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ABSTRACT 

This article is concerned with the so-called Levinthal’s paradox. It will be argued that many have sought a “solution” to 
Levinthal’s paradox, where in fact, the “solution” already appeared in Levinthal’s original articles. Most of the subse- 
quent suggested “solutions” were inadequate solutions to a non-paradox. It is shown that the discovery of strong hy- 
drophilic forces not only dismisses the Levintal paradox, but also provides a solution to the general problem of protein 
folding. A simple model based on the Markov process is presented to demonstrate how a strong biased-force can dra- 
matically reduce the number of steps required to reach the stable native 3-D structure of the protein.  
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1. Introduction 

Ever since it was realized that the process of denaturation 
of proteins can be reversed without any auxiliary agent, 
the protein folding problem became one of the major 
unsolved problems in molecular biology [1-10].  

In a recent editorial of Science, the editors listed 125 
unsolved—“What Don’t We Know?” questions in sci- 
ence [7]. One of this is:  

“Can we predict how protein will fold? Out of a near 
infinitude of possible ways to fold, a protein picks one in 
just tens of microseconds. The same task takes 30 years 
of computer time.”  

There are essentially two problems associated with the 
process of protein folding. The first is concerned with the 
questions of how and why protein folds to its native 3-D 
structure in a very short time. The second is concerned 
with the factors that confer stability to the native struc- 
ture of the protein.  

These questions had presented formidable challenges 
to chemists, biochemists and physicists. In this paper we 
focus only on the first question, the one referred to in the 
quotation from Science editorial, which is also known as 
the Levinthal paradox [11]. The second question, as well 
as its answers, has been discussed in a recent article [12] 
and a monograph [9].  

In the author’s opinion, the main hindrance to finding 
a solution to the protein folding problem has been the 
adherence to the hydrophobic (HØO) dogma, which states 
that various HØO effects (both solvation and interaction) 
are the “dominant forces” in protein folding [1,13]. The 
origin of this idea is contained in Kauzmann’s suggestion 
that: “The hydrophobic bond is probably one of the more 

important factors involved in stabilizing the folded con- 
figuration…” [1] This, quite modestly formulated hy- 
pothesis has been enormously exaggerated by many au- 
thors [9].  

Note that Kauzmann’s hypothesis does not say any-
thing about the role of the hydrophobic effect on the dy-
namics of the process of protein folding. Yet surprisingly 
the literature abounds with many claims that the domi-
nant forces in protein folding are the HØO effects.  

An exhaustive analysis of all the solvent induced ef- 
fects on protein folding reveals that the hydrophilic (HØI) 
effects are much more important than the corresponding 
HØO effects [8,9]. The discovery of the strong HØI ef- 
fects—both interaction and forces—has removed the 
crux out of the mystery of the protein folding problem 
(as well as other related problems such as self assembly 
and molecular recognition).  

In this article we discuss the role of the HØI forces in 
answering the question of why protein folds along a nar- 
row range of pathways and in a relatively short period of 
time.  

We start in the Section 2 with a few quotations from 
Levinthal who has most eloquently formulated the prob-
lem of protein folding [11]. This is sometimes known as 
the Levinthal paradox. We shall see in Levinthal’s writ-
ings that there is nary a hint of a paradox. Instead one 
finds a well formulated problem, as well as a hint of pos-
sible solution of that problem.  

In Section 3, we discuss some attempts to “solve” the 
so-called Levinthal’s paradox. In Sections 4 and 5, we 
suggest a way of implementing the HØI forces to achiev- 
ing an answer to the protein folding problem. Some con- 
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cluding remarks are presented in Section 6. 

2. The Origin of the So-Called Levinthal’s 
Paradox 

We begin with a few quotations from Levinthal’s articles 
[11], which are relevant to what is now referred to as the 
Levinthal Paradox.  

a) “Let us ask ourselves how proteins fold to give such 
a unique structure. By going to a state of lowest free en- 
ergy? Most people would say yes and indeed, this is a 
very logical assumption. On the other hand, let us con- 
sider the possibility that it isn’t so.”  

b) “How accurately must we know the bond angles to 
be able to estimate these energies? Even if we knew these 
angles to better than a tenth of a radian, there would be 
10300 possible configurations in our theoretical protein. 
In nature, proteins apparently do not sample all of these 
possible configurations since they fold in a few seconds, 
and even postulating a minimum time for going from one 
conformation to another, the proteins would have time to 
try the order of 108 different conformations at most be- 
fore reaching the final state.”  

c) “We feel that protein folding is speeded and guided 
by the rapid formation of local interactions which then 
determine the further folding of the peptide. This sug- 
gests local amino acid sequences which form stable in- 
teractions and serve as nucleation points in the folding 
process.”  

d) Then, is the final configuration necessarily the one 
of the lowest free energy? We do not feel that it has to be. 
It obviously must be a metastable state which is in a suf- 
ficiently deep energy well to survive possible perturba- 
tions in a biological system. If it is the lowest energy 
state, we feel it must be the result of biological evolution, 
i.e. the first deep metastable trough reached during evo- 
lution happened to be the lowest energy state. You may 
then ask the question, “Is it a unique folding necessary 
for any random 150-amino acid sequence?” and I would 
answer, “Probably not.”  

