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ABSTRACT

In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider
the urban traffic problems. And our effort is concentrated on the numerical questions to locate the optimal network in a
given domain (for example a town). Mainly, our aim is to find the network so as the distance between the population
position and the network is minimized. Another problem that we are interested is to give an numerical approach of the
Monge and Kantorovitch problems. In the literature, many formulations (see for example [1-4]) have not yet practical
applications which deal with the permutation of points. Let us mention interesting numerical works due to E. Oudet
begun since at least in 2002. He used genetic algorithms to identify optimal network (see [5]). In this paper we intro-
duce a new reformulation of the problem by introducing permutations o . And some examples, based on realistic sce-
narios, are solved.
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1. Introduction

In this paper we present some models of urban planning.
These models are examples of applications in mass trans-
portation theory. They describe how to optimize the de-
sign of urban structures and their management under rea-
listic assumptions. The paper is organized as follows: in
Section 2 we present at first some urban planning models
and preliminaries. The Section 3 is devoted to the appro-
ximation of the models; and numerical simulations that
are our main results. Finally, summary and conclusions
are presented in Section 4.

2. Preliminaries and Mathematical Modeling

Given two distributions z# and v on R" with equal
total mass, the classical generic Monge transportation pro-
blem consists in finding among all the maps T : R* — R*
verifying y(T - (B)) =v(B) for any measurable set in
R, those which solve the minimization problem:

ming 1(T), 1(T)=[ sc(%T (x))du(x).

These maps are said to be transportation maps; they
transport a measure u (quantity) to a measure V.

For the existence of solutions, we recommend to see
[6-10]. We invite the reader to see the books written in
this topic by Villani [11,12] for additional information.

Copyright © 2012 SciRes.

In particularly Sudakov have studied in [13] the exis-
tence of optimal map transportation when
c(x,y)=|x-y| and u is absolutely continuous with
respect to the Lebesgue measure £° .

For studying the many cases where the Monge trans-
portation problem doesn’t give a solution, Kantorovich
considered the relaxed version of the Monge problem. In
this framework, the transportation problem consists in
finding among all admissible measures 7 :R?xR? — R*
having g and v as marginals, those which solve the
minimization problem

MK (,v,c)
=min{[ , .C(6Y)dy(xy):nly = mby =v}.

The meaning of the following expressions 7y = u
and miy =v is explained respectively as follows:

;/[Rd x A] =v[A] and )/[Ade ] = u[A] for any
measurable subset A of RY.

The Monge-Kantorovich problem obtained, depends
only on the two distributions x# and v, and the cost ¢
which may be a function of the path connecting X to
y.
When the unknowns of the problem are the distribu-
tions x# and v, the Monge-Kantorovich mass trans-
portation problemcan be interpreted as an optimal urban
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design problem. When the unknown is the transportation

network, we have an irrigation problem, that is an opti-

mal design of public transportation networks.

We also mention the dynamic formulation of mass
transportation given in [4,14,15] and generalized in [16].
In this framework, we consider that:

* the space of measures acting is a time-space domain
Q=[0,1]xQ where the urban area Q is a bounded
Lipschitz open subset with outward normal vector n,;

* the mass density p(t,x) at the position X and time
t is a Borel measure supported on Q. ie
peM(QR):

* the velocity field v(t,x) of a particle at (t,x) is a
Borel vectorial measures supported on Q ;

* the velocity field &(t,x) of the flow at (t,x) is a
Borel vectorial measures supported on Q (e
EeM, (Q,Rd )) and defined by
E(t,x)=p(t,x)v(t,x).

The Monge-Kantorovich mass transportation problem
consists in solving the following optimization problem:

min {¥(p,£):pe M(QR'), £e M(QRY)) (1)
with the constraints:
-0,p—div,é=0 on [0,1]x0Q,

p(0.x)=p, (x) p(1.X) = p (x), ©)
£-n, =0 on [0,1]x0Q.

where ¥ is an integral functional on the R -valued
measures defined on Q. Note that (2) is the continuity
equation of our mass transportation model.

