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ABSTRACT 

In this paper we study the relationship between minimum rank of graph G and the minimum rank of graph jG  for 

some families of special graph G, where jG  is the jth power of graph G. 
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1. Introduction 

A graph is a pair , where V is the set of ver-
tices (usually  or a subset thereof) and E is the 
set of edges (an edge is a two-element subset of vertices); 
what we call a graph is sometimes called a simple undi-
rected graph. In this paper each graph is finite and has 
nonempty vertex set. The order of a graph G, denoted 

= ,G V E
 , n


1,

G , is the number of vertices of G. A path is a graph 
 1= ,n  ,n,P v v E

 
 such that 

 1= , : = 1, , 1i iE v v i n  . 

A cycle is a graph   1= , , ,n nC v v E

  
 such that  

   1 1= 1, , 1 ,nn v v = , :i iE v v i . The length of a 

path or cycle is the number of its edges. A complete 

graph is a graph   1= , , ,n nK v v E

1 <i j n 

 such that  

. A graph  is bipartite  = , :i jE v v  ,V E 



if the vertex set V can be partitioned into two nonempty 
subsets U and W, such that every edge of E has one end-
point in U and one in W. A complete bipartite graph is a 
bipartite graph , = ,p qK U W E  such that =U p , 

=V q  and .     = , : ,E u w u U w W

The line graph of a graph  denoted = ,G V E  ,  L G



, 
is the graph having vertex set E, with two vertices in 

 adjacent if and only if the corresponding edges 
share an endpoint in G. Since we require a graph to have 
a nonempty set of vertices, the line graph  is de-
fined only for a graph G that has at least one edge. 

 L G

L G

The corona of G with H, denoted , is the graph 
of order 

G H
G H G  obtained by taking one copy of G 

and G  copies of H, and joining all the vertices in the 
ith copy of H to the ith vertex of G. See Figures 6, 7 for 

a picture of 6 1K K . Note that  and G H H G  are 
usually not isomorphic (in fact, if G H , then  
G H H G  ). 

Definition 1.1 The j th power of a graph G is a graph 
with the same set of vertices as G and an edge between 
two vertices if there is a path of length at most j between 
them. 

Definition 1.2 For such a matrix, the graph of A, de-
noted  G A , is the graph with vertices  and 
edges 

 , n 1,
  , : 0,1 <ija i j ni j    . Note that the di-

agonal of A  is ignored in determinin A . The set 
of symmetric matrices of graph G (over R) is defined to

g 
 

be 

G

      = : =nS G A S R G A G  

The minimum rank of a graph G (over R) is ned to 
be 

 defi

        = min rank :

For n n

mr G A A S G

A R   the corank of A is the nullity of A and 
the maximum nullity (or maximum corank) G 
(over R) is defined to be 

of a graph 

     = max corank :M G A A S  G

Clearly 

    = .mr G M G G  

More generally, the minimum rank of a simple graph 
G is defined to be the smallest possible rank o  all 
symmetric real matrices whose ijth entry (for i j

ver
 ) is 

nonzero whenever  ,i j  is an edge in G o 
ot

 of 
an eigenvalue among the same family of ma

 and is zer

trices [3]. 

herwise [1,2]. 
The solution to the minimum rank problem is equiva-

lent to the determination of the maximum multiplicity
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2. Zero Forcing Sets and the Graph 
Parameter   Z G

Here we introduce the graph parameter  Z G  as the 
minimum size of a zero forcing set from [1]. The zero 
forcing number is a useful tool for determining the 
minimum rank of structured families of graphs and small 
graphs [4]. 

Definition 2.1 Color-change rule: 
 If G is a graph with each vertex colored either white 

or black, u is a black vertex of G, and exactly one 
neighbor v of u is white, then change the color of v to 
black. 

 Given a coloring of G, the derived coloring is the 
result of applying the color-change rule until no more 
changes are possible. 

 A zero forcing set for a graph G is a subset of vertices 
Z such that if initially the vertices in Z are colored 
black and the remaining vertices are colored white, 
the derived coloring of G is all black. 

  Z G  is the minimum of Z  over all zero forcing 
sets  Z Z G . 

For example, an endpoint of a path is a zero forcing set 
for the path. In a cycle, any set of two adjacent vertices is 
a zero forcing set. 