The propositions quoted above are cast in a form 
which is reminiscent of a mathematical proof by contra- 
diction; let us assume that X is true, reach an absurd re- 
sult, then conclude that our assumption cannot be true. In 
fact, we have here all the elements of such a proof.  

Statement a) raises two questions: 1) How does a pro- 
tein fold to give a unique structure? and 2) Is this unique 
structure the state of lowest free energy? We shall refer 
to the first question as the Levinthal question. The second 
question, as well as its answer will not be discussed here. 
It is related to Anfinsen’s thermodynamic hypothesis, 
and it is discussed elsewhere [9].  

Statement b) essentially concludes that if one assumes 
a random sampling of the configuration space of the pro- 

tein, then one arrives at an absurd result. Statements c) 
and d) suggest possible answers to the two questions 
raised in a).  

Clearly, there exists no paradox in obtaining an absurd 
result based on an unrealistic assumption. Levinthal im- 
mediately recognized that the absurd result he reached 
follows from the wrong assumption of a random search 
over the immense configurational space. Levinthal did 
not see that absurd result as a paradox, as so many others 
did. He immediately reached the (almost) correct solu- 
tion, as stated in quotation c) above. Namely, that there 
must be preferential pathways of folding, “guided by 
rapid formation of local interactions.” Although Levin- 
thal did not specify what these “guiding interactions” are, 
his solution to the absurd result (based on unrealistic as- 
sumption) is almost correct. Instead of “guiding interact- 
tions,” one should use the term “guiding forces.” Though 
these forces are derived from the interactions, it is the 
magnitude of the force acting on the groups of the pro- 
tein that determines the speed of the folding process. The 
main question left unanswered by Levinthal is: What are 
these strong forces that guide the protein to its native 
structure in a relatively short time? We now know that 
these forces originate from the water, more specifically 
the solvent-induced forces exerted on the hydrophilic 
groups along the backbone and the side chains of the 
protein [8,9].  

3. Attempts to Solve the Levinthal Paradox  

During the past 40 years many have sought for a solution 
to the (non-existent) Levinthal paradox.  

Perhaps the most serious and much acclaimed attempt 
to “solve” the paradox was published by Zwanzig et al. 
[14]. In their introduction, Zwanzig et al. wrote:  

“The main point of this paper is to show by mathe- 
matical analysis of a simple model that Levinthal’s 
paradox becomes irrelevant to protein folding when 
some of the interactions between amino acids are taken 
into account.”  

This is exactly the answer given by Levinthal himself 
namely, that the interactions between different parts of 
the protein can guide the folding process. As we have 
pointed out above, the important guiding factors are the 
forces rather than the interactions. Zwanzig et al. do not 
offer any answer to the question regarding these forces, 
nor do they specify which are “some of the interactions 
between amino acids”. Furthermore, the model used by 
Zwanzig et al. is not a realistic one, and might even be 
misleading.  

Zwanzig et al. drew from Dawkins’ brilliant ideas of 
explaining the mechanism of evolution [15-17]. Briefly, 
the protein is viewed as a sequence of N bonds, and the 
“connecting bond between two neighboring amino acids 
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can be characterized as “correct” or “incorrect” (Correct 
means native in biology). Then they assume some rate 
constant ( 0 ) for the transition “correct” → “incorrect”, 
and another rate constant ( 1 ) for the transition “incur- 
rect → correct”. Assuming further that the ratio (

k
k

0 1k k ) 
is small, they calculated the mean first-passage time to 
reach the fully “correct” conformation.  

It should be noted that the metaphor used by Dawkins, 
is barely suitable for explaining evolution to the layper- 
son [15,17]. The mechanism arriving at the “correct” 
target, as proposed by Dawkins demonstrates the possi- 
bility of occurrence of an event which is perceived to be 
highly improbable. As such, Dawkins model achieves its 
goal of removing the mystery out of the evolutionary 
process. However, even in evolution, there exist no “cor- 
rect” or “incorrect” results. In fact, Dawkins himself 
recognized that his explanation is not relevant to the ac- 
tual process of evolution [9,15]. Evolution does not pose 
any goals or targets to reach. Nevertheless, one can sim- 
ply define a “correct” outcome as one which has some 
evolutionary advantage. This is not the case for the pro- 
tein folding process. Therefore, Dawkin’s metaphor is 
not adequate for the process of protein folding. The main 
objection to this model is that one cannot justify the 
preferential transition from “an incorrect bond” to “a 
correct bond” at each stage of the protein folding proc- 
ess.  