2.1. Optimal Urban Design

In the models of optimal design of an urban area we con-

sidered that

e the urban area Q is a well known regular compact
subset of RY;

* the total population and the total production are fixed
data of the problem;

e only the density of residents g and the density of
services v are unknowns data of the problem.

The aim is to find the density of residents 4 and the
density of services v minimizing the transportation cost.
Principally there are two models for studying the op-

timal urban design. The first one takes into account the

following facts:

 there is a transportation cost for moving from the re-
sidential areas to the services poles;

* people do not desire to live in areas where the density
of population is too high;

* services need to be concentrated as much as possible,
in order to increase efficiency and decrease manage-
ment costs.

Copyright © 2012 SciRes.

The transportation cost will be described through a
Monge-Kantorovich mass transportation model.

In particularly, we will take it as the p-Wasserstein
distance defined by:

W, (,u,v) = [min{fmdxkd |X— y|pd;/(x, y) :
1
my = p Ty = V}] P
Taking into account the total unhappiness of residents

due to high density of population, we define a penaliza-
tion functional of the form

H<u>—{fgh(u<x))dx it = uds

+00 otherwise,
where U is the density of the population,
h:[0,+00] —[0,+00] is supposed to be convex, null at the
origin and super linear (that is @ —>+0 as t—+o).
. . . . . h(t)

The increasing and diverging function t—)T repre-
sents the unhappiness to live in an area with population
density t.

Thus we define a functional G(v) which penalizes
sparse services. This functional is of the form:

_ Zi:g(ai) if v=Zi:ai5Xi

+00 otherwise,

G(v)

where g :[0,+00] —[0,+] is supposed to be concave,

null with infinite slope at the origin (i.e. @ — +00  as
t—0"). Every single term g(a ) in the sum above
represents the cost for building and managing a service

pole of size @ located at the point X of Q. The Re-

port P(a)= gPa(iai)

is the productivity of pole of size

a .
So in the first model, the optimal urban design pro-

blem becomes the following optimization problem:
min{Wp (1,v)+H(u)+G(v): o)
1, v probabilities on Q}

In the second model the population transportation is
considered as a flow, that is a vector field &:Q — R?.
The equilibrium condition is achieved when the emerg-
ing flow is the excess of the demand in K , i.e.

-1 _
[ &nedH™ =(u=v)(K).
In order to take into account the congestion effects, we

suppose that the transportation cost k (x) per resident at
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the point X depends on the traffic intensity at X, i.e.

=9(j¢(x)))

where g:[0,+%0]—[0,+0] is an increasing function.
Then, the transportation cost moving g to v is:

C, (uv)=int {[ g(|&(x)|)[¢(x)|dx:V-& = u~v and
&-ng =00n6Q}.

The problem (1) with the constraints (2) allows both to
take into account the congestion effects by an appro-
priated choice of the functionals ¥ and to widen the
choice of unhappiness function h and management cost
function g of the first model to the local lower semi-
continuous functionals on  Af, (Q,Rd“) .

For more details, we refer the interested reader to the
several recent papers on the subject (see for instance [4,
14-17)).

2.2. Network Problems Applied to the Urban
Transportation

In the models of optimal design of an urban area we con-

sidered that

e the urban area Q is a well known regular compact
subset of RY;

e the density of residents x and the density of ser-
vices v are two well known positives measures with
equal mass.

The irrigation problem consists to find among all fea-
sible structures (or feasible network) X those that mini-
mize the transportation cost

1 (7) = [o.8(ds (% ¥))dr (xy):

The particular irrigation problem of the average dis-
tance consists to find an optimal network X, for which
the average distance for a citizen to reach the mos R? t
nearby point of the network is minimal.

min{J.Qdist(x,Z),u(x)dX : Zc Qs a feasible network}.

