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ABSTRACT 

In this paper we propose a numerical approach to solve the relativistic Dirac equation suitable for computational calcu- 
lations of one-electron systems. A variational procedure is carried out similar to the well-known Hylleraas computa- 
tional method. An application of the method to hydrogen isoelectronic atoms is presented, showing its consistency and 
high accuracy, relative to the exact analytical eigenvalues. 
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1. Introduction 

The study of hydrogen-like models plays an important 
role to test new approaches, and also in the description of 
the electronic structure of atomic and molecular systems. 
In this context, relativistic effects are of the most impor- 
tance in a complete description of the physical system, 
mainly as the atomic mass of elements increases. Indeed, 
these effects play a crucial role in the description of the 
electronic structure of heavy elements. 

Nevertheless, numerical methods used to take into ac- 
count relativistic effects face several setbacks when the 
Dirac equation is used due to the existence of a negative 
continuum energy spectrum associated to the Dirac Hamil- 
tonian operator, e.g., the appearance of instabilities in 
numerical calculations. Such methodologies are based on 
straight minimization of the expected values of the Dirac 
Hamiltonian with respect to a subset of the possible 
Dirac spinors [1-8]. As it is well known, it is very diffi- 
cult to describe systems of many-electron atoms and mole- 
cules using the relativistic quantum mechanics approach. 
Even, in the Dirac’s relativistic framework, where a one- 
electron spinorial solution is a two-vector whose com- 
ponents are scalar wave functions, the description is in- 
complete. Hence, a full relativistic description of the atomic 
and molecular electronic structure demands the application 
of Quantum Electrodynamics methods and consequently, 
the difficulty of implementing computational treatment 
for many-electron system increases. A survey of the cur- 
rently available analytical solutions for relativistic one 
electron atoms may be found in Maple or Mathematica 

codes in [9,10] which may be valuable in comparing re- 
sults of different theories. 

In this paper, we propose an alternative approach that 
allows a simple numerical calculation to attain higher 
accuracy and allows comparison to other results. We im- 
prove the numerical methods to solve the Dirac equation, 
with special attention to the work of Drake and Goldman 
[11]. In this way we re-express the problem as one of find- 
ing the solution of the variation of a one-dimensional 
Lagrangean function. This Lagrangean is constructed as 
a positive definite function for particle energy eigenval- 
ues, the antiparticle ones being get simply by sign rever- 
sion. This approach simplifies the procedure of finding 
the eigenvalues associated with a two-spinor subspace 
because it avoids automatically the variational collapse 
problem that always appears when considering the whole 
eigenvalue spectrum. The numerical procedure is done 
by calculating the algebraic variations of trial functions. 
This trial function we calculated in Section 3 for one- 
electron bound systems, i.e., is similar to the Hylleraas 
computation method. Furthermore, the reduction to a 
two-dimensional Dirac-like equation is done by using 
transformation properties between noninertial frames, 
which will be useful in condensed matter such nanostru- 
cture, graphene and so on investigation. But for the ap- 
plications in many-electrons as atomic and molecular 
systems the analytical equation given in [12] is not ap- 
plicable. This paper goal is to obtain a numerical solution 
of the approach given in [12] to be useful in many-electrons 
applications. We should point out, as far we know 
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from the literature, our method to obtain the energy val- 
ues of the Dirac-Coulomb problem derives directly from 
the Dirac equation and not from the usual minimization 
procedures of the Dirac Hamiltonian. In this context the 
results presented in the paper are new. Although the 
theoretical aspects have been discussed [12] in order to 
make the paper more self-contained, we devote Section 2 
to a short review of the mathematical tools of that refer- 
ence. In Section 3 we develop the numerical methods and 
apply them to hydrogen isoelectronic atoms showing its 
consistency and high accuracy, relative to the exact ana- 
lytical eigenvalues. The conclusions are summarized in 
Section 4. 

2. An Irreducible 2D Form for the Dirac 
Equation 

The Dirac wave equation [13] is naturally associated 
with complex manifolds of the form , with 

. The usual 4D representation demands that 

n nC C
1n  2n   

because the electron spin is introduced as an implicit or 
algebraic degree of freedom, which implies the need of 
four  linearly independent matrices to construct 
the standard 4-spinor Dirac equation. However, we will 
show here that an irreducible 2D representation is also 
possible in  for a hydrogen-like problem. In fu- 
ture we expect generalize the procedure for many elec- 
tron problems, by considering other  sets. 