In evolution, a transition from “incorrect” to “correct” 
is biased according to some selection criterion, i.e. the 
“correct” result has some advantages, and therefore that 
result survives. There exists no analog of the selection 
criterion in the process of protein folding.  

Furthermore, Zwanzig et al. do not provide a plausible 
reason for the particular assignment of the values of the 
rate constants 0  and 1  in terms of either molecular 
interactions or forces. Therefore, the model used by Z-
wanzig et al., as well as the specific solution of the 
model is not relevant to the protein folding problem.  

k k

There are many statements in which evolution theory 
is invoked in connection with the problem of protein 
folding. In a recent article Wolynes writes: [18]  

“Evolution solved the protein-folding problem. A ma- 
jor goal of bio-molecular science has been to understand 
how this was done.”  

Of course, evolution does not solve any problem, nor 
was the protein folding problem posed to Nature. Evolu- 
tion only evolves and a product which has some evolu- 
tionary advantages survives. It is clear that Wolynes 
means “solved” in his first sentence only in a figurative 
sense, in the same sense when people say today that 
some bacteria “developed” resistance to some drug. Of 
course, bacteria do not “develop” anything. In a given 
population there are many mutants of the same bacteria, 
some of which are resistant to a specific drug. When that 

drug is administered, only those mutants that are resistant 
to the drug would survive. To an outside observer, it 
looks as if the population as a whole has “developed” a 
resistance to the drug.  

Thus, it is acceptable to use the word “develop” in the 
sense that this is how it seems to an observer who is not 
aware of the existence of resistant mutants in the original 
population. However, it is meaningless to try to “learn” 
from the bacteria (or from Evolution) how they “devel- 
oped” the resistance to the drug.  

Similarly, during evolution proteins, or rather poly- 
peptides were synthesized. Some folded, while others did 
not. Of those that folded some reached a stable 3-D 
structure, some did not. Of those that reached a stable 
structure, some had a special advantage, while others did 
not, and so on.  

Looking at the final outcome of a functional protein 
one can say figuratively that Nature or Evolution has 
“solved” the problem of folding a polypeptide into some 
useful 3-D structure. This is acceptable only if we under- 
stand that in the “population” of all the peptides which 
were synthesized during evolution, some have folded 
into a useful 3D-structure. Not because this structure was 
the target of Evolution, and not because Evolution had 
faced the problem of how to fold a specific protein. 
However, one cannot attempt an understanding of how 
Evolution has “solved” the protein folding problem, sim- 
ply because Evolution did not solve any problem. Any 
attempt to “learn” from evolution must therefore lead to a 
dead-end.  

4. Possible Approach to Solving the Protein 
Folding Problem 

The more realistic mechanism for folding and the one 
alluded to by Levinthal, is the one based on the forces 
acting on each group at any given configuration of the 
protein. In this view there is no “correct” or “incorrect” 
bond, or a configuration. There is also no need to involve 
a folding “code”, or a “target” to be reached. At each 
stage of the process of folding there are many possible 
transitions, some are more probable and some less prob- 
able, or even improbable. This view leads to a range of 
pathways, which we may refer to as the preferential 
folding pathways, along which the protein folds with 
high probability, and with negligible probability along all 
other pathways. In other words, this view effectively 
reduces the immense number of pathways to a narrow 
“corridor” of protein folding pathways, within which 
there is some degree of randomness. However, random- 
ness of this kind does not allow the protein to wander at 
any direction as the “drunken golfer,” seeking a single 
hole in a flat featureless landscape. Instead, the strong 
hydrophilic (HØI) forces, force and guide the protein to 
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fold along a narrow range of pathways.  
A suitable theoretical framework which is sufficiently 

general as well as realistic is to view the process of pro- 
tein folding as a Markov chain [7]. In this view, the pro-
tein visits a finite number of states in the process of 
folding. The folded state (or states) may be viewed as an 
approximate absorbing state (or group of states). Thus, 
for each state i, there are transition probabilities ijP . 
These are the conditional probabilities of moving from 
state i to state j. The increments in time are assumed to 
be discrete. Thus, we have for any state i  

0ijP  ,            (1) 
1

1
n

j
j

iP




i.e. the transition probabilities are non-negative, and the 
probability to move from i to any other state j (including 
the state j = i) is one. The magnitude of the transition 
probabilities are determined by the forces acting on the 
protein, which in turn, are determined by the gradients in 
the Gibbs energy landscape. A reader of an earlier ver- 
sion of this manuscript commented that the “force” is 
derived from the energy landscape, and that the entropy 
contribution was neglected. This is not so. The “force” is 
derived from the potential of mean force, and includes 
contribution from both energy and entropy.  