Corollary 2.2 [1,5] Let  be a graph and 
let 

= ,G V E 
Z V  be a zero forcing set. Then  M G Z , 

and thus    M G Z G  . 
The Colin deVerdiere-type parameter   can be use-

ful in computing minimum rank or maximum nullity 
(over the real numbers). A symmetric real matrix M is 
said to satisfy the Strong Arnold Hypothesis provided 
there does not exist a nonzero symmetric matrix X satis-
fying: 

0.

= 0.

= 0.

MX

M X

I X

 






 

where  denotes the Hadamard (entrywise) product and 
I is the identity matrix. For a graph G, 


 G

 
 is the maxi-

mum nullity among matrices A S G  that satisfy the 
Strong Arnold Hypothesis. 

It follows that .    G M G 
A contraction of G is obtained by identifying two ad-

jacent vertices of G, and suppressing any loops or multi-
ple edges that arise in this process. A minor of G arises 
by performing a series of deletions of edges, deletions of 
isolated vertices, and/or contractions of edges. A graph 
parameter   is minor monotone if for any minor G  
of G, The parameter  G    G .   was introduced 
in [6], where it was shown that   is minor monotone. It 
was also established that   = 1nK n   and p q  , = 1K p   

tions that , 3p q q

1) If pK  is a minor of G, then 

    = 1M G K .

2) If

p p  

 and ,p qK  is a minor of G, then  p q , 3 q

   ,p qM G = 1.K p   

Other possible bounds for minimum rank derived from 
certain easy to compute parameters of the graph were 
considered, leading to an investigation of the connection 
between minimum degree of a vertex,   ,G  and mini-
mum rank [8]. 

Corollary 2.4 For any graph G and infinite field F, 
   .Fr G G G   m

3. Main Results 

 the minimum rank of graph In here we calculate jG . 
 theFor this purpose we obtained Zero forcing set and  

graph parameter  Z G  and the parameter  G  and 
determined the up und and lower bound axi-
mum nullity 

per bo  for m
 M G . Since we have 

    M G Z G  
Then we can achieve minimum rank of phs (see Ta-

rem 3.1 For all and for all graph such 
th

G . 

 gra
ble 1). 

Theo 1j   
at    =j jZ G M G , we    have  1 .j jmr G mr G   
Proof. It is clear that 

     = =j jmr G G  j jM G G Z G  

and           2 ,jZ G Z G Z G    
then 

       1 1 .j j j jZ G G Z G mr G mr G       

Proposition 3.2 [1] For each of the following families 
of

G

 graphs,    =Z G M G : 
1) Any graph G such th 6G at . (The minimum 

ra ost 7 anks of all graphs of order at m re available in the 
spreadsheet [9]). 

2) , , .n n nK C P  
3) Any tree T. 
4) Some families of special graphs. 

 Theorem. 
es of 

gr

By this Proposition we have following
Theorem 3.3 For each of the following famili
aphs    =j jZ G M G : 
1) An t y graph G such tha 6G  . 

plete ltipartite graph. 

 for . 
le gra

2) Complete graph and com mu
3) Petersen graph. 
4) Wheel graph. 
5) Clebsch Graph  > 1j
6) Complement of cyc ph nC , where . 

a path graph,

 5n 
Proof. The proof is trivial. 

(under th pe assum   ) (see [5,7]). 
 2.3 [2,6] Let G

Proposition 3.4 If nP  be    1n

nP


 is 
homomorphic to the complete graph nK . Corollary  be a graph. 
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mm y of minimum rank results established in this paper. 

G 

 
Table 1. Su ar

 j  j jjG  Z G  mr G  j: ~ Complete Graph preamble G  

nK  n 1 1 1n    

1 , , pn nK   
1 pn n   1 1pn n    1 2 1j  

nW  n 

Peterson Graph 9 

1n   1 2 1j   

10 1 2 1j   

nC  n 1n  1 2 1j   

Clebsch Graph 15 16 1 2 1j   

nC  n 2j 2n j   2n  2j n  

nP  n j n j  1n   >n j  

1nK K  2n n n 3 



= 2j  

1nC K  2n 2 2n j    2 2n j    2 2n      2 2 2n j n    & 5n   

 jL G  n -  & 3j  2  n- 2n   

 
Theorem 3.5 For all  we hav< ,j n e    = .

j

nmr P n j  
Proof. (Figure 1) In h grap j

nP , we have   =j
nZ P  

 = j
nM P , because if we star oloring from  

 u, this vertex at least is adjacent with j ver-
tices. The vertex u with its 1j   adjacent vertices are 
coloring. The other vertices a re coloring since they 
are adjacent to coloring vertices, and the number of col-
oring vertices is j, therefore we have   =j

n

j
point vertex

t c

o a

 the end

ls

Z P j . From 
Corollary 2.2 we have   j  =j

n nM P Z P
On the other hand with

j . 
 1n j   contraction of the 

vertices of jG , we reach to plete graph 1 the com jK  , 
and we kno hat 1w t jK   is a minor for j

nP . The  
have 

n we

     1= .j j
j nj K P M P     

 n

Consequently 

thus, 

(see also [10]). 

