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ABSTRACT 

This paper presents a general-purpose analysis package able to solve two- and three-dimensional analysis problems. 
The system can use the following methods of solution: Successive Approximation (SA), Optimal Interpolation (OI), and 
3D-Var. Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative 
humidity, and geopotential height. The analysis package was applied to produce analyses at 6 h time interval for the 
period 1-11 August 2008. The period was selected for data availability and forty-one analyses were collected. The re-
sults show the validity of the different solutions, which can be chosen depending on the physical problem to solve and 
on the computational resources available. In particular, assuming the observations as the reference, all solutions show a 
decrease of the RMSE compared to the background. The decrease is consistent with the particular setting of the analysis 
system used in this paper. The comparison between different solutions shows that the SA converges to OI in few itera-
tions, and that the SA solution with ten iteration is, in practice, equal to OI. Moreover, the 3D-Var method shows its 
potential to improve the analysis, once the horizontal and vertical length-scales and the background and observational 
errors are set optimally, because its solution may be sizeably different from two-dimensional methods.  
 
Keywords: Analysis Methods; Two- and Three-Dimensional Analysis; Statistical Methods; Background and  

Observational Errors; Error Decorrelation Length-Scale 

1. Introduction 

The aim of this study is to show the characteristics of a 
general-purpose analysis package able to solve two- and 
three-dimensional problems, and in particular to show: 1) 
its different solution methods; 2) the relationships among 
solution methods; and 3) how it can be used in conjunc-
tion with numerical weather prediction (NWP) models. 

A data assimilation system combines all available in-
formation on the atmospheric state in a given time-win- 
dow to produce an estimate of atmospheric conditions 
valid at a prescribed analysistime. Sources of information 
used to produce the analysis include observations, previ-
ous forecasts (the background), their respective errors, and 
the laws of physics.  

Nowadays, increased computing power coupled with 
greater access to real-time asynoptic data is paving the 
way toward a new generation of high-resolution (i.e., on 
the order of 10 km or less) operational mesoscale analyses 
and forecast systems [1-3]. Moreover, better initial condi-
tions are increasingly considered vital for a range of nu-
merical weather prediction (NWP) applications, in par-
ticular at the short range (0 - 12 h, [4,5]). 

The analysis package shown in this paper can solve the 
analysis using different methods: successive approxima-

tion, Optimal Interpolation, and 3D-Var methods (see [1] 
for a general review).Analyses are produced for the fol-
lowing parameters: zonal and meridional wind compo-
nents, geopotential height, temperature, and relative hu-
midity1. 

As well known, to produce optimal analyses, i.e. to 
minimize the RMSE between the analyses and the un-
known truth, the parameters entering in the analysis 
scheme must be determined by statistical methods ([1,6, 
7]). However, because the aim of this paper is to show 
the correct behaviour of the analysis package and the 
differences among solutions, the parameters entering the 
analysis package were selected compatibly with a real 
operational setting, but without any tuning to perform 
optimal analyses. 

In addition to 3D-Var, two-dimensional methods, namely 
Optimal Interpolation and successive approximation, are 
used to solve three-dimensional problems. This is a main 
issue that the reader should keep in mind while reading. 
Nevertheless, two main points should be highlighted: a) 
as also shown in this paper, when the error decorrelation 
vertical length-scale is small compared do the vertical 

1The analyses can also be produced for surface meteorological parame-
ters (not shown in this paper), namely: temperature, relative humidity, 
and wind. 
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spacing of the analysis grid, two- and three-dimensional 
methods converge2; b) two-dimensional methods must be 
used when solving two-dimensional problems, as the 
analysis of surface parameter, and this paper shows their 
validation. 

The paper is organized as follows: Section 2 intro-
duces the analysis grid configuration and the observa-
tions used in this paper; Section 3 shows an analysis 
example for the temperature in order to show how the 
analysis system works, then quantify theanalyses and 
background RMSE (Root Mean Square Error) assuming 
the observations as the reference. The behaviour of the 
RMSE for different methods shows the correctness of the 
implementation; Section 4 shows the differences between 
the analyses solutions by showing their RMSE computed 
assuming the Optimal Interpolation as the reference, and; 
Section 5 provides the conclusions. 

2. The Analysis Grid Set-Up 

The analysis package uses longitude-latitude coordinates 
in the horizontal plane and pressure in the vertical direc-
tion.  