For simplicity we can choose the state n to be an ap- 
proximate absorbing state, i.e. once the system reaches 
that state, it stays there for a sufficiently long time, so 
that it can fulfill its biological function and therefore it 
can be considered to be there “forever”. The folded state 
denoted here by the state n, is characterized by the transi- 
tion probabilities  

,

,

0 for any 

1
n i

n n

P i

P

 


n

p

n 

          (2) 

within this Markov-chain view of the protein folding 
process, we can characterize two extreme cases as fol- 
lows:  

The random search of the configurational space is 
equivalent to the assumption that at each state i there is 
equal probability to move to each of the states j which 
are accessible from state i, i.e.  

ijP   for each i and for each j accessible from i (3) 

The other extreme case is that from each i the protein 
can move to a single state with high probability. Let us 
denote this state by i + 1, i.e. at each step we move from i 
to i + 1 until we reach , hence  i n

, 1

,

,

1 for each 1, , 1

0 for each 

1

i i

n i

n n

P i

P i n

P

  
 



       (4) 

The more realistic view is that at each state i, there is a 

group of states which are accessible from i, but have a 
distribution of probabilities. For instance starting from 

1i  , the system can reach states . The 
transition probabilities to these i  states, is such that 
some states are reached with relatively higher probability. 
These three probabilities are depicted in Figure 1.  

1, 2, , ii n 
n

It is intuitively clear that if such preferential transition 
probabilities exist for each state i, then there will also be 
preferential pathways to go from state 1 to state n. These 
will not be the random searches in the configurational 
space, nor a single path implied by the second extreme 
model. Instead, the transitions will have some preference 
to go along a specific path, with some random deviations 
from the preferable paths. In such a Markov chain one 
can also compute the average number of steps to reach 
the absorbing state [9].  

5. A Simple Model for “Folding” by Means 
of the Markovian Process 

In this section we describe a simple process. Lest it will 
be misunderstood we emphasize that this is not a model 
for protein folding. It is raised here to demonstrate that a 
cause-biased process can drastically reduce the number 
of steps required to reach some stable state. This is to 
contrast the target-biased process. 

We start with a small section of the protein and focus 
on one angle of internal rotation, Figure 2. We “freeze- 
in” the configurations of all other angles of internal rota- 
tion except the one on which we focus. 

In the case of ethane, or hexamethyl ethane the inter- 
nal potential energy of rotation would look like the one 
in Figure 3, i.e. a function with three minima and maxi- 
ma. On the other hand, for a more complicated molecule, 
say six different groups substituting for the hydrogen 
atoms of ethane we might have a potential function of the 
form shown in Figure 4. 

The details of the potential shape are not important 
here. What is important is that there might be some re- 
gions that are not accessible and within that region there 
might be minima that are even lower than the minima in 
the accessible region. For instance, suppose that every 
time we synthesize the molecule depicted on the lhs of 
Figure 4, the accessible region is always between angles 
say 120˚ - 350˚.  

We now focus on the accessible region of angles. This 
region may be divided into two sub-regions. The first is 
referred to as transient (TR) states, includes all the points 
for which U(Ø) has a steep slope, say 120˚ - 160˚ and 
250˚ - 350˚. The second, referred to as absorbing state, 
denoted AB, includes the points in the region 160˚ - 250˚, 
where the potential function is almost flat. 

Clearly, whenever the configuration of the molecule is 
n the region TR there will be a strong force (or average  i   
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(a)                                (b)                                      (c) 

Figure 1. Three possible schemes of transition probabilities. (a) Equal probabilities to move from state i to a group of nearby 
states; (b) Probability one to move from i to i + 1; and (c) High probability to move from i to i + 1, and relatively low prob-
ability to move to other states (the width of the arrows indicating the magnitude of the probabilities). 

 

Figure 2. A small section of the protein. We focus on the internal rotation about the C-C bond, and “freeze-in” all other in- 
ternal rotations. 

force, in case that U(Ø) is the Gibbs energy landscape) 
towards region AB. On the other hand, in the region AB 
where U(Ø) is almost flat there will be no strong forces 
acting on the groups of the molecule that will cause the 
molecules to exit this region. For simplicity, suppose we 
always start with a transient configuration on the left 
hand side of AB. We now divide the region into a finite 
number of intervals, and without loss of generality we 
can enumerate all the configurations in TR by the num- 
bers  and refer to these configurations as 

transient states. The configurations in the region AB will 
be enumerated 

1, 2,3, , 1n 

, 1, ,n n n m  , and will be referred to 
as absorbing states. It is clear that starting with any point 
in the region TR, there will be preferential force to move 
that point, with high probability towards the region AB. 
On the other hand, once we arrive at the region AB there 
will be very small probability to get out from this region. 

Again, without loss of generality we can collect all 
configurations in the region AB into one state denoted by 
he index n. Translating the forces into transition prob-  t  
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Figure 3. A simple rotational potential with three minima and three maxima. 

