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ABSTRACT 

A mathematical model of Wu et al. [J. Membr. Sci 254 (2005) 119-127] of a cationic glucose-sensitive membrane is 
discussed. The model involves the system of non-linear steady-state reaction-diffusion equations. Analytical expres-
sions pertaining to concentration of oxygen, glucose, and gluconic acid for all values of parameters are presented. We 
have employed Homotopy analysis method to evaluate the approximate analytical solutions of the non-linear boundary 
value problem. A comparison of the analytical approximation and numerical simulation is also presented. A good 
agreement between theoretical predictions and numerical results is observed. 
 
Keywords: Homotopy Analysis Method; Cationic Glucose-Sensitive Membrane; Non-Linear Reaction/Diffusion  
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1. Introduction 

Diabetes is a chronic disease with major vascular and de- 
generative complications. The common treatment for dia- 
betic patients is periodic insulin injection. However, poor 
control of blood glucose level and poor patient com- 
pliance are associated with this method. This approach is 
a poor approximation of normal physiological insulin se- 
cretion. The better ways of insulin administration are 
being sought. Therefore, there is a need for self-regulated 
delivery systems [1,2] having the capability of adapting 
the rate of insulin release in response to changes in glucose 
concentration in order to keep the blood glucose levels 
within the normal range. 

Various sensing mechanisms, such as competitive 
binding, substrate-enzyme reaction, pH-dependent poly- 
mer erosion or drug solubility, and various types of de- 
vices, have been applied to design glucose-sensitive in- 
sulin delivery systems [3-6]. Horbett and co-workers 
[7-10] were the first to investigate systems consisting of 
immobilized glucose oxidase in a pH responsive poly- 
meric hydrogel, enclosing a saturated insulin solution. In 
insulin delivery system, some of which consist of immo- 
bilized glucose oxidase and catalase in pH responsive 
polymeric hydrogels. According to the nature of charge 
present, the pH sensitive hydrogels may be classified as 
cationic or anionic. Cationic glucose sensitive hydrogels 
were experimentally studied extensively [10-13]. 

In spite of extensive experimental investigations, only 

a few studies concerned modelling or theoretical design 
of such systems [14-17]. Albin et al. [9] developed a 
mathematical model to describe the steady state behaviour 
of a cationic glucose-sensitive membrane. Gough and co- 
workers [15-17] modelled the steady state behaviour and 
transient response of a cylindrical glucose sensor. Wu et 
al. [18] derived a mathematical model with consideration 
of oxygen limitation to describe the glucose sensitivity of 
a cationic membrane at the steady state. 

To our knowledge, no general analytical expressions 
for the concentration of oxygen, glucose and gluconic 
acid inside the cationic glucose-sensitive membrane have 
been reported for all values of the parameters [18]. The 
purpose of this paper is to derive an analytical expression 
of the steady-state concentration of reactant by solving 
the non-linear reaction diffusion equation using Homo- 
topy analysis method (HAM). 

2. Mathematical Formulation of the Problem 

The reaction scheme in a glucose-sensitive membrane 
can be written as follows: 

Glucoseoxidase
2 2Glucose O Gluconic acid H O   2  (1) 

The catalase catalyzes the conversion of hydrogen per- 
oxide to oxygen and water: 

catalase
2 2 2 2 2

1
H O H O O

2
          (2) 

If an excess of catalase is immobilized with glucose 
oxidase, all hydrogen peroxide is reduced. Thus, the *Corresponding author. 
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overall reaction becomes: 

2Glucose O 2 Gluconic acid        (3) 

Glucose and oxygen diffuse from the medi
m

um into the 
embrane and glucose is converted to gluconic acid, 

causing a pH drop and a consequent change in the per- 
meability of the membrane to solutes. Based on the reac- 
tion, only one-half of an oxygen molecule is consumed 
per molecule of glucose when an excess of catalase is 
present. The corresponding governing non-linear differ- 
ential equation in planar co-ordinates inside the cationic 
glucose sensitive membrane may be written as [18]: 

 
2

max g OX1 v C CC OX
OX 2

OX g g g OX

0
2

D
x C k C C k

 
  

    (4) 

 
2

g max g OX
g 2

OX g g g OX

0
C v C C

D
x C k C C k




  
        (5) 

