking alters with 
0.7  , which is unacceptable. It is clear that A1 is pre- 

ferred over A2 and A3, but whether A3 is preferred over 
A2 is ambiguous. The reason may be that the consistent 
matrices include contradictory information. Kwiesiele- 
wicz and Van Uden [23] considered that the consistency 
test is performed to ensure that judgments are neither 
random nor illogical. They pointed out that even if a ma- 
trix will pass a consistency check successfully, it can be  

Table 5. Modified uncertainty comparison matrices in Example 
3. 

   
 

12 13

23

1,3 1,3

1

1

: 1

1

2,2G

 
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 
 
 

 
  
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1

1
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23

1 4,1 2 1 6,1 31
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1 3,1C

 
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 

 
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: 1
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 
 
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 


 
Table 6. Local expected weights and global expected weights 
in Example 3. 

C1 C2 C3 
Chemicals 

0.4260 0.2870 0.2870 

Global 
weights 

A1 0.1597 0.5361 0.4619 0.3545 

A2 0.3421 0.2320 0.3627 0.3164 

A3 0.4982 0.2320 0.1725 0.3283 
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Figure 6. Preference relations without modification in Ex-
ample 3. 
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Figure 7. Modified preference relations in Example 3. 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 



L. Lin, C. Wang / Natural Science 4 (2012) 340-348 347

contradictory. Perhaps the judgments for A3 have been 
given carelessly. Without any new information, we take 
the ranking 2  given by expected weights 
as the final ranks of alternatives. 

1 3A A A 

5. SUMMARY AND CONCLUDING  
REMARKS 

In multiple criteria decision analysis problem, human 
judgments are required in order to generate relative 
weights of criteria. Due to complexity of real world deci- 
sion problems and subjective nature of human judgments, 
uncertainty comparison matrices can provide a more re- 
alistic framework to explain such uncertainty. However 
how to check contradictions and avoid modified bounds 
exceeding the bounded  1 9 9  ratio scale are still 
subject to further investigation. 

In this paper, uncertain variable method (UVM), a new 
approach to consistency and inconsistency of uncertainty 
comparison matrices was proposed to generate uncer- 
tainty weights. The definition of consistency for uncer- 
tainty comparison matrices was provided and a simple 
yet pragmatic approach for testing whether or not an un- 
certainty comparison matrix is consistent was put for- 
ward without having to solve any optimization model. In 
case of consistent uncertainty comparison matrices, the 
UVM was recommended to generate consistent uncer- 
tainty weights; otherwise the uncertainty comparison ma- 
trices would be modified via the algorithm proposed and 
the uncertainty weights were derived from modified ma- 
trices. We consider the uncertainty weights as final rank- 
ing if they were acceptable. Otherwise the ranks of ex- 
pected weights would be adopted. Three numerical ex- 
amples illustrated the simplicity and wide applicability of 
the proposed methods. Since interval comparison matri- 
ces may be transformed into uncertainty comparison ma- 
trices, the proposed methods are applicable to interval 
comparison matrices. Therefore they can be widely used 
to deal with decision analysis problems. 
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