 

Figure 4. A more complex rotational potential. The region 350˚ and 120˚ is considered to be inaccessible. The accessible re-
gion (120˚ to 350˚) is divided into regions which are transients (TR) and a nearby absorbing (AB) state. 

abilities, we write 

 

, 1

, 1

, , 1

,

1 for 1, 2

for 3, 4, , 1

1 2 for 3, 4, , 1

1

i i

i i

i i i i

n n

P i

P p i n

P P p i n

P







 
 

   








  (5) 

The choice of the transition probabilities for 1,2i   
was made for convenience of notation. This has no effect 
on the results when we consider very large number of 
configurations, say  or more. 1000n 

Clearly, if we chose  then starting from state 
 we shall arrive at state n by exactly 

1p 
1i  1n   steps. 

On the other hand, if we chose 1 3p  , the point will 
move either towards the left, towards the right or stay put 
with equal probability. As expected the number of steps 
required to arrive at AB will be much larger. 

A typical transition probability matrix for 10n   and 
 is  0.8p 

0. 1 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1 0. 0. 0. 0. 0. 0. 0.

0. 0.1 0.1 0.8 0. 0. 0. 0. 0. 0.

0. 0. 0.1 0.1 0.8 0. 0. 0. 0. 0.

0. 0. 0. 0.1 0.1 0.8 0. 0. 0. 0.

0. 0. 0. 0. 0.1 0.1 0.8 0. 0. 0.

0. 0. 0. 0. 0. 0.1 0.1 0.8 0. 0.

0. 0. 0. 0. 0. 0. 0.1 0.1 0.8 0.

0. 0. 0. 0. 0. 0. 0. 0.1 0.1 0.

P

8

0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6) 

with the transition probability matrix (6) we can calculate 
the average number of steps required to reach the state n, 
starting with any initial state . To do this 
we write the matrix  in the form.  

1, 2, , 1i n  
P
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tra
e av umber each 

the region AB for 
1


 
 




B A
P

O
              (7) 

where  is a  matrix,  is a row 
vector of zeros 

B   1n n   1 O
A  in a column vector, including all the 

transitions  for , and the element  
. 

,i nP 1, , 1i   n 


1

,

According to a theorem in Markov chain theory [19], 
the average number of steps required to reach the ab- 
sorbing state n, from any initial state i, is obtained from 
the elements of the inverse matrix. 

1n nP 

 1 N I B               (8) 

where  is a  unit matrix. The required 
average quantities, denoted by 

I   1n n  
 n i  are obtained from 

the sum of the row elements of the matrix , i.e. N

  ijj i
n i N


               (9) 

The calculation of the vector  n i  was done for the 

nsition probabilities as given in (5). 
Figure 5 shows th erage n of steps to r

20n  , and 100n  , and  
1

,0.4,0.6,0.8,1.0
3

p  . Note that the spacing between the  

lines increases dramatically when p approaches 1/3. 
Figure 6 shows the number of steps to reach AB from 

the initial state 1i  , as a function of the number of 
states 100, 0,600,800,1200,2000n 200,40 , and for the 
case 1 3p  . 

Perhaps, the most dramatic results of this model is 
shown in Figure 7 where we plot the average number of 
steps to reach AB, starting fro 1 , 000m for  i 2n  , 
and varying p between 1/3 to 1. It is shown t  hat for

1 3p   the number of steps is of the order of 106, and 
this number drops dramatically b  etween 1 3p   and  

0.4p  , then it stays relatively low around 2000, as ex- 
pected for the extreme case of  and 12000n  p  . 

This is an important result. If we have a relatively  

 
(a) 

 
(b) 

Figure 5. Average number of steps required to reach the abso g state from any state i. (a) n = 20 and various p. (b) n = 100 
and various p.   

rbin
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Figure 6. The average number of steps required to reach
the state AB from i = 1, as a function of the number of states

ed on each group of the protein, at each 
stage of the folding process, then the average number of 

In real proteins we have many more degrees of free- 
rces are exerted on many groups of the 

pr

 difficulty. 
O

ssion and Conclusion 

 simple stochastic 
meter, the angle of 

 

 
 

n (here p = 1/3).  

strong force exert

steps to reach the region AB dramatically decreases. This 
result in effect dismissed the so-called Levinthal paradox. 
It should be noted that this demonstration differs in a 
fundamental way from Zwanzig et al. approach. The 
transitions in our model are caused-biased, whereas in 
Zwanzig et al. they are target-biased. The cause, in our 
model are the forces, and the forces are obtained from the 
gradients in the Gibbs energy landscape. As such we do 
not claim anything whether these forces originate from 
the energy or the entropy. These are the total forces; both 
direct and solvent-induced forces acting on all the groups  

along the protein. 

dom, and strong fo
otein simultaneously. Also from each state i, there are 

many states which are accessible, not only two as in the 
example above, and the native state is not a single state, 
and certainly not an absolute absorbing state. 