 
2

max g OXa
a 2

OX g g g OX

0
v C CC

D
x C k C C k




  
         (6) 

where ,  and  denote the concentration of OXC
ygen

gC
glu

aC
ndthe ox , cose a  gluconic acid respectively. 

g ox a,    and  D D D  are the corresponding diffusion coef- 
ficients. x  

 
is the spatial coordinate and maxv  is the 

maximum reaction rate. g oxand k k  are haelis- 
Menten constant for the glu  glucose oxidase 
respectively. Equations (4)-(6) are solved for the follow-
ing boundary conditions by assuming that the membrane 
is immersed in a well stirred external medium with a 
constant concentration of each species due to continous 
flow of a fresh medium. 

* ;C C C 

Mic
cose and

*
OX OX g g a; 0 at 0,C C x x   1    (7) 

where l is the thickness of the membrane and OXC  and 

gC  are the concentrations of oxygen and gluco n the 
rnal solution, respectively. We can assume that the 

diffusion coefficient of glucose and gluconic acid are 
equal ( g aD D D  ). We make the non-linear different- 
tial Equ ) dimensionless form by defining the 
following dimensionless 

se i
exte

ations (4)-(6

g gOX a
* * *

OXOX g a

* * 2 2
g g max max

1 2*
OX OX OX OXOX

; ; ; ;   

; ; ;

C kC Cx
u v w

l kC C C

C C v l v l

k DkC



   

    

   

 

;

D k



   (8) 

Equations (4)-(6) are reduced to the following dimen- 
sionless forms: 

2u u

2
1

2 0

1

v u

u u

v


  

 


 

  
  

 

        (10) 

2
1

2 0

1

w u

u u

v


  

 


 

 
  

 



where u, v and w represent the dimensionles
tion of oxygen, glucose and gluconic a

         (11) 

s concentra- 
cid. ,  and    

are dimensionless constant. 1 2 and  
glucose. No

 
modulus for the oxygen and w 

are the Thiele 
the boundary 

conditions reduces to 

     1; 1; 0 at 0, 1u v w          (12) 

The dimensionless concentration of oxygen u , glu- 
cose v  and gluconic 

  

acid are all related processes. 
On simplifying Equations (9) and (10) we get, 

 w  

   2

2
2 1

2
0

u v  
 

 
    

       (13) 

Integrating Equation (13), using the bounda

 

ry condi- 
tions (Equation (12)) we get, 

   1

2

On simplifying Equations (10)

2 1
1

u
v

 


            (14) 

 and (11) we get, 

    2

2 0
v w 


 




          (15) 

Integrating Equation (15) and using the boundary con- 
ditions (Equation (12)) we get, 

    1v w               (16) 

So we wish to obtain an analytical expression for the 
concentration profile  u   of oxygen. From this con- 
centration profile one obtain th
glucose 

 can e concentration of 
 v   and acidgluconic  w  . 

3. Approximate Analytical Solutions 

3.1. Homotopy Analysis Method (HAM) 

The Homotopy analysis method (HAM) [19-22] is a ge- 
f various 
ntly, this 
e conver- 

ence and engineering. We have solved the non-linear 

neral analytic approach to get series solutions o
types of non-linear equations. More importa
method provides us a simple way to ensure th
gence of solution series. The HAM gives us with great 
freedom to choose proper base functions to approximate 
a non-linear problem. Since Liao’s book [23] for the 
Homotopy analysis method was published in 2003, more 
and more researchers have been successfully applying 
this method to various non-linear problems [24] in sci- 

2
2 0

2
1

u u

v


  

 

 
  

  
 

         (9) 
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problem using this method. The basic concept of the 
method is described in Appendix A. Detailed derivation 
of the dimensionless concentration of oxygen, glucose 
and gluconic acid are described in Appendix B. 

3.2. Solution of Boundary Value Problem 

Solution of the system of three non-linear differential 
equations, (Equations (9)-(11)) with boundary conditions 
(Equation (12)) give a concentration profile of each spe-
cies within the membrane. 

     
     

     
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2 2
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u B
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 


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 
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 

  
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     22 sinh 2D  
(17) 
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2

2  1
1
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v
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
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
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   1w v                 

where 
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(20) 
Here h is the convergence control parameter. Equa- 

tions (17)-(19) represent the analytical expression of the 
concentration of oxygen  u  , glucose  v   and glu- 
conic acid  w   re

4. Discussion 

 p
nitial

iptic partial differential 
tained analytical results are compared 

ous values of μ  and μ . 

spectively. 