The background fields for the analyses are given by 
short-term forecasts of the RAMS [8] model.  

RAMS uses rotated polar-stereographic coordinates, 
where the pole of the projection is rotated to an area near 
the centre of the domain. The vertical structure of the 
grid uses the sigma-z vertical coordinate system, where 
the top of the domain is exactly flat and the bottom fol-
lows the terrain. So, in order to use the RAMS model as 
background for the analysis package, the RAMS fields 
are interpolated onto the analysis grid. The background 
and analysis horizontal domains are shown in Figure 1 
and the background domain contains the analysis do-
main. 

The grid settings of the RAMS model are shown in 
Table 1, while Table 2 summarizes the physical param-
eterizations used in this paper [9-15], which are the same 
of the operational forecast in southern Italy [16]. 

Observations (TEMP, both land and ship, and wind 
profilers over Europe) were downloaded from the MARS 
(Meteorological Archive and Retrieval System, see also 
http://www.ecmwf.int/publications/manuals/mars/) archive 
of the ECMWF (European Centre for Medium Weather 
range Forecast) and were available from 1 to 11 August 
2008.  

Only measurements whose difference with the back-
ground is under a fixed threshold are used in the analyses. 
The thresholds considered in this paper are equal for all 
levels and are the following: 50 m for geopotential height, 
5 K for temperature, 40% for relative humidity and 10  

 

Figure 1. The forecast (FCST) and analysis (ANL) domains. 

Table 1. RAMS model setting. NNXP, NNYP and NNYZ 
are the number of grid points in the west-east, north-south, 
and vertical directions. Lx(km), Ly(km), Lz(m) are the do-
main extension in the west-east, north-south, and vertical 
directions. DX(km) and DY(km) are the horizontal grid 
resolutions in the west-east and north-south directions. 
CENTLON and CENTLAT are the geographical coordinates 
of the grid centres. 

� First grid�

NNXP� 450�

NNYP� 450�

NNZP� 30�

Lx(km)� 4500�

Ly(km)� 4500�

Lz(m)� 16800�

DX(km)� 10�

DY(km)� 10�

CENTLAT� 50.0�

CENTLON� 8.0�

 
m/s for zonal and meridional wind components. This is 
the only quality check adopted for the observations in 
this paper and resulted in only few measurements dis-
carded (<0.1% for each parameter, see Figure 3(f) for 
the number of observations available for each parameter). 
It is here stressed that the purpose of the paper is to show 
the validity of the solutions, more than to test it in the 
operational context, so the thresholds are chosen to con-
sider all data but those affected by gross errors. 

The analysis grid is centered over central Europe to 
maximize the number of TEMP sounding and wind pro-
filers available for the European area. 

For the examples shown in this paper analyses are 
roduced at 1.0 degree horizontal resolution, which cor-  

2This point can be of practical importance in the operational imple-
mentation of the analysis scheme. p 
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Table 2. RAMS model physical settings. 

Physical option Description 

Parametrized cumulus convection Modified Kuo scheme to account for updraft and downdraft [9]. 

Explicit precipitation parametrization Bulk microphysical model which prognoses cloud water, rain, ice crystals, aggregates, graupel and hail [10].

Subgrid mixing 

The turbulent mixing in the horizontal directions is parameterized following Smagorinsky [11], which relates 
the mixing coefficients to the fluid strain rate and includes corrections for the influence of the Brunt-Vaisala 
frequency and the Richardson number [12]. Vertical diffusion is parameterized according to the Mellor and 
Yamada [13] scheme, which employs a prognostic turbulent kinetic energy. 

Exchange between the surface, the 
biosphere and the atmosphere. 

LEAF-3 sub-model [14]. LEAF includes prognostic equations for soil temperature and moisture for multiple 
layers, vegetation temperature and surface water including dew and intercepted rainfall, snow cover mass and 
thermal energy for multiple layers, and temperature and water vapour mixing ratio of canopy air. 