Theorem 1 For every L >0 there exists an optimal
network X, for the Optimization problem

min {_[Qdist(x,Z) f (x)dx: Y connected and H' () <L }

where H' is the Hausdorff measure defined on RY.
Notice that there are other proposition of functionals to
be minimized.
For more details, we refer the interested reader to the

several recent papers on the subject (see for instance [1-3,

18,19]).

Our aim is to concentrate our effort on the numerical
questions to locate the optimal network in a given do-
main Q, says for example a town.

Copyright © 2012 SciRes.

3. Approximation and Numerical
Simulations

3.1. First Steps for the Formulation of the
Discrete Problem

In this subsection, we are going to propose a first ap-

proach of discretization. From this, we deduce a genera-

lized formulation but not the own possible formulation.
Let

A= {applications on R" measurable such that T*z = v}.
For the simulation we are going to consider:
c(x,y)= %”X— y||2 and supp(Q)cR";
* T'eA suchthat |(T")=minl(T);

* a sequence of points {X},  <supp(u)cR" and
ofballs E, =B(X,,r) such that

u(E)=-=u(E,)=¢,with
supp(,u):{xeRN/,u(X);tO},and x eRN.
T'(%) and F, =T (E/). We build an

othermap T € A switching round cyclically the images
ofballs {E,} .Then T satisfies

{T(xk): Vs T(E) = Fp, k=1,-,m

T=T onR"\U E,

and let vy, =

Where ym+1 yl and Fm+l =
Then we have | (T <I(T
<

F
)T
kZ:;J‘Ek|X_T*(X| ,U() kZ::J- |X T )|2d,u(x)
Therefore when & — 0, we obtain
iIE <XaT(X)—T*(X)>dﬂ(X)£O 4)
k=1""K

Suppose that the map T~
regular, the Equation (4) leads

Z(Xk,yk+1_Yk>SOWith Ve =T (%) ®)

k=1

Then {(X,T*(

and the measure g are

X))/X esupp(y)} <R xR"

is cyclically monotonous and T c g’ .
At first, in problem (7 ) the objective is to find the
points Yy, which minimize

minzm:"Xk - Y, ||2 subject to
k=1

-1

<Xk’yk+1 - Yk>S

1

Yo = Wi
m-1
kZ:;")’k - Yk+1"S L

3

=~
Il
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In the next section, we show that it is quite possible to
give a more general approximation .
3.2. New Reformulation Using Permutations

In the literature, many formulations (see for example
[1-4]) have not yet practical applications which deal with
the permutation of points. In this paper we introduce a
new reformulation of the problem by introducing permu-
tations o .

Let us take a permutation o defined on {1,-~,m}
such that o (k) =k, we set:

T (%)= Yo T(E)=F,po k=1--m
T=T onR"\UE,

and we solve the two following problems: (7, )
L 2
mme"xk =
=1
subject to

<L

Yo() = Yo(k+)

m-1
»

k=1
and problem (7))

m
minz
k=1

2

X~ Yo(x)
subject to

m-1
S -l <t

with the norm ||||2 and

Legend

B Depots
% Terminuses

Palais1

Thiaroye
Depot

ET AL.

S, :{a:{l,---,m} —{1,---,m} permutation}.

This is a theoretical formulation. And our aim is to ap-
ply it to a practical urban transport network. As a first
step, we decided to work on R* with a reasonable num-
ber of points.

For a scenario in R", if we consider m points: the
number of programs to be solved becomes m™. We
leave the reader to verify that for:

* m=3points = we solve 27 programs
* m=4points = we solve 256 programs
e etc.

A scenario involving up to 18 points is used for pro-
blem (R ). Using this scenario with problems (7 ) and
(R,) requires to solve 18'* programs, it is the reason we
consider only some of these points for permutations in
(P,)and (R).

3.3. Numerical Experiments

This section shows how the three models developed in
the two previous Sections 3.1 and 3.2 are applied to real
data of Dakar Dem Dikk (3D). Recall that 3D (see [20],
[21]) is the main public urban transportation company in
Dakar. This company manages a fleet of buses with dif-
ferent technical characteristics. Some of the buses can
operate only in certain roads in the city center and the
others can access in all over the network. Buses are park-
ed overnight at Ouakam and Thiaroye terminals (see Fig-
ure 1).