The non-linear Equations (9)-(11) are also solved by 
numerical methods using Scilab/Matlab rogram. The 
function pdex4 is used for solving the i -boundary 

or parabolic-ellvalue problems f
equations. The ob
with the numerical results for various values of α, β, γ, μ1 
and μ2. All possible numerical values of the dimension- 
less parameters used in Wu et al. [18] and in this work 
are given in Table 1. 

This numerical solution is compared with our analy- 
tical results in Figures 1-3 and Table 2. The average 
relative error between our analytical result (Equation (17)) 
and the numerical result of oxygen concentration u  is 
less than 0.8% for vari 1 2

The experimental value of the parameters α and β are 
very small. Since the numerical value of   is 20, the 
value of 1M  and 2M  becomes very small. In this case 
the Equation (17) becomes  

    cosh 2 sinhu B 2 2 2      . 

Figure 1 presents the analytical and nume ical concen- 
tration pr les of ox gen u , glucose v  and gluconic 
acid w  for the values of the 

r
ofi y

parameters taken in Wu et 
al. [18].  

Figures 2 and 3 illustrate the concentration profiles of 
oxygen u, glucose v , and gluconic acid w  for various 
values of 1 2and   . In all the cases the concentration of 
oxyge  n  u  , glucose  v   are decreases and glu- 
conic acid  w   increases with the increasing value of 
parameters 1 2and   . 

The concentration of oxygen and gluc e decreases 
 
Table 1. erical values dimensionless parameters 
used in this r  The fixed values of the dimensional pa- 
rameters use  are k  = 6.187 × 10–7 mol/cm3, 
kO

os

 Num  for 
wo k.
d in Wu et al. [18] g

X = 6.992 × 10–3 mol/cm3, *
gC  = 5.5 × 10–6 mol/cm3, *

OXC  
0.274 × 10–6 mol/cm3, vmax = 2150 × 10–9 s–1·mol/cm3, D = =

6
 

–6 2 –5 2 –2.75 × 10  cm /sec DOX = 2.29 × 10  cm /sec and l = 10  cm. 

This Work 
Parameters Wu et al. [18]

igure 1 Figure 2 FigurF e 3

gk

k
   8.84 × 10–5 8.84 × 10–5 0.1 0.1 

OX

*

gC
   

OXk
7. –4 0.7.87 × 10–4 87 × 10 5 0.5 

*

g

*

OX

C

C
   20 20 5 5 

2

max
1

OX

v l

Dk
   4.55 × 10–3 4.55 × 10–3 50 0. 01 - 10

2

max
2

OX OX

v l

D k
  1.3 × 10–3 1.3 × 10–3 0.1 0050 - 1
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Figure 1. Dimensionless concentration profiles of oxygen u 
glucose v and gluconic acid w, against the dimensionless 
distance χ for α = 8.84 × 10–5, β = 7.87 × 10–4, γ = 20.07, μ1 = 
4.55 × 10–3, μ2 = 1.3 × 10–3, and h = –0.8. Solid lines repre-
sent the analytical solution whereas the dotted lines for th
numerical solution. 
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Figure 2. Dimensionless concentration profiles of oxygen u, 
glucose v, and gluconic acid w against the dimensionless 
distance χ for α = 0.1, β = 0.5, γ = 5, μ1 = μ2 = 50 and h = 
–0.86. Solid lines represent the analytical solution whereas 
the dotted lines for the numerical solution. 
 
within the enzyme matrix from both interfaces ( 0   
and 1  ), reaching a minimum value at a distance 
( 0.5  ) within the membrane which is determined by 
the kinetics of the enzyme reaction and the diffusion 
properties of the reactants. The concentrations of glu- 

ching
ximum

conic acid w increases from both interfaces and rea  
a ma  value at the middle of the membrane. 