Radiation scheme 
A full-column, two-stream single-band radiation scheme is used to calculate short-wave and long-wave  
radiation [15]. The Chen and Cotton scheme accounts for condensate in the atmosphere, but not for specific 
optical properties of ice hydrometeors. 

 
responds to 44 and 33 grid points in the North-South and 
West-East directions, respectively. Analyses are produced 
at the following twenty-three pressure levels: from 1000 
to 800 hPa every 23 hPa, and form 800 hPa to 100 hPa 
every 50 hPa. 
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    (1) 

and: 

    (2) To show more robust statistics, and considering the 
data availability, analyses were computed every six hours 
starting from 06 UTC on 1 August and ending at 00 UTC 
on 11 August (41 analyses). 

where obs
i is the value of the i-th observation, and n are 

the available observations. In Equations (1) and (2), k is 
the iteration number, and i(k) is the first-guess estimate 
of the i-th observation for the k-th iteration. A few itera-
tions are enough for the solution convergence [17], as 
shown in Sections 4 and 5, and in the practical imple-
mentation of the analysis algorithm, the number of itera-
tions is set to ten. It is important to stress that the succes-
sive correction method converge to the optimal interpo-
lation solution (see next section) as the number of itera-
tions increases [1]. To better show how fast is the con-
vergence of the solution, this paper shows the analysis 
for two (SA_2) and ten (SA_10) iterations, respectively. 
The grid-point analysis weight xi and the observation 
analysis weight oi are given by: 

As stated above, the background is given by short-term 
forecasts of the RAMS model. In particular, two 12-h 
forecasts were produced daily from 1 to 10 August 2008 
starting at 00 and 12 UTC. The RAMS forecast uses the 
ECMWF operational analysis-forecast cycle of 00 and 12 
UTC as initial and dynamic boundary conditions. The 6 h 
and 12 hours RAMS forecasts are used as background for 
the analysis algorithm. 

For example, referring to the 1 August, the RAMS 
forecast staring at 00 UTC gives the background fields 
for the 06 and 12 UTC analyses on 1 August, while the 
12 UTC forecast gives the background fields for the 18 
UTC analysis on 1 August and for the 00 UTC analysis 
on 2 August, and similarly for other days. 

Copyright © 2012 SciRes.     

3. The Analysis System  
The analysis package has different methods of solution: 
successive approximation, optimal interpolation and 3D- 
Var. They are summarized in this section. The current 
implementation of the analysis package is univariate for 
all the methods.  

3.1. Successive Approximation (or Correction) 

In this method two equations are iteratively solved for 
each analyzed variable . The first equation is the esti-
mate of the correction for the grid-point variable x, the 
second equation is an updated observation estimate o: 
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          (3) 

where  is the correlation function, 2 is the ratio of the 
observational error variance (o

2) to the first-guess fore-
cast error (b

2), which is a function of the analyzed vari-
able and level, and oi is the Kronecker delta function. 

The correlation  is a Gaussian function of the dis-
tance r. In particular: 

2r

dr e
  
   

where the length-scale d defines the observation radius of 
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influence.  
The mi is the data density and is computed as: 

2

1

n

i ij
j

m  


 

 H    a b o bx x W y x

  1
 T TW BH R HBH

 

 

The aim of this paper is to show the characteristics and 
performance of the analysis system more than to show its 
benefits in the operational context and, for this purpose, 
its setting is compatible with real cases but not statisti-
cally optimized for the particular background used3. So, 
the length scale d is assumed to be 300 km for all vari-
ables at all levels. For real cases, and for optimizing the 
analysis solution, the length-scale can be computed for a 
particular background setting by the NMC method [6]. 

The observational error (o
2) is taken from Sashegyi et 

al. (see Table 1 of [17]). The background error (o
2) is 

assumed equal to the observational error. However, as 
shown by the application of the package, the analysis is 
sensitive to the value of  and its value need to be care-
fully estimated in future research. The method of Lönn- 
berg and Hollingsworth ([7]) can be used for this pur-
pose. 

3.2. Optimal Interpolation 

The analysed field at each vertical level is given by the 
equation: 

          (4) 

where xa is the analyzed vector, xb is the background (or 
first guess) field, yo is the observational vector, H is the 
forward observational operator, which converts the back- 
ground field into first guesses of the observations, and W 
is the optimal weight (or gain) matrix.  

The gain matrix W is given by: 

         (5) 

where B and R are the background and observational 
error covariance matrices, respectively, and HT is the 
transpose of the Jacobian of the forward observation op-
erator (which transforms observation points back to grid 
points).  

The H matrix is a bilinear interpolation operator. 
The R and B matrices depend on the observation (o

2) 
and background (b

2) error covariances, respectively, 
whose magnitudes were introduced in Section 3.1. 