To ensure network coverage, 3D manages its services
by using 17 lines, with 11 from Ouakam terminal and 6
from Thiaroye terminal. Each line ensures a certain num-

*
Keur Massar

Figure 1. Urban transportation network of 3D.

Copyright © 2012 SciRes.
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ber of routes. At present, the total number of routes in the
network is 289. First, the most important 18 sites of the
network are identified. Thirty (30) permanent terminuses
(terminals) and 810 bus stops are used (see Figure 1,
where bus stops are not represented due to their size).
The map in Figure 1 is obtained by using the software
EMME [22]. Table 1 gives the 18 sites, their latitude and
longitude.

The data are based on the scenario of 3D; and the input
data needed to use the models are the:

* total length of the network L =5902.62 kilometers;

* number of points X, (terminals and bus stops)
m=18 (see Figure 1);

* latitude and longitude of points X, representing the
two terminals and bus stops.

The total distance covered by all the buses from ter-
minals to starting points of routes and from end points
back to their terminals represents the total length of the
network; and we have L = 5902.62 kilometers (for the 18
sites).

The GPS (Global Positioning System) coordinates are
calculated with Google map, and then transformed into
coordinates on the plane with he formula: degree + (mi-

nute/60) + (second/3600). Table 1 gives the coordinates

of all points.

The numerical experiments are executed:

* on a computer: 2 x Intel(R) Core(TM)2 Duo CPU
2.00 GHz, 4.0 Gb of RAM, under UNIX system;

* and by the software IPOPT (Interior Point OPTimi-
zation) 3.9 stable [23,24], running with linear solver
ma27.

For the objective function, we have:

. ) B R
a= mmkzz;”xk Y| = mmkzz;"xk =
= min (||x1 - y1||2 +[%, = yz”2 oo X y18"2)
:min(al+a2+---+als)
with
ai=||Xi—yi||2=(xi1—yi1)2+(xi2—yi2)2 Vi=1,---,18.

Finally,

18 2 ., 18 2
a =min[ Z(yi') =22 3%y

i=1j=1 i=1 j=1

Table 1. Scenario of 3D.

GPS coordinates

Coordinates on the plane

X

Ouakam terminal

latitude

14°42'25.79"N

longitude

17°28'43.52"0

latitude

14.7071638888889

longitude

17.4787555555556

Thiaroye terminal 14°44'48.49"N 17°22'48.41"0 14.7468027777778 17.3801138888889
Camberene 2 14°43'54.80"N 17°26'38.99"0 14.7318888888889 17.4441638888889
PA 14°45'37.04"N 17°26'16.79"O0 14.7602888888889 17.4379972222222
Keur Massar 14°47"7.72"N 17°18'33.33"0 14.7854777777778 17.3092583333333
Lat Dior 14°40'8.59"N 17°26'28.51"0 14.6690527777778 17.4412527777778
Palais2 14°39'10.63"N 17°25'59.86"0 14.6529527777778 17.4332944444444
Guediawaye 14°46'21.40"N 17°23'20.18"0 14.7726111111111 17.3889388888889
Daroukhane 14°46'53.08"N 17°22'19.47"0 14.7814111111111 17.3720750000000
Dieuppeul 14°43'23.54"N 17°27'31.21"O0 14.7232055555556 17.4586694444444
Leclerc 14°40'16.54"N 17°25'53.06"0 14.6712611111111 17.4314055555556
Liberte 6 14°43'42.11"N 17°27'36.32"0 14.7283638888889 17.4600888888889
Aeroport 14°44'44.02"N 17°2921.65"0 14.7455611111111 17.4893472222222
Khourounar 14°44'59.60"N 17°24'25.10"0 14.7498888888889 17.4069722222222
Palais1 14°39'10.63"N 17°25'59.86"0 14.6529527777778 17.4332944444444
Malika 14°47'37.78"N 17°20'11.42"0 14.7938277777778 17.3365055555556
Rufisque 14°42'44.30"N 17°16'1.66"0 14.7123055555556 17.2671277777778
Ouakam 14°43'56.98"N 17°29'35.02"0 14.7324944444444 17.4930611111111

