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ABSTRACT 
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1. Introduction 

Amleh, Grove and Ladas [1] studied the global stability 
boundedness character and periodic nature of positive 
solutions of difference equation 
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where  and initial conditions  0,   1x  and 0x  are 
both arbitrary positive real numbers. 

Amleh, Grove and Ladas [1] obtain the following theo-
rem. 

Theorem A (Amleh, Grove and Ladas [1]) Let 
0 1   and    be a solution of Equation (1) 

1n n
x




with initial conditions  and 10 1x   0
1

1
x





. 

Then the following statements are true. 
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Now, we can see that if  and 1 0 1x x   0  , 
then . So, the theorem A does not hold 
for 

1 2 1x x  
0  . 

Kulenovic and Glass in their monograph [2] give an 
open problem as follows. 

Open Problem 6.10.7. For the following difference 
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Let 1 ny x  . Then Equation (2) can be rewritten as 
follows 
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where 1x  and 0x  are arbitrary nonzero real numbers. 
To this end, we study Equation (3) and use the results of 
Equation (3) to Equation (2). 

2. Some Lemmas 

It is easy for one to see that if 
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Lemma 2.1 (Kocic and Ladas [3]) Consider the dif-
ference equation 

 1 1, , , for 0,1,n n n n kx F x x x n    .


 (5) 

Assume that  0 1, , , kF u u u  is a  function and 'C
x  is an equilibrium of Equation (5). 

Then the linearized equation associated with Equation 
(5) about the equilibrium x  is 
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and the following statements are true. 
a) If all roots of the polynomial equation 
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lie in the open unit disk 1  , then the equilibrium x  
of Equation (5) is asymptotically stable; 

b) If at least one root of Equation (6) has absolute 
value greater than one, then equilibrium x  of Equation 
(5) is unstable. 

One can refer to Kocic and Ladas [3, Corallary 1.3.2, 
p14 ]. 

Lemma 2.2 Equation (3) has two equilibriums 1 0x   
and 2

It is easy to see that 
1x  . 

2x x  has two roots and the 
proof is complete. 

3. Main Results 

Theorem 3.1 Let 1x p  and 0x q . Then the fol-
lowing statements are true. 
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where is the solution of Equation (3) with the 
initial x p  , 0x q . 

Proof: Part a). 
Let 1 0x p   0 0x q , . Then by Equation (3) 
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Then by induction, we have 
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and           
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Hence, the proof of part (a) is complete. 
The proof of part (b) can be similarly given, so we 

omit it. This can complete the proof of theorem 3.1. 
By theorem 3.1, we get the following corollary. 
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d) If at least one p and q is less than 0, then every 
solution of Eq (3) strictly oscillates about the equi-
librium 0x  . 
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