Once observation and background error covariances 
are determined, the matrices R and B are easily formed 
for each parameter. R is a p × p diagonal matrix whose 

elements are all equal to o
2 and p is the number of ob-

servations available at the analysis time for the particular 
level analyzed (form 0 to 20 depending on the case). For 
the background error, a Gaussian shape is assumed with 
the (horizontal) length-scale of 300 km. So, B is an n × n 
matrix, where n is the number of grid-points in the hori-
zontal analysis domain (i.e. n = 44 × 33 = 1452), whose 
element ij is the value of the Gaussian evaluated for the 
distance between the grid points i and j and multiplied by 
b

2. 
In future implementations, the OI solution will be 

changed in 2D-Var, because the latter is more efficient 
from a computational point of view. 

3.3. 3D-Var 

The basic goal of the 3D-Var algorithm is to produce an 
optimal estimate of the true atmospheric state at analysis 
time through iterative solution of a prescribed cost-func- 
tion ([18]): 
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   (6) 

where J(x) is the costfunction, xb is the background state, 
H is the forward observational operator, yo is the vector 
of the observations, B, and R are the background, and 
observational error covariance matrices, respectively. 

The problem can be summarized as the iterative solu-
tion of Equation (6) to find the analysis state x that mini- 
mizes J(x). This solution represents the a posteriori 
maximum likelihood (minimum variance) estimate of the 
true state of the atmosphere given the two sources of a 
priori data: the background xb and observations yo ([19]).  

For a model state x with n degrees of freedom, calcu-
lation of the background term of the cost function re-
quires ~ O(n2) calculations. For a typical NWP model 
with n ~ 105 - 107 (number of grid-points times number 
of independent variables) direct solution is prohibitively 
expensive. 

One practical solution to this problem is to perform a 
preconditioning via a control variable v transform de-
fined by x’ = Uv, where x’ = x – xb. The transform U is 
chosen to approximately satisfy the relationship B = UUT. 
Using the incremental formulation [20] and the control 
variable transform, Equation (6) may be rewritten: 

   11 1

2 2

TT     o oJ v y HU R y HU     (7) 

where yo’ = yo – H(xb) is the innovation vector and H is 
the linearization of the potentially nonlinear observation 
operator H used in the calculation of yo’. In this form, the 
background term is essentially diagonalized, reducing the 

3To optimize the method statistically, the observational and background 
errors and the horizontal (and vertical in the case of 3D-Var) length-
scale must be selected to minimize the RMSE between the analyses and 
the unknown truth. The references [6], [7], and [1] discusses how to 
optimize the analyses. 
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number of calculations required from O(n2) to O(n). In 
addition, the background error covariance matrix equals 
the identity matrix I in control variable space, hence pre- 
conditioning the minimization procedure. 

Another goal of the control variable transform is to 
represent spatial correlations in an accurate and simple 
form [21]. 

In the implementation of the 3D-Var scheme of this 
paper, the transformation U is represented by a horizontal 
and a vertical transformation U = UhUv. The vertical 
transformation has a Gaussian shape whose vertical length- 
scale is constant for all variables and vertical levels. 
Again, the Parrish and Derber ([6]) method can be used 
to estimate its value to minimize the analysis RMSE for a 
particular background setting. In the following, the solu-
tions using 500 m (hereafter also 3D-Var_500) and 750 
m (3D-Var_750) as vertical length-scales will be shown. 

The horizontal transformation Uh is given by: 
1 2hU EL

1hB ELE

 

where E and L are defined by: 
 

The Bh is the horizontal component of the background 
error matrix and has a Gaussian shape whose length scale 
is 300 km. Bh is an n × n (n = 44 × 33 = 1452) matrix 
whose element ij is the value of the Gaussian for the dis-
tance between the grid points i and j multiplied by b

2. 
The background b

2 and observational b
2 errors were 

introduced in Section 3.1. 
Theobservational error covariance matrix R is a p × p 

diagonal matrix whose elements are all equal to b
2 and p 

is the number of observations available at the analysis 
time for all levels. 

It should be mentioned that computational issues limit 
the horizontal and vertical resolution using the 3D-Var 
approach. 

It is noticed that this is the basic reason for using the 
successive approximation and OI methods, which are 
computationally less expensive than 3D-Var but two- 
dimensional, even to solve three dimensional problems, 
as shown in this paper. Beside the physical nature of the 
problem (there are problems that are physically two-di- 
mensional, as for example the analysis of surface pa-
rameters), when the vertical decorrelation length scale of 
the error is small compared to the vertical resolution of 
the analyses, the 3D-Var, OI and successive approxima-
tion solutions converge. For these cases, OI and succes-
sive approximations may be used to replace 3D-Var, in 
order to reduce the computational cost and to increase the 
horizontal resolution of the analyses. This point will be 
further discussed in Section 5. 