Copyright © 2012 SciRes.
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the following results: the total number of iterations is 16
and for the optimal network X, we have
ive function. Y =% Vk €{2,---,m—1}. The others obtained solutions
e Y,» Yo and Y., are given in Table 2 with the GPS
Constraint (xk,yk+1 - yk>§0 gives coordinates. The points Yy, and Yy, are represented in
k= the network (see Figure 2).
Permutations make the resolution more complicated

18 2
and f= ZZ(XiJ )2 is added to the value of the objec-

i=1 j=1

2
Z(Xk Vi — Yk> = (X,, Y, =Y, ) + (Xz, Y, — y2> <0. but can give better results. The number of sub-problems
k=1 to solve depends on the number of points in the network.
Urban transportation network of 3D Thus, we choose m=3 points 1n.3D’s n.etwgrk. .
Thus, <_X1’Y1>+<X1 _X25y2>+<xz’ y3>£0 e . Now, le.t us take the permutation Whl(?h is the main
L R idea of this work. For problem (%), Vi=1,2,3 such
XY =Xy +(X1 - Xz) Ya that o(i)=o(i+1), we have Hy"(‘) - ya(m)‘L— 0 . There-
fore some constraints are similar and we have 9 sub-
2 _ 2 2 1,1 2.,2 <
+(Xl % ) Yo %Ys % Y5 <0. problems to solve. An illustration:
m-l . m-1 2
And kzz;"yk B yk“” <L gives kz::,”yo(k) “Yowsn| = é”yo(k) Yo
2 = ewr=You Yo =Yoo |
2= Yeall =y =yl v =yl <L w0 el TP oo
) « The three unconstrained sub-problems are obtained for
1.8.: (o(1),0(2),0(3)) with o(1)=0c(2)=0(3), i.e. in the

L\ 5 \2 AN , \2 three permutations (1,1,1), (2,2,2) and (3,3,3).
\/( Yo yZ) +(yl - yZ) +\/( Y2~ y3) +(y2 RE ) <L All sub-problems constraints are reported in Table 3.
with y, =y, and y;=Vy;.

. . Table 2. d y,, for optimal network I,
We simply formulate the problem in AMPL [25] syn- A = and ym TOT OPHMAT REAWOTK Zopr

tax, and solve the problem through the AMPL environ- GPS coordinates

ment; with a total number of 38 variables for problem Y, latitude longitude
(R). The solution obtained is an optimal one (for each y 44252 20'N 1729'15.00"0
case) wherein the priority is assigned to the minimization e e o
of the distance between x, and Y, . The IPOPT found Yo 147433036 177293.84°0
an optimal point within desired tolerances; and we obtain You = % 1474252 20'N 17729'15.00"0

*
Keur Massar

Thiaroye
Depot

Legend

B Depots
% Terminuses

Palais1

Figure 2. Optimal network of 3D without permutation.
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Table 3. All constraints with permutations.

P (e(1).0(2).0(3)) constraints

1 (1,1,1)

2 (1,1,2) Iy, = .|

3 (1,1,3) Iy =il

4 1,2,1) 2y, -yl

5 (1.2,2) (bA

6 (1,2,3) Iy = sl +ly. =il
7 (1,3,1) 2[ly, -y

8 (13,2) Iy =vil+ly. =i
9 (1,3,3) (A

10 @2.1,1) Iy, = .|

11 2.1.2) 2]y, - v

12 @,13) 1, = vl + [y, = v
13 2,2,1) Iy, .|

14 (2.2.2)