4 4

C C

nCnC 
Since objects of C , that is the SU2 group are 

complex quadratic matrices, [14] the corresponding 
wave function must be a two-spinor of the form 

C
2 2

  1 2   , 
so that we consider the stationary Hamiltonian problem 

   1 2, , ,E1 2H    

,x y z

           (2.1) 

with  

y xH i i   m                 (2.2) 

with i s 

 .z x yy x   

 being the usual Pauli matrices. In order to 
investigate what angular momentum corresponds to a 
constant of motion in this model we consider the z com-
ponent of the angular moment vector 

J i            (2.3) 

Equation (2.3) can easily be verified that do not com- 
mute with the Hamiltonian H 

 , .z x x y y    H J           (2.4) 

However, we should observe that 

    ,z x x y y   , 2H J             (2.5) 

so that the effective operator,  

1
,

2z zM J              (2.6) 

commutes with H and therefore is a constant of motion. 
In this context, M and H may be simultaneously diago- 
nalized, that is 

   1 2 1 2, , ,M j   

j

         (2.7) 

where  is an eigenvalue of M. 
In order to check if our irreducible Dirac equation 

generates the correct one particle solution, we consider a 
Coulomb potential  r Z r  , where   Z  is the 
nuclear charge and 1 137   is the fine structure con-
stant and determines the energy levels for hydrogenic 
atoms. 

Equation (2.1) is explicitly written as a two component 
Dirac-like linear systems of equations 

1 1 2 0x yi q      

2 2 1 0x yi q

           (2.8a) 

and 
       ,           (2.8b) 

where we have introduced  q m E Z r   
 ,r



In ordinary polar coordinates
. 

 , the differential 
operators in Equations (2.7) and (2.8) become  

 1 ,i
x y ri e ir      

 .zJ i        (2.9) 

By substituting Equation (2.9) into Equation (2.7) and 
Equations (2.8), it is straightforward to verify that the 
general solutions are 

       
01 1

2 2
1 1 1 2, ,

n
i j r sr e R r R r r e a r

      



 

 

(2.10a) 

     
01 1

2 2
2 2 2 2 1, ,

n
i j r sr e R r R r r e a r

   
    (2.10b) 


 

The exact solution has recursion relations given by 

   
    

1 2
2 2 2

1 2

2 1

1 2 1

n j s j Z
a a

s s j Z


       
       (2.11a) 

  

    

     

 
 

2 1
2 1 2

1 2

j s Z
a a

s j Z

  


   

   
   

,      (2.11b) 

2 2 2s j Z where  , 0 , 01a  0 n n j     
with 1 1,2,j n   

 
 The remaining parameters are 

given by 
1 22 2m E  m E 1  and 2 . Finally, 

Equations (2.11) form a polynomial solution of finite de- 
gree for Equations (2.7) and (2.8), if and only if, the cor- 
responding energy eigenvalues are given exactly by 

 

1 2

2 2

, 2
2 2 2

2 2 2 2

2 2

1

3
      1 1

42

n j

Z
E m

n j j Z

Z Z n
m

jn n





 


 
 

  
   
   (2.13) 

          
    
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The first two radial functions  and  
for the hydrogen ground state are 

 1 , ( )n jR r  2 , ( )n jR r

 
1
2 1

1 1,1
rR r e  ,             (2.14a) 

   ,1 1 1,12

Z
R R



R

n j

2

2 1 .            (2.14b) 

We would like to point out that the proportionality 
between  2 ,n j  (the so called small component) and 

 1 ,n j  (the so called large component) observed in 
Equation (2.14) occurs only when ; otherwise these 
functions are linearly independent. 

R

3. Numerical Hylleraas-Like Variational 
Problem 

We have seen in [12] that the method is analytically suc- 
cessful for one-electron atoms. We now formulate a nu- 
merical version, which is based in a Hylleraas-like varia- 
tional approach given in [15], and aims to be extended to 
two or more electron systems in a future work. This time, 
instead of solving analytically the system composed of 
Equations (2.8), we isolate    

1 1x yi

q

  
2  

 



 ,          (3.1) 

and substitute into Equation (2.8b), obtaining 

  1 1

1 0
y

q  x y xi i

q

      
      (3.2) 

We now express Equations (2.8) by means of an ex-
tremum problem in which the space integral of a general 
Lagrangean density    , ,x y

 ,

 , , ,L x y x y



 is sta- 
tionary against small algebraic variations in the form of 

x y
1 ,

 about the form of the exact eigenfunctions 
x y  and  

       
0

2

n
r se a r   




d d 0L x y

1 1
2 2

1 1 1, ,
i j

r e R r R r r
 

   (3.3) 

given by 

 ,               (3.4) 

which leads to the corresponding differential equation 
obeyed by the Lagrangean: 

   
0,

L



 




x y

x y

L L


 
  

    
   (3.5) 

where   is the complex conjugate of   that satisfies  
the asymptotic condition lim 0

r
 . 