4. Analysis Performance and Statistics 

In this paragraph an example of analysis is firstly dis-

cussed to better show how the analysis system works; 
then statistics of the comparison between analysis and 
observations, and of the comparison between the back-
ground and observations are discussed.  

Figure 2 shows the background, the analysis, and their 
difference for the temperature at 700 hPa at 00 UTC on 7 
August. The analysis is produced by the 3D-Var solution 
with 300 km and 500 m of horizontal and vertical length- 
scales, respectively. This parameter and time were se-
lected because the difference between the analysis and 
background fields shows a pattern well representative of 
others parameters, times, and analysis levels. 

The background and analysis differences are mainly 
concentrated over the eastern part of the domain and 
show a rather complex pattern. This is caused by the sign 
of the innovation (i.e. of the difference between the ob-
servation and the background interpolated at the observa-
tion point), which is negative for three observations and 
positive for the others, by the absolute value of the innova-
tion, and by the horizontal and vertical length-scales. 

Despite the differences between analysis and back- 
ground fields are less than 1 K over the domain, they are 
well evident looking at 271 K contour near the Gotland 
Island, in the Baltic Sea. 

Finally, it is also interesting to note the difference be-
tween the background and analysis in northern France 
(near Paris), which shows the effect of an insulated mea- 
surement on the analyzed field. 

Figure 3(a) shows the RMSE between the different 
solutions of the analyses and observations, and the RMSE 
between the background and observations for the tem- 
perature. 

The RMSE is computed for the whole analyses con-
sidering the grid-points of the analysis grid (Figure 1) 
nearest to the observations. 

The background error varies between 0.8 and 1.7 K 
depending on the level. The analyses RMSE profiles are 
similar to the background but the RMSE values are al-
most halved. This result is expected because the observa-
tional (o

2) and background (b
2) errors are equal. This 

means that, for an ideal case of one measurement avail-
able at one grid point of the analysis grid, the analysis at 
this point equally weights the observation and the back-
ground. Because only grid points nearest to the observa-
tions are used to compute the RMSE of Figure 3(a) it 
should be expected an almost halved RMSE for the ana- 
lyses compared to the background. 

Comparing the analyses RMSE it is noteworthy that:  
1) The OI and SA_10 RMSE have almost the same 

values. As will be shown in the next section this is 
caused by the fact that the two analyses are almost iden- 
tical. 

2) As expected, SA_2 has a RMSE closer to the back-
ground compared to SA_10. However, the RMSE dif-
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ference is small (0 - 0.1 K). 
3) 3D-Var_750 shows a larger RMSE compared to OI 

below 800 hPa (RMSE 0.1 - 0.4 K larger than OI), and 
the smallest value between 650 and 300 hPa. Above 300 
hPa the 3D-Var_750 and OI solutions have the same 
RMSE; as will be shown in the next section this is caused 

by the fact that OI and 3D-Var_750 are almost identical 
above this level. 

4) 3D-Var_500 has an RMSE larger than OI (RMSE 
0.1 - 0.2 K larger) up to 925 hPa. Above this level, its 
RMSE is smaller. The OI and 3D-Var_500 RMSE are 
almost identical above 400 hPa. Again, this is caused by  

 
(a) 

 
(b) 
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(c) 

Figure 2. (a) Temperature (K) background at 00 UTC on 07 August 2008 at 700 hPa; (b) Temperature analysis (K) at the 
same time and level of (a); (c) Difference between (b) and (a). The shaded contours are equal for (a) and (b). 

the fact that OI and 3D-Var_500 are almost identical 
above this level.  

Figure 3(b) shows the RMSE for the analyses and 
background for relative humidity. The background RMSE 
varies between 12% and 30% and increases with height. 
Analyses profiles follow the background behaviour but 
show a RMSE almost halved. Among analyses, the 3D- 
Var_750 has the largest RMSE below 800 hPa and the 
lowest error above 500 hPa, while 3D-Var_500 has the 
smallest RMSE between 850 and 700 hPa. The SA_2 
RMSE is closer to that of the background compared to 
SA_10, but differences are small (<2%). 