15 (2.2.3) Iy, = vil

16 23.1) Iy =yl +ly. =i
17 2.3,2) 2|y, -y

18 (2.33) ly. = v

19 G.1.1) Iy, =il

20 (3.1.2) [y =yl +ly. =y
21 (3.1.3) 2|y, -y
2 (3.2.1) Iy = sl +ly. =il
23 (3.2.2) Iy, = vl

24 (3.2.3) 2y, -y

25 (3.3,1) Iy, =i

26 (3.32) ly. = v

27 (3.3.3)

It is sufficient to solve P,P,,R,,P,,P,P,P,.,R,,R, and
Re; since we have P, =F,=F, R;=RF, =R =P,
Ps=Ry,=R=F, B, =P, P,=F, P,=PF,
Re=FK, Py=h,, P,=F, and Py=P,;=R;=hR;.
We only compute the quantities || Y, — Y, |y, -, ||

and ||y2 -, || . For all sub-problems P, (i= 1,---,27) ,

the objective function is the same as problem (%) with

m=3.

B

Copyright © 2012 SciRes.

m 3

. 2 . 2

o =min 3 [x =y, =min 3 -y
k=1 k=1

- min(”xl i +% = vl % - ys ||2)

=min(a, +a, + ;)

with
a=(x-y) +(x-y) .
a=(8-y) +(%-y)
and
o =(x-yi) +(6-yi) .
Finally,

= min| (31 (38 + () +(32) () + ()
~2XlY =26y~ 26 YL - 282 ~2Xys - 26 |

3 2

and f= ZZ(XH )2 is added to the value of the objec-
i=1 j=1

tive function.

From computational results, we have obtained the same
value for all 10 sub-problems. Thus, permutations do not
influence the distance constraint on the curve of X, . The
optimal value is « =1170.332935387, for all P with
i=1,---,27.

For problem (7,), we consider o (k) and the num-
ber of possible permutation is o (k)e{l1,2,3}. Recall
that the number of sub-problems to solve depends on the
number of points in the network. Also, we choose m=3
points in 3D’s network. Thus, for the considered per-
mutation (o-(l),o-(Z),o-(3)) we have obtained a total of
3’ =27 sub-problems P, (i=1,---,27) to solve, see Ta-
ble 4.

In order not to overload explanations, we develop only
the sub-problem P, the rest are left to the reader as an
exercise.

In R, the sub-problem P, is obtained for

(e(1)0(2).0(3)=(1.L11),

with vectors x; :(x.] x.z) and v, =(yi1,yi2) vi=1,2,3.

1271

For the objective function, we have
. m 2 . 3 2
o = mm;"Xk - ya(k)" = mme:"Xk - yg(k)"
=1 =1
. 2 2 2
= mln("X] - ya(l)" +||X2 - yo(z) " +||X3 - yo‘(3) " )
o =min[x =y [ + o=y I -y

:min(all ta, +a3')

AM
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Table 4. Optimal values of ¢; with different permutations.

P (0'(1),0'(2),0'(3)) a
1 (1,1,1) 0.007723332000
2 (1,1,2) 0.005650763000
3 (1,1,3) 0.005650763000
4 (1,2,1) 0.001765520000
5 (1,2,2) 0.004168715000
6 1,2,3) 0.000000000000
7 (1,3,1) 0.438482963000
8 1,3,2) 0.000000000000
9 (1,3,3) 0.004168715000
10 2,1,1) 0.004168715000
11 2,1,2) 0.001765520000
12 2,1,3) 0.000000000000
13 2,2,1) 0.005650763000
14 2,2,2) 0.007723332000
15 (2,2,3) 0.005650763000
16 23,1 0.000000000000
17 (2,3,2) 0.001765520000
18 (2,3,3) 0.004168715000
19 (3,1,1) 0.004168715000
20 3.1,2) 0.000000000000
21 (3,1,3) 0.001765520000
22 @3,2,1) 0.000000000000
23 (3,2,2) 0.004168715000
24 (3,2,3) 0.001765520000
25 (3,3,1) 0.005650763000
26 (3,3,2) 0.005650763000
27 (3,3,3) 0.007723332000
with

and
at=(4=y) + (5 -)
Finally,
o, = min [3(y11)2 +3(yf)2 —2(x 4%+ )y
(¢ +¢+%)y; |

2
and f= ZZ(XiJ )2 is added to the value of the objec-

i=1 j=1

Copyright © 2012 SciRes.

