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ABSTRACT

In this paper we study the relationship between minimum rank of graph G and the minimum rank of graph G' for
some families of special graph G, where G' isthe jth power of graph G.
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1. Introduction

A graphisapair G=(V,E), whereV is the set of ver-
tices (usually {1,---,n} or asubset thereof) and E isthe
set of edges (an edge is a two-element subset of vertices);
what we call a graph is sometimes called a simple undi-
rected graph. In this paper each graph is finite and has
nonempty vertex set. The order of a graph G, denoted
|G|, is the number of vertices of G. A path is a graph
P, =({w., -V, },E) suchthat

E={{V,V,}:i=1-,n-1}.
Acycleisagraph C, = ({v,--+,v,},E) suchthat
E={{V,Vi,1}:i =L---,n=1U{{v,,v}} . Thelength of a

path or cycle is the number of its edges. A complete
graphisagraph K, =({v,--,v,},E) suchthat

E= {{vI ,vj}:lsi <j< n} .Agraph (V,E) isbipartite
if the vertex set V can be partitioned into two nonempty
subsets U and W, such that every edge of E has one end-
point in U and one in W. A complete bipartite graph is a
bipartite graph K, =(U UW,E) such that [U|=p,
V|=q and E :{{U,W}IUEU,WEW}.

The line graph of agraph G =(V,E), denoted L(G),
is the graph having vertex set E, with two vertices in
L(G) adjacent if and only if the corresponding edges
share an endpoint in G. Since we require a graph to have
a nonempty set of vertices, the line graph L(G) is de-
fined only for agraph G that has at least one edge.

The corona of G with H, denoted GoH , is the graph
of order |G||H|+|G| obtained by taking one copy of G
and |G| copiesof H, and joining all the vertices in the
ith copy of H to the ith vertex of G. See Figures 6, 7 for
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apicture of K oK;. Note that GeH and H-G are
usually not isomorphic (in fact, if |G| =|H|, then
GoH|#|H oG|).

Definition 1.1 Thej th power of a graph G isa graph
with the same set of vertices as G and an edge between
two vertices if there is a path of length at most j between
them.

Definition 1.2 For such a matrix, the graph of A, de-
noted G(A), is the graph with vertices {1,---,n} and
edges {{i,j}:a; #0,1<i<j<n}|. Note that the di-
agonal of A isignored in determining G(A). The set
of symmetric matrices of graph G (over R) is defined to
be

S(G)={AeS,(R):G(A)=G}

The minimum rank of a graph G (over R) is defined to
be

mr (G) = min{rank (A): A S(G)}

For Ae R™ the corank of A is the nullity of A and
the maximum nullity (or maximum corank) of a graph G
(over R) is defined to be

M (G) = max{corank(A): A S(G)}

Clearly
mr (G)+M(G) =|G|.

More generally, the minimum rank of a smple graph
G is defined to be the smallest possible rank over all
symmetric real matrices whose ijth entry (for i <j) is
nonzero whenever {i, j} is an edge in G and is zero
otherwise[1,2].

The solution to the minimum rank problem is equiva
lent to the determination of the maximum multiplicity of
an eigenval ue among the same family of matrices [3].
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2. Zero Forcing Sets and the Graph
Parameter Z(G)

Here we introduce the graph parameter Z(G) as the
minimum size of a zero forcing set from [1]. The zero
forcing number is a useful tool for determining the
minimum rank of structured families of graphs and small
graphs[4].

Definition 2.1 Color-changerule:

e If Gisagraph with each vertex colored either white
or black, u is a black vertex of G, and exactly one
neighbor v of u is white, then change the color of v to
black.

e Given a coloring of G, the derived coloring is the
result of applying the color-change rule until no more
changes are possible.

e A zeroforcing set for agraph G is a subset of vertices
Z such that if initially the vertices in Z are colored
black and the remaining vertices are colored white,
the derived coloring of G isall black.

e Z(G) isthe minimum of |Z| over al zero forcing
sets Zc Z(G).

For example, an endpoint of a path is azero forcing set
for the path. In acycle, any set of two adjacent verticesis
azeroforcing set.