Figure 3(c) shows the RMSE for the analyses and 
background for the geopotential height. The background 
RMSE varies between 10 and 22 m with two maxima at 
the top and bottom of the vertical domain. The analyses 
have a smaller RMSE and again, the RMSE comparison 
shows the ability of 3D-Var to potentially reduce the 
error respect to two-dimensional methods (OI and suc- 
cessive approximation), because its solution may be size- 
ably different from two-dimensional methods. It should 
be highlighted that a lower (larger) RMSE of the 3D-Var 
solution does not imply a better (worse) performance of 
the method, unless its parameters have been determined 
optimally. In fact the measurements, assumed here as the 
reference, are not the truth. Nevertheless, the fact that 
3D-Var and two-dimensional solutions are different shows 
that 3D-Var can improve the analysis compared to two- 

dimensional methods, once its parameters are set opti- 
mally. The 3D-Var_500 RMSEis lower than two-dimen- 
sional methods up to 400 hPa, while its RMSE converges 
to OI solution above this level. Again, this is due to the 
convergence of the two analyses above that layer. The 
3D-Var_750 analysis has the smallest RMSE above 750 
hPa and the largest RMSE below 825 hPa.  

Figure 3(d) shows the RMSE for the analyses and 
background for the zonal wind velocity. The RMSE var- 
ies between 5 m/s and 2 m/s for the background and has 
a maximum near the surface, showing the well known 
difficulties of meteorological models at reproducing the 
wind in the Planetary Boundary Layer and Surface Layer.  

For the analyses RMSE similar considerations to other 
meteorological parameters apply. First their RMSE is 
almost halved compared to the background. In general, 
the 3D-Var_500 and 3D-Var_750have a lower RMSE 
compared to two-dimensional methods but they have a 
larger RMSE for lower levels, particularly the 3D-Var_750. 
The SA_2 shows a larger RMSE than SA, closer to the 
background, but the differences with SA_10 are small 
(<0.1 m/s). Finally, the SA_10 RMSE is very similar to 
that of OI. As will be shown in the next section, this is 
caused by the fact that OI and SA_10 analyses are very 
similar at all levels. 

Figure 3(e) shows the RMSE for the background and 
analyses for the meridional wind component. The back- 
round RMSE varies between 5 m/s and 1.8 m/s. The  g   
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 3. (a) Vertical distribution of the RMSE computed between the analyses and observations for air temperature and for 
different methods of solution. The background is shown for comparison; (b) As in (a) for the relative humidity; (c) As in (a) 
for the geopotential height; (d) As in (a) for the zonal velocity; (e) As in (a) for the meridional velocity; (f) Total number of 
measurements available for the analyzed parameters as a function of the level. The values shown in the legend on the right 
re the sum for all the levels (i.e. the total number of observations used for each parameter). a 
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RMSE is larger in the Surface Layer and in the Planetary 
Boundary Layer. The analyses RMSE follow the back- 
ground behaviour but their values are almost halved. For 
the comparison between analyses, similar considerations 
to other meteorological parameters apply. 

Figure 3(f) shows the observations available for the 
analyses for each level and parameter. The average num- 
ber of observations available at each level for each time 
is the ratio between the value of Figure 3(f) and the total 
analysis number (41). The larger values for the zonal and 
meridional wind components are caused by the use of the 
European wind profiler network, which reports wind 
components only.  

5. Comparison between Methods of Solution 

In this section the different methods of solution (succes- 
sive approximation, optimal interpolation, and 3D-Var) 
are compared. The successive approximation with two 
and ten iterations, and 3D-Var with 500 and 750 m of 
vertical length-scale are considered. As discussed in Sec- 
tion 3, for all solutions the horizontal length-scale is 300 
km, and the observational and background errors are 
equal. 

Optimal interpolation is assumed as reference to better 
show the differences between the successive approxima- 
tion with two and ten iterations. Again, errors are esti- 
mated for the whole dataset (41 analyses) considering 
only the grid-points nearest to the observations. 
Only results for temperature (thermodynamic variable) 
and zonal wind component (dynamical variable) are 
shown, because similar considerations apply to other pa- 
rameters. 

Figure 4(a) shows the temperature RMSE. For levels 
below 300 hPa, 3D-Var_750 shows the largest difference 
compared to OI (maximum of about 1.2 K at 975 hPa), 
then follows 3D-Var_500 (maximum of about 1.0 K at 
975 hPa), SA_2 (maximum less then 0.2 K at upper lev-
els, namely 250 hPa), and SA_10, which shows a RMSE 
less then 0.1 K at all levels. 