However, the extension from the simple model treated 
above to real protein should not pose any new

ne can imagine that at each stage of the folding process, 
there are strong solvent-induced forces exerted on the 
various groups along the protein. These forces will force 
the protein to fold along a narrow range of pathways, not 
towards a pre-conceived target, and not towards the 
“correct” configuration for each bond. The overall proc- 
ess would be a speedy one, i.e. reaching the final rela- 
tively stable structure in a relatively short time. This 
procedure, in effect, answers Levinthal’s original ques- 
tions quoted in sections II, and at the same time removes 
the crux of the difficulty from the general protein folding 
problem. 

6. Discu

In the previous section we studied a
process involving a change in one para
rotation Ø. In real proteins, say M amino acids, we have 
at least 2 M internal rotational degrees of freedom. At 
each configuration of the protein there are forces exerted 
on each of the groups. These forces are derived from the 
potential of mean force, which is essentially the Gibbs 
energy landscape of the protein. It is almost universally 

 
(a)                                                   (b) 

Figure 7. The average number of steps required to reach AB from the initial state i = 1, as a function of p, for (a) n = 100 an
(b) n = 2000.   

d 
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recognized that the solvent-induced part of these forces 
re important. 

into a lower dimensional “river” (or tunnel), eventually 
a The main “unknown” in the protein fold- 

also provide explanation for the 
st

ng. The question that remains is 
ho

bs energy landscape, I suggested 
to

reaching a one-dimensional river leading to the folded 

e we start with the fully extended unfolded 
co

o such a distance that they 
ex

 rapid formation of 
lo

Levinthal’s paradox [22]. Dill and Chan 
de

ference between the two approaches is 
pr

ing process is not how and why the protein reaches its 
final 3-D structure in a short time, but what are the strong 
forces acting on the various groups of the protein, which 
force the protein to change its configuration within a 
narrow range of pathways. In my view once we have 
discovered the strong HØI forces exerted on the groups, 
we have not only dismissed the so-called Levinthal para- 
dox, but we have also answered the question of how and 
why protein folds and reaches the final 3-D structure in a 
relatively short time.  

Thus, the HØI forces explain the folding process and 
the HØI interactions 

ability of the protein. As we have discussed recently [9], 
the HØI interactions also provide answers to the ques- 
tions of self-assembly among biomolecules, as well as 
molecular recognition.  

This is as far as one can get in answering the general 
principle of protein foldi

w to implement the hydrophilic (HØI) forces in study- 
ing specific proteins. In this regard, there is no need to 
study the entire Gibbs energy landscape. We have seen in 
Figure 4 that even in the simple model there could be 
regions which are un-accessible and therefore irrelevant 
to the process. In real proteins there are vast regions in 
the Gibbs energy landscape that are not accessible (ei- 
ther because of very strong repulsive forces between 
various groups along the chain, or because these con- 
figurations are very improbable, e.g. one or more knots 
in the chain of amino acids). There is also no need to 
speculate on the general shape of the Gibbs energy 
landscape. All we need is a tiny region in the Gibbs en- 
ergy landscape which is relevant to the folding pathways 
of that specific protein. 

In 1992 [20], upon recognizing the importance of the 
solvation part in the Gib

 look at the solvation Gibbs energy landscape as a 
multi-dimensional space, each of its points representing 
one of the conformations of the protein. Gradients in this 
landscape correspond to lowering the solvation Gibbs 
energy of the protein. The protein will initially and pref- 
erentially move along one of these gradients until it 
reaches a space of lower dimensionality, where again 
there are gradients leading to another, yet a lower dimen- 
sionality space. This was described as a “tunnel within a 
tunnel,” until the protein is “drained” into the folded 
form [20]. In a two dimensional landscape we can imag- 
ine that starting from the top of the hills, the protein 
flows in the two dimensional space of x, y towards a 
“river”. Once a “river” is reached the flow continues 
along the gradient in the one dimensional path of the 
river. In a multi-dimensional case, at any stage the pro- 
tein “flows” from a higher dimensional “river” (or tunnel) 

form. This final conformation does not have to be a 
global minimum in the Gibbs energy landscape as some 
have speculated following the so-called Anfinsen Dogma 
[21-23]. 

The rationale underlying this sequential reduction of 
the dimensionality of the space in which the protein 
“moves” is the following:  

Suppos
nformation. Initially, we would expect that the motion 

of the protein will be random until two or more hydro- 
philic groups are brought t

ert strong hydrophilic force on each other. This force 
reflects the existence of a steep gradient in the original 
multi-dimensional landscape. Once the two hydrophilic 
groups are brought to a short distance such that they can 
form direct hydrogen bonds (as in an α-helix or β-sheet), 
some of the rotational angles ψ, Ø will be “locked” for a 
short time while the random motion about all other an- 
gles continues, but now in a lower dimensional space. Of 
course several direct HBs can occur simultaneously re- 
sulting in a further reduction in the dimensionality of the 
space in which the conformation of the protein moves. 
Some experimental evidence for the occurrence of water- 
bridges connecting hydrophilic groups of the backbone 
of proteins was reported [24,25]. 