Corollary 2.2 [1,5] Let G=(V,E) be a graph and
let ZcV be a zero forcing set. Then M (G)<|Z|,
andthus M (G)<Z(G)

The Colin deVerdiere-type parameter £ can be use-
ful in computing minimum rank or maximum nullity
(over the real numbers). A symmetric real matrix M is
said to satisfy the Strong Arnold Hypothesis provided
there does not exist a nonzero symmetric matrix X satis-

fying:

e MX =0.
eMoX=0.
oo X =0.

where o denotes the Hadamard (entrywise) product and
| is the identity matrix. For agraph G £(G) is the maxi-
mum nullity among matrices Ae S(G) that satisfy the
Strong Arnold Hypothesis.

It followsthat &£(G)<M (G).

A contraction of G is obtained by identifying two ad-
jacent vertices of G, and suppressing any loops or multi-
ple edges that arise in this process. A minor of G arises
by performing a series of deletions of edges, deletions of
isolated vertices, and/or contractions of edges. A graph
parameter ¢ is minor monotone if for any minor G’
of G, ¢(G')<¢(G). The parameter £ was introduced
in [6], where it was shown that & is minor monotone. It
was also established that £(K, ) =n-1and &(K,,} = p+1
(under the assumptionsthat p<q, 3<q) (see[5,7]).

Corollary 2.3[2,6] Let G beagraph.

Copyright © 2012 SciRes.

ET AL

1) If K, isaminor of G, then

M(G)=&(K,)=p-1.
2)If p<q, 3<q and K, isaminor of G, then

M(G)2¢(K,q)= p+1

Other possible bounds for minimum rank derived from
certain easy to compute parameters of the graph were
considered, leading to an investigation of the connection
between minimum degree of a vertex, §(G), and mini-
mum rank [8].

Corollary 2.4 For any graph G and infinite field F,
mr’ (G)<|G|-5(G).

3. Main Results

In here we calculate the minimum rank of graph G'.
For this purpose we obtained Zero forcing set and the
graph parameter Z(G) and the parameter £(G) and
determined the upper bound and lower bound for maxi-
mum nullity M (G). Since we have

£(G)<M(G)<Z(G).

Then we can achieve minimum rank of graphs (see Ta-
ble 1).
Theorem 3.1 For all j>1 and for all graph such
that dej): M (G'), wehave nr(G'*)<mr(G’).
Proof. It is clear that

mr(G"):|GJ'|—M (6')=|g|-z(c')
and Z(G)<z(G?*)<-<Z(G),
then
I6|-z(G")<|6|-2(G' )= mr (G'*) <mr (GY).

Proposition 3.2 [1] For each of the following families
of graphs, Z(G)=M(G):

1) Any graph G such that |G|<6. (The minimum
ranks of all graphs of order at most 7 are available in the
spreadsheet [9]).

2) K,,C,P.

3) Any tree T.

4) Some families of special graphs.

By this Proposition we have following Theorem.

Theorem 3.3 For each of the following families of
graphs Z(szl= M(G'):

1) Any graph G such that |G|<6.

2) Complete graph and complete multipartite graph.

3) Petersen graph.

4) Wheel graph.

5) Clebsch Graph for j >1.

6) Complement of cycle graph

Proof. The proof istrivial.

Proposition 3.4 If P, be a path graph, (F;)"*1 is
homomorphic to the complete graph K, .

C, ,where n>5.
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Table 1. Summary of minimum rank results established in this paper.

G G| z(G') mr(G') j: G' ~ Complete Graph preamble
K, n n-1 1 1
ey n+-4n n+--+n -1 1 2 j#1
W, n n-1 1 2 j#1
Peterson Graph 10 9 1 2 j=1
C, n n-1 1 2 j=1
Clebsch Graph 16 15 2 j#1
C, n 2] n-2j [n/2] j<n/2
R n j n—j n-1 n> j
K, oK, 2n n n 3 i=2
C.°K, 2n n+2(j-2) n+2(j-2) [/2]+2 [/2]<i<[n/2]+2 & n>5
L(G') n ; n-2 i3 & n=2

Theorem 3.5 For all j <n, we have nr (F{])J;: n—j.