By comparing Equation (3.3) with Equation (3.5), it is 
clear that the only possible Lagrangean should be 

 

For 1  , we recover Equation (2.10a) or, making 
use of Equation (2.9) one obtains Equations (2.8). Now 
we construct a variation function by a product of a power 
series and undetermined coefficients times the exact so- 
lution in Equation (2.10b) 

 

 
,

y
L q 




 

x y xi i

q

 



      
      (3.6) 

       
1
2

1 1 1
0

, ,
N

i j
r e R r R r R r c r





        (3.7) 


 

c

where N is an integer and to be specified later. 
The variation process implied in Equation (3.4) is then 

performed directly, by requiring the vanishing of the par- 
tial derivatives of the integral of L with respect to the 
undetermined power series coefficients  , whose val- 
ues produce the algebraic variation of the form of  ,x y

 1 ,
 

about the form of the exact eigenfunction x y , i.e.,  

0 0 0,1,2,

d d 0    d d 0.L x y L x y
c 


 




  

  


  (3.8) 

More explicitly, after substituting Equation (3.7) into 
Equation (3.6), the modified Lagrangean becomes 

21
21 2

1 1

d1
.

d

jR
L R q R

q r r 


      
 

 ,

     (3.9) 

xBecause the function 1 y

E E m  

is not in general an ei-
genfunction of the Hamiltonian operator, Equation (3.7) 
does not lead naturally to a finite system of equations, as 
can be seen in Equation (2.8). Then it is necessary to 
truncate the power series of the modified function at 
same order of precision given by the integer N. In fact, 
Equation (3.7) leads us to an infinite system of linear 
equations such that the determinant must vanish in order 
to have a non trivial solution, so it has to be truncated, as 
usual in Hylleraas-like calculations, at a given order of 
precision [15]. The whole computational process is so 
simple that we could express and run the corresponding 
numerical algorithm using only what is available in Ma- 
ple algebraic software. 

The numerical results of energies , ,n j n j  in 
atomic units are calculated for the ground state and sev- 
eral excited states of hydrogen atom and are given in 
Table 1, in which dED stands for the numerical deviation 
with respect to the exact analytical values given in Equa- 
tion (2.13). To obtain these results we have used N = 5 in 
Equation (3.7) and 4 iterations. Table 2 shows the set of 
 
Table 1. Relativistic energy of the ground and excited states 
for several n and j quantum numbers of atomic hydrogen. 

(n,j) Energy (a.u.) dED 

1,1 –0.5000066564993 10–28 

2,1 –0.1250020801588 10–30 

2,2 –0.1250004160228 10–28 

3,1 –0.0555562951656 10–29 

3,2 –0.0555558020877 10–28 

3,3 –0.0555556377326 10–31 
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Table 2. Set of fine structures with quantum number n = 10 
for atomic hydrogen. 

j Energy (a.u.) dED  

1 –0.0050000246288 10–33 

2 –0.0050000113158 10–33 

3 –0.0050000068782 10–34 

4 –0.0050000046594 10–34 

5 –0.0050000033281 10–34 

6 –0.0050000024406 10–35 

7 –0.0050000018067 10–35 

8 –0.0050000013312 10–36 

9 –0.0050000009614 10–36 

10 –0.0050000006656 10–37 

 
fine structure levels for the quantum numbers1 1  
of the hydrogen atom, where we have used N = 7 and the 
order of precision dED was obtained after 4 iterations. 

0j n  

The energy levels for several hydrogen isoelectronic 
atoms calculated by the present theory are shown in Ta- 
ble 3. In this table ni is the number of iterations for a given 
order of precision, N is the truncation integer of the power 
series in Equation (3.7) and dED gives the comparative 
accuracy between the exact analytical Dirac solution and 
our numerical results. Using N = 9 to calculate the energy 
of Ba+55 we have obtained a precision of 10–14 against 
10–31 for N = 11. In the case of U+91 we have obtained the 
precision of 10–9, 10–23 and 10–31 for N = 9, N = 11 and N 
= 15, respectively. In order to improve precision, we only 
have to increase the value of N in the series in Equation 
(3.7). We can also observe in Table 3 that when Z in- 
creases, the interaction is slower and it is necessary to 
increase N as well. In Table 4 we compare the results 
obtained by our approach with the results found in the 
literature. The order of precision of our results (dED), in 
Table 4, is 10–30. The numerical applications shown in 
Tables 1-4 indicates that our method has a high numeri- 
cal accuracy with respect to the analytical results ob- 
tained by Dirac. 

4. Conclusions 

In this paper, we have shown that there is an irreducible 
two dimensional representation for the Dirac equation 
whose analytical solution generates the same set of en- 
ergy eigenvalues as the usual four dimensional represen- 
tation and further that it makes possible to construct a 
numerical method which is a mirror of the Dirac differ- 
ential equationn, from what comes highly accurate ap- 
proximations for the energy eigenvalues. Finally we 
would like to stress that the novelty our method to obtain 
the energy values of the Dirac-Coulomb problem derives 
directly from the Dirac equation, and not from the usual 
minimization procedures of the Dirac Hamiltonian. 