As pointed out correctly by Dill and Chan [22], 
“Levinthal’s argument led to a search for folding path- 
ways.” Indeed, Levinthal’s conclusion that the process of 
folding is “speeded and guided by

cal interactions” is basically correct. Also his doubts 
regarding the question of the existence of a conformation 
of “lowest free energy” (see quotations c) and d)) are 
correct too [9].  

Unfortunately, the search for models of folding having 
a global minimum Gibbs energy conformation continues. 
In recent publications, one can find claims that the funnel 
model solves the 

scribe at least six different funnels, all of which have a 
common feature—the existence of a single global mini- 
mum in the Gibbs energy landscape. All of these models 
were inspired by the so-called Anfinsen’s Thermody- 
namic hypothesis. Unfortunately, neither Anfinsen’s hy- 
pothesis, nor Levinthal’s suggestion requires that the 
native structure be a global minimum in the Gibbs energy 
landscape [9,23]. 

A reader of an earlier version of the manuscript 
claimed that the distinction between the target-biased and 
the cause-biased motion of the protein is only semantic. I 
believe that the dif

ofound and critical to the solution of the protein fold- 
ing problem. 

The motion of the protein is not “guided” or “speeded” 
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towards a target. This is true in evolution theory and a 
fortiori true in protein folding. In the model described in 
this article, the motion is a result of the forces acting on
th

, “Some Factors in the Interpretation of
Protein Denaturation,” Advances in Protein Chemistry
Vol. 14, 1959, p
doi:10.1016/S

 
e groups of the protein. The stronger the force is, the 

speedier the motion. Once the protein reaches a stable 
state, such that it stays there long enough to function, it 
will be in a local minimum in the Gibbs energy land- 
scape. This minimum has nothing to do with the Second 
Law of thermodynamics, as so many have erroneously 
concluded [9,21]. 

REFERENCES 
[1] W. Kauzmann  

, 
p. 1-63.  

0065-3233(08)60608-7 

[2] T. E. Creighton, “The Problem of How and Why Proteins 
Adopt Folded Conformation,” Journal of Physical Chem-
istry, Vol. 89, No. 12, 1985, pp. 2452-2459.  
doi:10.1021/j100258a006 

[3] E. Shakhnovich, “Protein Folding Thermodynamics and 
Dynamics: Where Physics, Chemistry and Biology Meet,” 
Chemistry Review, Vol. 106, No. 5, 2006, pp. 1559-1588.  
doi:10.1021/cr040425u 

[4] L. Mirny and E. Shakhnovich, “Protein Folding Theory: 
From Lattice to All-Atom Models,” Annual Review of 
Biophysics and Biomolecular Structure, Vol. 30, 2001, pp. 
361-396. doi:10.1146/annurev.biophys.30.1.361 

[5] J. M. Shea and C. L Brooks, “From Folding Theories to 
Folding Proteins: A Review and Assessment of Simula-
tion Studies of Protein Folding and Unfolding,” Annual 
Review of Physical Chemistry, Vol. 52, 2001, pp. 499-535.  
doi:10.1146/annurev.physchem.52.1.499 

[6] K. A. Dill, “Polymer Principles and Protein Folding,” 
Protein Science, Vol. 8, No. 6, 1999, pp. 1166-1180.  
doi:10.1110/ps.8.6.1166 

[7] D. Kennedy and C. Norman, “What Don’t We Know?” 
Science, Vol. 309, No. 5731, 2005, p. 75.  
doi:10.1126/science.309.5731.75 

[8] A. Ben-Naim, “Molecular Theory of Water and Aqueous 
Solutions, Part I: Understanding Water,” World Scientific, 
Singapore, 2009. doi:10.1142/9789812837615 

[9] A. Ben-Naim, “Molecular Theory of Water and Aqueous 
Solutions: Part II: The Role of Water in Protein Folding 
Self Assembly and Molecular Recognition,” World Sci-
entific, Singapore, 2011. 

[10] G. D. Rose, P. J. Fleming, J. R. Banavar and A. Maritan, 
“A Backbone Based Theory of Protein Folding,” Pro-

ceedings of the National Academy of Science, Vol. 103, 
No. 45, 2006, pp. 16623-16333.  
doi:10.1073/pnas.0606843103 

[11] C. Levinthal, “Are There Pathway
Journal de Chimie Physique, Vol. 65

s for Protein Folding,” 
, No. 1, 1968, pp. 

ed in One-Dimensional Systems,” Journal of 

44-45. 

