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ABSTRACT 

In last few decades there is exponential increase in use of organophosphorus (OP) compounds as pesticides and insecti-
cides leading to adverse effect on human population and live stock. There is a great need to develop portable analytical 
tools that are amenable for remediation and bioremediation process monitoring, where rapid analysis of large number of 
samples is essential. Determination of various organophosphorus compounds has been achieved by integrating bio- 
components with different transducers. The close integration of the biological events with the generation of a signal 
offers the potential for fabricating compact and easy-to-use analytical tools of high sensitivity and specificity. With the 
availability of new materials, associated with new sensing techniques has led to remarkable innovations in the design 
and construction of organophosphorus biosensors. The present review describes the specifications of most of the elec-
trochemical Organophosphorus biosensors reported till date. 
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1. Introduction 

Organophosphates (OPs) are usually esters, amides or 
thiol derivatives of phosphoric, phosphonic, or phosphinic 
acids, which have general structural formula (Figure 1) 
where R1 and R2 are alkyl-, alkoxy-, alkylthio-, or ami- 
do-groups. X is the acyl residue (labile fluorine-, cyano-, 
substituted or branched aliphatic, aromatic, or heterocyc-
lic groups) [1,2]. 

Organophosphate (OP) compounds have found wide 
applications as pesticides and insecticides in agriculture 
and as chemical warfare agents in military practice. 
Worldwide, OP compounds account for over 38% of the 
total pesticides used [3]. Commonly used organophos-
phates includes parathion, malathion, methyl parathion, 
chlorpyrifos, diazinon, dichlorvos, phosmet, fenitrothion, 
tetrachlorvinphos and azinphos methyl. Malathion is 
widely used in agriculture, residential landscaping, pub-
lic recreation areas and in public health pest control pro-  

 

Figure 1. General structure of organophosphorus compounds. 

grams such as mosquito eradication [4]. According to 
World Health Organization, every year there are three 
million pesticide poisonings, mostly OP-related, and 
200,000 deaths worldwide that are attributed either as 
self-poisoning or occupational exposure [5]. Besides 
human exposure, there is also concern that these pesti-
cides could leak into ground and municipal water sup-
plies and pollute surrounding environment. Reports in 
the literature have expressed concern over exposure to 
non target organisms such as birds and fish, as well as 
the potential for human exposure from sources such as 
fresh fruits and vegetables and processed foods. These 
neurotoxic compounds, which are structurally similar to 
the nerve gases Soman and Sarin, irreversibly inhibit the 
enzyme acetylcholine esterase, essential for the func-
tioning of the central nervous system in humans and in-
sects, resulting in the build up of the neurotransmitter 
acetylcholine which interferes with muscular responses 
and in vital organs produce serious symptoms and even-
tually death [6-8]. Effective methods for degradation/ 
disposal of these toxic compounds are needed to ensure 
that human and environmental health will not be com-
promised by the continued use of OP-containing pesti-
cides. Analytical tools to properly monitor the food qual-
ity, control any treatment of water may be adopted Labo- 
ratory-based methods which are commonly used for de-  *Corresponding author. 
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tection and measurement of OP pesticide residues in-
clude gas chromatography (GC), high-performance liq-
uid chromatography (HPLC), and capillary electrophore-
sis [9,10]. The bioanalytical methods primarily include 
assays based on enzyme inhibition and immunoassay [11, 
12]. Enzyme linked immunosorbant assays (ELISA) are 
quite sensitive to specific compounds such as ethylpara-
thion or fenitrothion but, like most immunoassays require 
multiple incubations and generate contaminated plates, 
tubes, etc. In addition, the characteristics of cholineste- 
rase-based assays and immunoassays for OP pesticides 
are not well suited to process control monitoring applica-
tions as these are typically expensive and time-consum- 
ing, further more requires trained man power. Also, labo- 
ratory-based methods are not amenable to remediation 
and bioremediation process monitoring where rapid ana- 
lysis of large number of samples is essential. Organo-
phosphorus hydrolase (OPH) catalyzes the hydrolysis of 
a wide range of OP pesticides [13]. The hydrolysis in-
volves a pH change, as well as electroactive species gen-
eration. OPH-based assays respond to OP compounds as 
enzyme substrates rather than inhibitors or antigens this 
is not the case with acetylcholine esterase. Consequently, 
these assays can be reversible and require only the ana-
lyte of interest. However this method has disadvantages 
that it employs the free enzymes which can be used once 
only and the measurement is based on change in pH 
which limits its sensitivity. Biosensing approach was 
used to overcome problems of onsite monitoring sensi-
tivity, reliability and ability to screen large number of 
samples.  