Up to 300 hPa, however, the 3D-Var solution con- 
verges towards OI both for both 500 and 750 m vertical 
length-scale. This is expected because at higher levels the 
vertical distance between analysis levels increases and 
becomes larger than the vertical length-scale, which 
quantify the vertical distance of the error decorrelation 
and the coupling between levels in the 3D-Var solution. 
As a consequence, the vertical coupling between layers 
becomes smaller with height, and the 3D-Var solution 
formally converges to OI [1]. 

At lower levels, where the vertical spacing between 
analysis levels is comparatively lower, the difference 
between 3D-Var and two-dimensional methods becomes 
larger.  

This point is of practical importance because it shows 
that two-dimensional methods can be used when the ver- 
tical error decorrelation length-scale is smallcompared to 
the vertical spacing of the analysis grid (as for upper lev- 
els). For example, the two-dimensional methods of this 
paper can be used in synergy with 3D-Var by dividing 
the three-dimensional domain in two subdomains: an 
upper part and a lower part. The two dimensional meth- 
ods can be used for the upper part and the 3D-Var can be 
used for the lower part, without losing accuracy of the 
analyzed field but decreasing the number of grid-points 
in each subdomain. This decomposition can be used for 
reducing the computational resources and/or for increas- 
ing the horizontal resolution of each subdomain. 

Figure 4(a), as expected, shows thatthe successive ap- 
proximation with ten iterations is closer to OI compared 
to the same solution with two iterations at all levels, but 
it is worth noting that the convergence of the successive 
approximation scheme is fast because the RMSE be- 
tween SA_2 and OI is less than 0.1 K at all levels, which 
is a small value from a practical point of view. This re- 
sult is important, because only few iterations need to be 
performed when using the SA scheme. 

Figure 4(b) shows the zonal wind component RMSE. 
In general, similar considerations of Figure 4(a) apply. 
The 3D-Var solution with 750 m vertical length-scale 
shows the largest differences (up to 3.6 m/s at 950 hPa) 
respect to OI; then follows 3D-Var with 500 m of verti- 
cal length-scale (2.6 m/s of maximum RMSE at 975 
hPa).  

As expected, the successive approximation with ten it- 
erations is closer to OI compared to the same solution 
with two iterations and its RMSE is lower than 0.2 m/s 
for all levels. 

6. Conclusions 

This paper shows the performanceof a general purposes 
analysis package able to solve two- and three-dimen- 
sional problems adopting the following solutions: suc- 
cessive approximation, optimal interpolation, and 3D-Var. 
The package is able to ingest the data from the following 
observations of the GTS network: synop (non considered 
in this paper), TEMP, and wind profilers. It performs the 
analysis of the following parameters: zonal and merid- 
ional wind components, temperature, geopotential height, 
relative humidity, and surface parameter (not considered 
in this paper). 

Main conclusions may be summarized as follows:  
1) All the analyses solutions perform well; for the par- 

ticular setting of the analysis package, and for the verify- 
ing method used, it is expected that the analyses RMSEs, 
computed assuming the observations as the reference, are 
lmost halved compared to the background RMSE. This  a  
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(b) 

Figure 4. (a) RMSE between Optimal Interpolation and other solution methods for temperature; (b) As in (a) for the zonal 
wind component. 

was verified for all solutions. 
2) The successive approximation scheme quickly con- 

verges to the OI solution. It was shown that even if the 
SA_10 is closer to OI than SA_2, the differences be- 
tween SA_2 and OI are small in absolute values for all 
parameters, at least for the setting adopted in this paper. 

3) The 3D-Var solution converges to OI when the error 
vertical decorrelation length-scale become small compared 
to the vertical spacing of the analysis grid.  

4) The 3D-Var solution shows the potential to produce 
analyses with a lower RMSE (computed respect to the 
truth) compared to two-dimensional methods. 

5) The results of this work highlight the importance of 
optimally determining the parameters of the analysis 
method, namely the horizontal and vertical length-scales 

and the observational and background errors, trough sta- 
tistical methods as shown in [6,7]. 

Finally, it is remarked that work is in progress to im- 
plement a 2D-Var solution, which is computationally 
more efficient than OI, and to test the analysis package in 
a real forecast context. 
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