Proof. (Figure 1) In graph P/, we have &Pnj =
j=M(R)), because if we start coloring from the end
point vertex u, this vertex at least is adjacent with j ver-
tices. The vertex u with its j—1 adjacent vertices are
coloring. The other vertices also are coloring since they
are adjacent to coloring vertices, and the number of col-
oring vertices is j, therefore we have Z (P! ) =j.From
Corollary 2.2 wehave M (R))<Z(R))=]j.

On the other hand with n—j—1 contraction of the
vertices of G', we reach to the complete graph K,
and we know that K, , is a minor for B'. Then we
have

i=£(Ka)<é(R)<M(R)).
Consequently
z(Rl)=i=m(R)),
thus,
mr(Pnj):n—j.
(seedso[10]).

n

Proposition 3.6 (C, )H ishomomorphicto K, .
Theorem 3.7 mr(Cl)=n-2j,forall | s{g} _

Proof. (Figure2) In C! any vertex u is adjacent to 2j
vertices, then

M(C))<z(Cl)=2j.
Ontheother hand, &(C/)=2j. Then
2j=5(c))<m(c)),
and finally
mr(Cl)=n-2j.
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Figure 1. Graph P;.
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Figure2 Graph c?.
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Proposition 3.8 For all j = [g} +2, wehave

(CroK,) =Ky
Theorem 39 For all j<[n/2]+2, wehave

z|(C,oKy) |=n+2(j-2).

Proof. (Figures 3, 4, 5) In the jth power of graph
C,°K, anexternal vertex u, isadjacentto 3+4(j-2)
vertices. If we start to coloring of externa vertex, then
3+4(j-2) vertices are coloring, which 2(j-2)
colored vertices are in externa cycle and the remaining
vertices are located in the inner cycle. For more coloring
we use the nearest adjacent vertex to u, on the set of
external vertices. We call this vertex by u,. 4(j-2)+1
adjacent verticesto u, are same adjacent verticesto u,,
and only two of them is different. One of these, which is
located on the inner cycle has colored and the another
vertex that is located on the external cycle colored from
“color-change rule”. We continue the process until all
vertices are colored on theinternal cycle. Finaly

z[(C,oK,) [=n+2(j-2).

Theorem 3.10 For all [n/2]< j<[n/2]+2, and n>5
wehave mr(C, oK) =n-2(j-2).

Proof. (Figures 3, 4, 5) when we make [n/2] power
of (C,°K,), then its interna cycle reach to complete
graph. With contraction of 2j-1 vertices to 2j-3
vertices of this graph we reach to complete graph of order
n+2(j-2)+1, then K, , isaminor of (C,°K,).
On the other hand we have

n+2(j-2)
= £(Kpiay 1) < f((Cn 0 Kl)i) <M ((cn oK,) )

Figure3. c oK, -
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Figure5. (C,oK,)’.

Also according to the previous Theorem, we have
z((C,K,)' )= n+2(j-2), then

M((CroKy)')=2Z((CyoKy)' )= n+2(i-2)
and hence nr ((Cn 0 Kl)j ) =n-2(j-2).

Proposition 3.11 (K, »K,)® ishomomorphicto K,, .

Theorem 3.12 nr ((Kn ° Kl)z) =n.

Proof. (Figures 6, 7) With the contraction of n-1
external vertices of (K, oK,)’ on the vertices which is

located in interna cycle, we have the complete graph
K,.1, thentheminor of (K, oK,)*, is K,,,. Sowehave

n+l? n+l*

n:g(KM)sg((KnoKl)z)s M ((KnOKl)Z)'

On the other hand it is trivial that Z((K, °K,)’)=n.
And we have Z((KnoKl)z):n then

mr((Kn ° Kl)z) =n.
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Figure6. C oK, .
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Figure7. (KsoK,)".

Proposition 3.13 [1] If G has n>2 vertices and
contains a Hamiltonian path, then mr (L(G)) =n-2.
Theorem 3.14 For all j>3 and n>2 vertices we
have, mr(L(G'))=n-2.
Proof. By using’the induction on the |G| it can be
shown that G® contains a Hamiltonian path. So we
have, mr(L(Gj)):n—Z.
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