6 

3
9PFigure 1. Graph . 

    = = ,j j
n nZ P j M P  

 

  = .j
nmr P n j  

  2

n

nC
 
    is homomorphic to nK .Proposition 3.  

Theorem 3.7   = 2j
nmr C n j , for all 

2

n
j

    
. 

Proof. (Figure 2) In j
nC  any vertex u is adjacent to 2j 

vertices, then 

    = 2 .j j
n nM C Z C  j

On the other hand, . Then 

and finally 

.

  = 2j
nC j

   2 = ,j j
n nj C M C   

  = 2j
nmr C n j  Figure 2. Graph . 3

8C
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= 2
2

n
j

    
Proposition 3.8 For all ,  we have 

 

Theorem 3.9 For all 

 1 2=
j

n nC K K .

 2 2,j n   we have 

 

Proof. (Figures 3, 4, 5) In the jth power of graph 
 an external vertex is adjacent to 

   1 = 2 2
j

nZ C K n j     .

1nC K 1u   3 4 2j   
x, then vertices. 

3 4 j
If we start to co ng of external verte

 vertices are coloring, which 
lori

 2   2 2j   
e remaining 
ore coloring 

on the set of 

colored 
vertices a
we use the 
external vertic

vertice
r

s are in external cycle and th
e located in the inner cycle. For m

nearest adjace x to 
es. We call thi  vertex

nt verte
s

1u  
 by 2u .   4 2j 1   

ces to 1u , 
se, which is 

adjace
and onl

nt vertices 
y two of

to e adja
 th n

located on the inne r 
ve e external c  from 
“color-change rule”. We continue the process until all 
vertices are colored on the internal cycle. Finally 

Theorem 3.10 For all 

2u  are sam cent verti
f 

 
em is different. O e o

r cycle has colored and the anothe
the

rtex that is located on th ycle colored

 1 2 .nZ C K     = 2
j

n j 

   2 < 2 2,n j n   and 
w

5n  
e have    1 = 2 2nmr C K n j  . 
Proof. (Figures 3, 4, 5) when we make 

j

 2n   
of  1nC K , then its internal cycle reach to complete 
graph. With contraction of 2 1j   vertices to 2 3j

power

  
vertices of this graph we reach to complete graph of order 

 2 2 1,n j    then 2 1n jK    is a minor of  1nC K . 
On the other hand we have 

 

       2 1 1 1

    2 2

=  .
j j

n j n n

n j

K C K M C K  

 

  
 

 

 

Figure 3. 
8 1C K . 

 

Figure 4. . 

 

 2

8 1C K

 

Figure 5. . 

 
Also according to the ious Theo , we have  

 3

8 1C K

 prev rem
    1 = 2 2

j

n K n jZ C  

 

, then 

      1 1= = 2
j j

n n K n j    2

and hence 

M C K Z C

    1 = 2 2
j

nmr C K n j   .

Proposition 3.11  3

1nK K  is homomorphic to 2nK . 

Theorem 3.12   2

1 = .nmr K K n  

Proof. (Figures 6, 7) With the contraction of 1n   
external vertices of  2

1nK K
rnal cycle, we

 on the vertices which is 
located in inte  have the complete graph 

1nK  , then the minor  is  So weof nK K 2

1 , 1.nK   have 

       2 2

1 1= .n n nn K K K M K K     1  

On the other hand it is trivial that   2

1 =nZ K K n . 

A   2

1 =nZ K K n



 then nd we have 

 2

1 = .nmr K K n  

Copyright © 2012 SciRes.                                                                                OJDM 
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Figure 6. 1C K
 

6  . 

 

Figure 7. 

 
Proposition 3.13  vertices 

ontains a Hamiltonian path, then 

 2

6 1K K . 

 [1] If G has 2n 
mr L G

and 
c    = 2n  . 

 and  vertices Theorem 3.14 For all we

have, 
Proof. n on

3j 
. 

ductio

2n   

   = 2jmr L G n 
By using the in  the G  it can 

shown that  contains a Hamiltonian path. So we
have, 
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