2. Electrochemical Biosensor 

The working of electrochemical biosensors is mainly 
based on the use of a biological component/bio-receptor 
element retained in direct contact with an electrochemi-
cally active transducer (electrode) to obtain an analyti-
cally useful signal by coupling biochemical and electro-
chemical interactions [14]. The principle of electroche- 
mical sensors is that when an electro-active analyte is 
subjected to fixed or varying potential of some prede-
fined patterns causes oxidation or reduction of analyte on 
the working electrode surface, which leads to the genera-
tion of an electrochemically measurable signal by the 
variation on electron fluxes. This signal can be measured 
by the electrochemical detector.  

2.1. Electrochemical OP Biosensor Based on 
Enzyme Inhibition Process 

Biosensors based on enzyme inhibition have found wide 
application for detection of toxic analyte (e.g., OP pesti-
cides) which inhibit the functional activity of the enzyme. 
By determining the differences in enzyme activity with 
or without the presence of an inhibitor form the basis of 
analyte detection, according to the Equation (1): 

 0 i 0I% A A A 100               (1) 

where A0 is the activity without an inhibitor, and Ai is 
with an inhibitor. The linear range is usually comprised 
between 20% and 80% of inhibition and the detection 
limit is usually defined as the amount of inhibitor which 
gives the decrease 20% of inhibition [15]. 

2.1.1. Use of Acetylcholinesterase (AchE) Enzyme for 
Preparation of OP Biosensors 

The enzyme inhibition-based biosensors for the determi-
nation of OP pesticides is described by the following 
mechanism (2) [16].  

Phosphorylated AchE enzymes has lower affinity for 
the substrate (Acetylcholine) called enzyme inhibition 
and the degree of inhibition is proportional to the con-
centration of OP compounds in the sample. Acetylcholi-
nesterase (AchE) inhibition test, using AchE modified 
amperometric transducers is based on the measure of 
para-Aminophenol produced by hydrolysis of p-Amino- 
phenyl acetate, or hydrogen peroxide generated as a re-
sult of the oxidation of choline produced from acetylcho-
line hydrolysis in the presence of choline oxidase. The 
inhibition of AchE enzyme due to the presence of OP 
compounds results in reduced reagent consumption and 
products release is correspondingly detected applying 
electrochemical techniques and is correlated to the OP 
pesticides concentration.  

AchE enzyme was used in combination with different 
types of supports for the fabrication of bio-sensing de-
vices [17-34]. Table 1 summarizes the characteristics of 
different AchE-based biosensors. Although, sensitive 
biosensors based on AchE inhibition have few limitations: 
1) since ChE is inhibited by neurotoxins which include 
not only OP pesticides but also carbamate pesticides and 
many other compounds, these analytical tools, are not 
selective and cannot be used for quantitation of either an 
individual or a class of pesticides which may be required 
o monitor detoxification processes, for example, detoxi-  t         

   
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Table 1. Characteristics of electrochemical Acetylcholinesterase-based biosensors for OP pesticides detection. 

Sr. No. Target analyte Detection technique 
Enzyme immobilization 

technique 
Electrode/transducer Linearity range (M) 

Detection 
limit 

Ref.

1. Paraoxon Amperometry Adsorption 
AuNPs, grapheme oxide 

nanosheets 
ND 10–13 [34]

2. Chlorpyrifos oxon Amperometry Entrapment 
7,7,8,8-tetracyano  
quinodimethane 

6 × 10–9 - 2.4 × 10–9 6 × 10–9 [39]

3. Chloropyrifos Amperometry Covalence ZnS NPs Au 1.5 × 10–9 - 4 × 10–8 ND [37]

4. Paraoxon Amperometry Affinity MWCNT 3.6 × 10–14 - 3.6 ×10–11 5 ×10–15 [40]

5. Chlorpyrifos oxon CV Entrapment PEDOT:PSS ND 4 × 10–9 [38]

6. Chloropyrifos SWV Cross-linking SWCNT 10–11 - 10–6 10–12 [36]

7. Chloropyrifos CV Covalent binding 
Exfoliated graphite  

nanoplatelets 
ND 1.58 × 10–10[35]