Table 3. Relativistic energy, in a.u. of the ground state of 
Hydrogen-like atoms (Z = 1 to Z = 102). 

Z E Z E 

1 –0.50000665649931104731 52 –1404.52332758631590920033

2 –2.00010651249726432469 53 –1461.36026910371109997039

3 –4.50053929132519773443 54 –1519.47236640919919966336

4 –8.00170474475864392299 55 –1578.87254406089621996325

5 –12.50416297276934000740 56 –1639.57419426053935362067

6 –18.00863487201359360817 57 –1701.59119514188266563926

7 –24.51600271389592860677 58 –1764.93793011343325673707

8 –32.02731085329146217400 59 –1829.62930832754650488853

9 –40.54376656925865471232 60 –1895.68078635391592514576

10 –50.06674103932677960785 61 –1963.10839114209412224776

11 –60.59777044920055740614 62 –2031.92874436493159182838

12 –72.13855723998879545934 63 –2102.15908824279337936512

13 –84.69097149533550947742 64 –2173.81731295719291019458

14 –98.25705247111185728642 65 –2246.92198577216155288114

15 –112.83901027061631190355 66 –2321.49238199235796003527

16 –128.43922766852991613141 67 –2397.54851789873346275806

17 –145.06026208718432688168 68 –2475.11118581564566116752

18 –162.70484772902387112458 69 –2554.20199147780759832860

19 –181.37589786948026499118 70 –2634.84339388155204965554

20 –201.07650731483134086671 71 –2717.05874782278222061326

21 –221.80995502998452013686 72 –2800.87234934390344789463

22 –243.57970694151339488708 73 –2886.30948433425120450509

23 –266.38941892168328128383 74 –2973.39648055335419167421

24 –290.24293995963074038164 75 –3062.16076337414904511768

25 –315.14431552631471949691 76 –3152.63091557440060932916

26 –341.09779114033518422028 77 –3244.83674153954749771246

27 –368.10781614222108177221 78 –3338.80933627952974158030

28 –396.17904768532557004203 79 –3434.58115970649430380371

29 –425.31635495203522547714 80 –3532.18611667034913497971

30 –455.52482360460418166246 81 –3631.65964330580390542433

31 –486.80976048056685769484 82 –3733.03880030879780304143

32 –519.17669854336737806727 83 –3836.36237383324759053689

33 –552.63140209957351497559 84 –3941.67098478223553581684

34 –622.82835290147321496537 85 –4049.00720736272845231826

35 –622.82835290147321496537 86 –4158.41569788160634186484

36 –659.58333641184725776359 87 –4269.94333488547301321179

37 –697.45157045185898633610 88 –4383.63937189014906906161

38 –736.44006453090074108181 89 –4499.55560411116770335400

39 –776.55609714490997609037 90 –4617.74655079791051944820

40 –817.80722325073995296804 91 –4738.26965499593058096372

41 –860.20128213121596227370 92 –4861.18550282018289997370

42 –903.74640567162123886752 93 –4986.55806462318954241569

43 –948.45102706982318223631 94 –5114.45496079496754079159

44 –994.32389000383139426329 95 –5244.94775534605712340551

45 –1041.37405828228495485475 96 –5378.11228091373950661353

46 –1089.61092600520890335188 97 –5514.02899940997844856861

47 –1139.04422826437192218967 98 –5652.78340321689473490570

48 –1189.68405241473291995776 99 –5794.46646265550794426452

49 –1241.54084995079928423130 100 –5939.17512643585965958947

50 –1294.62544902425141021594 101 –6087.01288297896294345992

51 –1348.94906764193599311547 102 –6238.09039193074855081178
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Table 4. Relativistic energy of the ground state of Hydrogen- 
like atoms (Z = 2, 10, 24, 26, 50, 90 and 110) results by this 
work and by others authors. 

Energy (a.u.) 
Ion 

This work Others authors 
He+ –2.000106512497 –2.000106514 Ref. [7]
Ne+9 –50.06674103932 –50.066742026 Ref. [8]
Cr23+ –290.2429399596 –290.2428 Ref. [7]
Fe25+ –341.0977911403 –341.097839 Ref. [4]
Sn+49 –1294.625449024 –1294.62590 Ref. [8]
Th89+ –4617.746550797 –4617.75 Ref. [7]
  –4616.45451 Ref. [8]
Ds109+ –7579.653261351 –7579.69 Ref. [6]
  –7549.57702 Ref. [8]
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