5. Conclusions 

A non-linear time independent equation has been solved  
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Figure 3. Dimensionless concentration profiles of oxygen u 
(A), glucose v (B), and gluconic acid w (C) against the di-
mensionless distance χ for (a) μ1 = μ2 = 0.1, h = –0.55; (b) μ1 
= μ2 = 1, h = –0.559; (c) μ1 = μ2 = 5, h = –0.62; (d) μ1 = μ  = 10, 
h = –0.675; (e) μ1 = μ2 = 20, h μ1 = μ2 = 50, h = 
–0.8; (g) μ1 = μ2 = 100, h = –0 . 

2

 = –0.74; (f) 
.799 
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Table 2. Comparison of normalized analytical steady-state c centrations of oxygen u (Equation (17)) with the numerical 
results for various values of μ1 and μ2 and some fixed values of = 8.84 × 10–5, β = 7.78 ×10–4, and γ = 20 (here h = –0.01).  

  
1 2 0.01    1 2 0.1    1 2 1    1 2 5    1 2 10    
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A
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A
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results as described in Equation (17) in the text. 

Appendix C 

Scilab/Matlab Program 

A SCILAB/MATLAB program for the numerical solu- 
tion of the system of non-linear second order differential 
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Appendix A 

Basic idea of Liao’s Homoto
Consider the following differential equation [22]: 
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where, Ν is a nonlinear operator,   denotes an inde- 
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where p  [0,1] is th embedding parameter, h ≠ 0 is a 
nonzero auxiliary parameter, H(  ) ≠ 0 is an auxiliary 
function, L is an auxiliary linear operator, 0u  (  ) is an 
initial guess of u(  ) and ):( p  is an unknown func- 
tion. It is important, that one has great freedom to choose 
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If the auxiliary linear operator, the initial guess, the 
auxiliary parameter h, and the auxiliary function are so 
properly chosen, the series (A4) converges
we have: 

 at p = 1 then 
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Define the vector 

ng parameter p, and then setting p = 0 and 
finally dividing them by m!, we will have the so-called 
mth-order deformation equation as: 
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In this way, it is easily to obtain  for mu ,1m  at 
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when M , we get an accurate approximation of the 
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method we refer the reader to Liao [25]. If Equat
admits unique solution, then this method will prod
un ess uni
solu ll give a solution among many oth-
er (possible) solutions. 

Appendix C 

,100000); 
,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

 
 (x,t)') 

Distance x') 

---------------------------------------------- 

Distance x') 

ginal equa  (A1). For the convergence of the above
ion (A1) 

uce the 
ique solution. If Equation (A1) does not poss que 

tion, the HAM wi

Scilab/Matlab Program 
A Scilab/Matlab program for the numerical solution of 
the system of non-linear second order differential Equa- 
tions (9)-(11) 

function pdex4 
m = 0; 
x = linspace(0,1); 
t = linspace(0
sol = pdepe(m
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
u3 = sol(:,:,3); 
figure 
plot(x,u1(end,:))
title('u1
xlabel('Distance x') 
ylabel('u1 (x,2)') 
%--------------------------------------------------------------- 
figure 
plot(x,u2(end,:)) 
title('u2 (x,t)') 
xlabel('
ylabel('u2 (x,2)') 
% ----------------
figure 
plot(x,u3(end,:)) 
title('u3 (x,t)') 
xlabel('
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---------------------------------------------- 
x4pde(x,t,u,DuDx) 

 

+1)); 

*u (1)/(y*(a/y*u(1)/u(2)+b/y*u(1)+1)); 
; F2]; 

------------------------------------------------------ 

------ 
]=pdex4bc(xl,ul,xr,ur,t)  

)-1; ur(3)];  

 
 

ylabel('u3 (x,2)') 
% ----------------
function [c,f,s] = pde
c = [1; 1; 1];  
f = [1; 1; 1] .* DuDx;  
a = 0.5;
b = 5; 
y = 5; 
u2 = 0.1; 
u1 = 5; 
F = -u2*u (1)/(2*(a/y*u(1)/u(2)+b/y*u(1)+1)); 
F1 = -u1*u (1)/(y*(a/y*u(1)/u(2)+b/y*u(1)

F2 = u1
S = [F; F1
% --------
function u0 = pdex4ic(x);  
u0 = [0; 1; 0];  
% --------------------------------------------------------
function [pl,ql,pr,qr
pl = [ul(1)-1; ul(2)-1; ul(3)];  
ql = [0; 0; 0];  
pr = [ur(1)-1; ur(2
qr = [0; 0; 0]; 