8. Paraoxon Amperometry Entrapment - 1.3 ×10–7 - 5 ×10–6 3.5 × 10–2 [41]

9. Paraoxon Amperometry Cross-linking CoPc-Prussian Blue 7.3 × 10–9 - 1.8 × 10–8 7.3 × 10–9 [42]

10. Methyl paraoxon Amperometry Entrapment CoPc 2 × 10–9 - 4 × 10–6 2.6 × 10–9 [43]

11. Triazophos Amperometry Adsorption MWCNT 3 × 10–8 - 7.8 × 10–6 10–8 [44]

12. Dichlorvos Amperometry Adsorption - ND 10–10 [45]

13. Dichlorvos Amperometry Entrapment CoPc ND 7 ×10–12 [46]

14. Dichlorvos Amperometry Adsorption - Up to 10–16 10–17 [47]

15. Dichlorvos Amperometry Cross-linking Prussian blue 4.52 × 10–11 - 4.52 ×10–8 1.13 × 10–11[48]

16. Trichlorfon Amperometry Adsorption TiO2 and PbO2 particles 10–8 - 2 × 10–5 10–10 [49]

17. Monocrotophos Amperometry Adsorption AuNPs 4.5 × 10–9 - 4.5 × 10–6 2.7 × 10–9 [50]

18. Monocrotophos Amperometry Covalent binding AuNPs-QDs 4.5 × 10–9 - 4.5 × 10–6 1.3×10–9 [51]

19. Acephate FET Affinity CNTs ND 5.45 × 10–14[52]

20. Dimethoate Amperometry Adsorption 

CNTs, zirconia NPs, Au 
colloid coated Fe3O4 

magnetic NPs, Prussian 
blue 

4.4 × 10–6 - 4.4 × 10–2 2.4 × 10–6 [29]

21. Chlorphenvinphos Amperometry - CNTs 4.90 × 10−7 - 7.46 × 10−6 1.15 × 10−7[30]

22. Malathion Amperometry Covalent binding Fe3O4NP, c-MWCNT, Au 10–10 - 4 × 10–8 10–10 [32]

23. Chlorpyrifosoxon CV and amperometry Entrapment PEDOT  1 × 10−10 [33]

 
fication of OP pesticides. 2) These protocols involve mul- 
tiple steps requiring measurement of the uninhibited ac-
tivity of ChE, followed by incubation of the sensor with 
the analyte sample for 10 - 15 min (and even longer for 
good sensitivity) and the measurement of the ChE again 
to determine the degree of inhibition. A final step of re-
activation/regeneration, which in many cases is partial 
and in some cases not possible due to irreversible inhibi-
tion, is necessary if the electrode has to be reused.  

2.1.2. Tyrosine Based OP Biosensor 
Tyrosinase through its cresolate activity catalyses the o- 
hydroxylation of monophenol to o-diphenol, which is 
further to o-quinone by its catecholase activity. Tyrosi-

nase activity is inhibited by carbamates pesticides and 
atrizine that lowers the sensitivity of tyrosinase-based 
biosensors. The Tyrosinase enzyme is inherently unstable 
and is responsible for reducing the lifetime of the tyrosi-
nase-based biosensors. However, tyrosinase has high 
optimum temperatures and there is no effect of organic 
solvents on the activity of enzyme tyrosinase. Numerous 
electrochemical biosensors based on the inhibition of 
tyrosinase activity have been reported (Table 2).  

2.2. OPH Biosensor Based on Direct Catalytic 
Enzymatic Reaction 

In 1970s, Flavobacterium sp. ATCC 27551 and B. di- 
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minuta were the first OP-degrading bacteria isolated 
from soil samples [57,58]. Organophosphorus hydrolase 
(OPH) has broad substrate specificity and is able to hy-
drolyze a number of OP pesticides such as paraoxon, 
parathion, coumaphos, diazinon, dursban, methyl para-
thion [13]. The hydrolysis involves a pH change, as well 
as electroactive species generation, thus allowing the 
development of potentiometric and amperometric sensors 
for OP pesticides quantification [59-65]. The change in 
pH was measured using a pH electrode and there were 
drawbacks of sensitivity, calibration. OPH catalyzed hy-
drolysis of parathion, methyl parathion, paraoxon, feni-
trothion, etc. yields 4-nitrophenol. The current of 4-ni- 
trophenol oxidation is proportional to the OP pesticide 
concentration, is recorded as a biosensor response. OP 
biosensors have been successfully created using organo-
phosphorous hydrolase as the active component [66]. 
PTE-immobilized biosensors allow for the direct detec-
tion of Ops. However, these biosensors show lower sen-
sitivity values and higher detection limits than cholines- 
terase-based biosensors. Moreover, they can only detect 
some Organophosphorus (OP) compounds. The Draw-
back with such type of sensors is that the potential ap-
plied for oxidation of 4-nitrophenol lead to denaturation 
of the enzyme immobilized on working electrode and 
thus leads to decrease in activity and reusability. Sec-
ondly the potential may oxidize other electro active spe-
cies that may lead to generation of additional current and 
false positive results. Characteristics of the other relevant  

OPH based electrochemical biosensors based are su-
marised in Table 3. 