tive function for all sub-problems P, Vi=1,---,27.
The constraint

m—

<L

||Yk — Yia

k=1
gives

2
éllyk Vel =V = Vol Y. - v < L,

ie.:
V=) (- 32) (=) (i) s

For the scenario of problems (7) and (), we
choose X; = Ouakam terminal, X, = Thiaroye terminal and
X3 = Leclerc (see Table 5).

We denote by ; and Y, the optimal value and the
optimal solution of sub-problem P Vk=1,2,3, re-
spectively.

The results show that the following six sub-problems:
P, R, B,, Ps, Py, P, givethe best value
(a =g, =0.0,Vi=6,8,12,16,20 and 22) . The six solu-
tions are different, i.e.:

* * * * * *
Yio  Yis Z Yz # Yeie # Yo # Yo

with only y;ﬁ =X
The curve X, can be described by one of the points
Yei €T(X,); see Figure 3 where

o= (G(l),d(2),0’(3)) .

The points Y,; which define Lo (with coordinates
y,f’, Vj=1,2) are given in Table 6, with y, =X, .

The solutions giving the best possible permutations
(optimum) are illustrated in Table 6 and include all per-
mutations o (i)=o(j) Vi, j.

According to the simulations, we determine a set of
optimal policy that can describe the optimal network
Xt - Finally: after comparison of the simulated models,
we can deduce that the model for problem (B) is
better. It provides the best curve describing the optimal
value X, , obtained with the permutations introduced in
the objective function.

4. Conclusions

In this paper, we describe applications of mass trans-
portation theory and develop how to optimize the curve
design of urban network problems. Using the discrete for-
mulations, we give three nonlinear programming problems
with continue variables, and have described urban trans-
portation problem of 3D applied to these three models.
The results have shown that the optimal network is ob-
tained with permutations including o (i)# o (j)Vi,j.
In future works, we will study an application in R’
and make a reformulation that solves a unique program,

AM
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Figure 3. Optimal network X,,,.

The network X,,, with permutations.

instead of solving m™ problems.

GPS coordinates

latitude

longitude

14°4225.79"N
14°44'48.49"N
14°40'16.54"N

17°28'43.52"0
17°22'48.41"0
17°25'53.06"0
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for providing the data, and discussions related to the

Table 6. The optimal solutions y,, with permutations.

GPS coordinates o

Yy latitude (j = 1) longitude (j = 2) (1]
Yie 14°42'25.79"N 17°28'43.52"0

Yas 14°44'48.49"N 17°22'48.41"0 (1,2,3) [2]
Yie 14°40'16.54"N 17°25'53.06"0

Yis 14°42'25.79"N 17°28'43.52"0

Yas 14°40'16.54"N 17°25'53.06"0 (1,3,2) 3]
Yis 14°44'48.49"N 17°22'48.41"0

Yirz 14°44'48.49"N 17°22'48.41"0

Yair 14°42'25.79"N 17°28'43.52"0 2,1,3)

Vi 14°40'16.54"N 17°25'53.06"0 4]
Yiss 14°40'16.54"N 17°25'53.06"0

Yase 14°42'25.79"N 17°28'43.52"0 (2,3,1) [5]
Yite 14°44'48.49"N 17°22'48.41"0

Yiz0 14°44'48.49"N 17°22'48.41"0

\ 14°40'16.54"N 17°25'53.06"0 (3,1,2) [6]
Yiz 14°4225.79"N 17°28'43.52"0

Yim 14°40'16.54"N 17°25'53.06"0

Yam 14°44'48.49"N 17°22'48.41"0 (3.2,1) (7]
Yiz 14°4225.79"N 17°28'43.52"0

Copyright © 2012 SciRes.

meaning of the data.
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