[12] A. Ben-Naim, “Some Aspects of the Protein Folding 
Examin
Chemical Physics, Vol. 135, No. 8, 2011, pp. 104-115.  
doi:10.1063/1.3626859 

[13] K. Dill, “Dominant Forces in Protein Folding,” Biochem
istry, Vol. 29, 1990, pp. 

-
7133-7155.  

doi:10.1021/bi00483a001 

[14] R. Zwanzig, A. Szabo and B. Bagchi
dox,” Proceedings Nation

, “Levinthal’s Para-
al Academy of Science USA, 

 Science, Vol. 8, No. 6, 1999, pp. 1166-1180.  

Vol. 89, No. 1, 1992, pp. 20-22.  

[15] R. Dawkins, “The Blind Watchmaker,” Norton, New York, 
1987. 

[16] K. A. Dill, “Polymer Principles and Protein Folding,” 
Protein
doi:10.1110/ps.8.6.1166 

[17] R. Srinivasan and G. D. Rose, “Methinks It Is Like
Folding Curve,” Biophy

 a 
sical Chemistry, Vol. 101-102, 

2002, pp. 167-171. doi:10.1016/S0301-4622(02)00147-3 

[18] P. G. Wolynes, “Energy Landscapes and Solved Protein- 
Folding Problems,” Philosophical Transactions of the 

1992. 

3, pp. 

Royal Society A, Vol. 363, No. 1827, 2005, pp. 453-464. 

[19] J. G. Kemeny and J. L. Snell, “Finite Markov Chains,” 
Van Nostrand Comp. Int., New York, 1960. 

[20] A. Ben-Naim, “Statistical Thermodynamics for Chemists 
and Biochemists,” Plenum Press, New York, 

[21] C. B. Anfinsen, “Principles that Govern the Folding of 
Protein Chains,” Science, Vol. 181, No. 4096, 197
223-230. doi:10.1126/science.181.4096.223 

[22] K. A. Dill and H. S. Chan, “From Levinthal to Pathways 
to Funnels,” Nature Structural Biology, Vol. 4, 1997, pp. 
10-19. doi:10.1038/nsb0197-10 

[23] A. Ben-Naim, “Pitfalls in Anfinsen’s Thermodynamic 
Hypothesis,” Chemical Physics Letters, Vol. 511, No. 1-3, 
2011, pp. 126-128. doi:10.1016/j.cplett.2011.05.049 

[24] M. Sundaralingam and Y. C. Sekharudu, “Water-Inserted 
Alpha-Helical Segments Implicate Reverse Turns as 
Folding Intermediates,” Science, Vol. 244, No. 4910, 
1989, pp. 1333-1337. doi:10.1126/science.2734612 

[25] M. Sundaralingam and Y. C. Sekharudu, “A Study of 
Alpha-Helix Hydration in the Polypeptides,” In: R. S. 
Sarma and M. H. Sarma, Eds., Structure and Methods, 
Vol. 2, Adenine Press, 1990, pp. 115-127. 

 

Copyright © 2012 SciRes.                                                                             OJBIPHY 

http://dx.doi.org/10.1016/S0065-3233(08)60608-7
http://dx.doi.org/10.1021/j100258a006
http://dx.doi.org/10.1021/cr040425u
http://dx.doi.org/10.1146/annurev.physchem.52.1.499
http://dx.doi.org/10.1146/annurev.physchem.52.1.499
http://dx.doi.org/10.1146/annurev.physchem.52.1.499
http://dx.doi.org/10.1110/ps.8.6.1166
http://dx.doi.org/10.1110/ps.8.6.1166
http://dx.doi.org/10.1126/science.309.5731.75
http://dx.doi.org/10.1126/science.309.5731.75
http://dx.doi.org/10.1073/pnas.0606843103
http://dx.doi.org/10.1073/pnas.0606843103
http://dx.doi.org/10.1073/pnas.0606843103
http://dx.doi.org/10.1063/1.3626859
http://dx.doi.org/10.1063/1.3626859
http://dx.doi.org/10.1063/1.3626859
http://dx.doi.org/10.1021/bi00483a001
http://dx.doi.org/10.1110/ps.8.6.1166
http://dx.doi.org/10.1016/S0301-4622(02)00147-3
http://dx.doi.org/10.1016/S0301-4622(02)00147-3
http://dx.doi.org/10.1016/S0301-4622(02)00147-3
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1038/nsb0197-10
http://dx.doi.org/10.1038/nsb0197-10
http://dx.doi.org/10.1038/nsb0197-10
http://dx.doi.org/10.1016/j.cplett.2011.05.049
http://dx.doi.org/10.1016/j.cplett.2011.05.049
http://dx.doi.org/10.1016/j.cplett.2011.05.049
http://dx.doi.org/10.1126/science.2734612
http://dx.doi.org/10.1126/science.2734612
http://dx.doi.org/10.1126/science.2734612