3. Recent Developments in the Fabrication of 
Electrochemical Biosensors for OP  
Pesticides Determination 

Nanomaterials transducer modification and genetic en-
gineering of the biocomponents are the main strategies to 
overcome the reported drawbacks of low sensitivity and 
reusability/regeneration of working electrode. The elec-
tro-catalytical properties of the nanostructures includes - 
their action as electron transfer mediators or electrical 
wires, large surface to volume ratio, structural robustness, 
and biocompatibility enhances the use of nano-techno- 
logical approach in electrochemical biosensors develop-
ment [74]. Therefore, it gives several advantages like 
electrode potential lowering, enhancement of the electron 
transfer rate with no electrode surface fouling, sensitivity 
increase, stability improvement, and interface function-
alization, for developing a bio-sensing system. Various 
nanomaterials are used for making insoluble support for 
acetylcholinesterase immobilization in electrochemical 
biosensors for organophosphorus pesticides determina-
tion [75]. By the help of transducer modification with 
nanomaterials, it gives opportunity to develop biosensors 
with long storage stability and enables OP pesticides 
detection in the nanomole-picomole range. The another 
route leading to increase the biosensors sensitivity, selec-  

 
Table 2. Characteristics of electrochemical inhibition-based biosensors using tyrosinase for OP pesticides detection. 

Sr. no. Target analyte 
Detection 
method 

Enzyme immobilization 
technique 

Electrode materials Linearity range (M) 
Detection 
limit (M)

Ref.

1. Dichlorvos Amperometry Cross-linking + entrapment 1,2-naphthoquinone-4-sulfonate (NQS) Up to 8 × 10–6 6 × 10–8 [53]

3. Methyl parathion Amperometry Cross-linking CoPc 2.28 × 10–8 - 3.8 × 10–7 ND [54]

3. Diazinon Amperometry Cross-linking CoPc 6.24 × 10–8 - 1.64 × 10–7 ND [54]

4. Dimethoate Amperometry Adsorption - 2 × 10–6 - 2 × 10–1 10–6 [55]

5. Paraoxon Amperometry Adsorption - 10–5 - 10–2 5 × 10–6 [55]

6. Malathion Amperometry Adsorption - 10–5 - 10–2 5 × 10–6 [55]

7. Paraoxon Amperometry Cross-linking Prussian blue 10–7 - 10–6 10–7 [56]

Table 3. Characteristics of different OPH-based electrochemical biosensors OP pesticides detection. 

Sr. no. Target analyte Detection technique Immobilization method Transducer Linearity range (M) Detection limit (M) Ref.

1. Paraoxon Amperometry Covalent binding SWCNTs 5 × 10–7 - 8.5 × 10–6 10–8 [67]

2. Paraoxon Amperometry Entrapment Mesoporous Carbon 2×10–7 - 8×10–6 1.2 × 10–7 
[68]

3. Paraoxon Amperometry Entrapment MWCNTs Up to 4 × 10–6 15 × 10–8 [69]

4. Paraoxon Amperometry Cross-linking MWCNTs 5 × 10–7 - 2 × 10–6 0.314 × 10–6 [70]

5. Ethyl Parathion Amperometry Covalent binding - ND <3.4 × 10–9 [71]

6. Methyl Parathion Amperometry Covalent binding AuNPs-MWCNTs-QDs 1.9 × 10–8 - 7.6 × 10–7 3.8 × 10–9 [72]

7. Parathion Amperometry Cross-linking CNTs 2 ×10–9 - 4 × 10–8 15 × 10–9 [73]
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tivity and stability involves the incorporation of tailor 
designed biorecognition elements in the biosensing plat-
form. Increased bio-recognition element affinity for the 
target analyte favoring the accessibility of the active site, 
enhanced electron transfer, and oriented or more stable 
immobilization can be achieved by appropriate site-di- 
rected mutagenesis [76]. Genetically modified enzymes 
such as AchE, are extensively used in inhibition based 
biosensors for OP pesticides determination [33], allowing 
attaining LOD as low as 10–17 M [47]. 

4. Conclusion 

Electrochemical biosensors have been found to be suit-
able for the monitoring of OP compounds. Signal magni-
fication and miniaturization have been achieved by the 
innovation in fabrication techniques with the use of new 
materials. With the discovery of new mediators, it is pos-
sible to build up an electronic interface between a redox 
enzyme and transducer for improved signal transmission. 
From decades variety of prototype have been success-
fully develop to monitor the conc. of OP compounds. 
There is a great need for commercial exploitation of the 
technology for development of portable devices that can 
be used for field monitoring by untrained manpower.  
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