
Journal of Information Security, 2012, 3, 86-90
http://dx.doi.org/10.4236/jis.2012.32010 Published Online April 2012 (http://www.SciRP.org/journal/jis)

Reference Encryption for Access Right Segregation and
Domain Representation

Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università di Pisa, Pisa, Italy

Email: l.lopriore@iet.unipi.it

Received January 30, 2012; revised February 29, 2012; accepted March 25, 2012

ABSTRACT

With reference to a protection model featuring processes, objects and domains, we consider the salient aspects of the
protection problem, domain representation and access right segregation in memory. We propose a solution based on
protected references, each consisting of the identifier of an object and the specification of a collection of access rights
for this object. The protection system associates an encryption key with each object and each domain. A protected ref-
erence for a given object is always part of a domain, and is stored in memory in the ciphertext form that results from
application of a double encryption using both the object key and the domain key.

Keywords: Access Right; Domain; Protection; Symmetric-Key Cryptography

1. Introduction

We shall refer to a well-known protection model featuring
active entities, the processes, that perform access attempts
to passive entities, the objects [1,2]. Objects are typed;
the type of a given object states the set of operations that
can be carried out on this object and, for each operation,
the access rights that a process must hold to accomplish
this operation successfully. At any given time, a protect-
tion domain is associated with each process: this is a col-
lection of access rights on the objects that the process can
access at that time.

A salient aspect of the protection problem is the rep-
resentation of access rights and protection domains in
memory. A classical solution is based on the concept of a
capability [3,4]. This is a pair <B, AR>, where B is the
identifier of an object and AR is a set of access rights for
this object. A protection domain takes the form of a col-
lection of capabilities, which correspond to the access ri-
ghts included in that domain.

Capabilities are sensitive objects that cannot be treated
as ordinary data [5]: we must prevent processes from
modifying the access right field and add new access
rights, for instance. Capabilities can be segregated into
capability segments [6,7]. In this case, a protection do-
main usually takes the form of a tree, where the root of
the tree is a capability segment that includes the capabili-
ties for other capability and data segments, and the data
segments are the tree leaves. Alternatively, we can take
advantage of a tag associated with each memory cell,
which specifies whether this cell contains a capability or

an ordinary data item [8,9]. In a third approach, a set of
passwords is associated with each object, and each pass-
word corresponds to one or more access rights. A pass-
word capability is a pair <B, PSW> where B is an object
identifier and PSW is a password [10,11]. If a match exists
between PSW and one of the passwords associated with
object B, then the password capability grants its holder
the access rights corresponding to that password on B.

In the approaches to capability segregation in memory,
outlined so far, a process that holds a capability can take
full advantage of this capability, independently of the ca-
pability origin. This means that segregation does not pre-
vent a process from taking advantage of a capability ob-
tained illegitimately by means of a fraudulent action of
capability copy, for instance.

In this paper, we propose an alternative approach to
access right representation in memory, which solves the
segregation problem by taking advantage of a form of
symmetric-key cryptography [12,13]. In our approach,
possession of an access privilege on a given object is cer-
tified by possession of a protected reference (p-reference
from now on, for short) including the specification of a
collection of access rights for this object. P-references
are never stored in memory in plaintext. Instead, the pro-
tection system associates an encryption key, called the
object key, with each object, and a further encryption key,
the domain key, with each domain. A p-reference for a
given object is always part of a protection domain and is
stored in memory in the ciphertext form that results from
application of a double encryption using both the object
key and the domain key.

Copyright © 2012 SciRes. JIS

L. LOPRIORE 87

2. The Protection System

2.1. Protected References

Let T be an object type, let S0, S1, ··· be the operations
that can be executed on an object of type T, and let AR0,
AR1, ··· be the access rights defined by T. For each given
operation Sm, the definition of type T states the subset of
access rights AR0, AR1, ··· that is necessary to accomplish
that operation successfully. P-reference R takes the form
R = <B, AR>, where AR is a bit configuration that speci-
fies a collection of access rights for object B: if the i-th
bit of AR is asserted, R grants access right ARi on B.

From now on, we shall use an underline to denote a
ciphertext. Let kB be the encryption key associated with
object B, and kD be the encryption key associated with
the domain D of p-reference R = <B, AR>. Figure 1
shows the transformation of R into ciphertext quantity R.
The transformation proceeds as follows. Let B be the
result of encrypting quantity B by using a symmetric-key
cipher with key kD, and let AR be the result of encrypting
pair <B, AR> by using a symmetric-key cipher with key
kB. Quantity R is given by relation R = <B, AR>.

Figure 2 shows the reverse transformation of cipher-
text quantity R = <B, AR> into the corresponding plain-
text p-reference R. The transformation proceeds as fol-
lows. Domain encryption key kD is used to decrypt quan-
tity B into object name B. Then, the object key kB associ-
ated with object B is used to decrypt quantity AR. Let
<B*, AR> be the result of the decryption. Quantity B* is
compared with B to validate AR; if a match is found,
validation is successful and p-reference R is given by pair
<B, AR>.

2.2. Processes, Domains and Objects

When a new process is generated that has no parent (i.e.
a process directly generated by the kernel), a new domain
is created and is associated with this process. When a

Figure 1. Transformation of plaintext p-reference R = <B,
AR> into ciphertext quantity R = <B, AR>.

Figure 2. Transformation of ciphertext quantity R = <B, AR>
into the corresponding plaintext p-reference R = <B, AR>,
and validation of the result.

process generates a child process, the new process is as-
signed the same domain as the parent process. Thus, the tree
structure originated by recursive actions of child process
generation is entirely confined within the boundaries of
the same domain, which is the domain of the root process.
All the processes in the tree are tightly coupled, i.e. they
share the same domain and consequently, the same do-
main key.

When a process creates a new object, it receives a
p-reference for this object with full access rights. If the
identifier of every given object is equal to the address of
this object in the virtual space, a simple approach to gen-
eration of new object identifiers is a sequential genera-
tion, according to which objects are allocated at increas-
ing virtual addresses, and the address of a given object is
equal to the address of the previous object incremented
by the length of the previous object.

2.3. Accessing Objects

Let P be a process, let D be its domain, and let R be a
p-reference stored in ciphertext form in the memory area
reserved for P. In order to take advantage of R, process P
must preventively translate it into the corresponding plain-
text R = <B, AR> so that both the name B of the object
referenced by R and the access rights AR granted by R on
this object become visible. Of course, after translation
into plaintext, p-reference R is a sensitive information it-
em that must be stored in a protected memory region. To
this aim, the protection system reserves a protection table
for each given process; each entry of the protection table
can contain a p-reference in plaintext.

Process P can load a p-reference into an entry of its
own protection table by executing the LoadRef(addr, i)
protection system primitive. Execution of this primitive
causes the actions necessary to translate ciphertext p-
reference R stored in memory at address addr into a
plaintext by using the key kD of the domain D of P (see
Figure 2); the result R = <B, AR> of the translation is

Copyright © 2012 SciRes. JIS

L. LOPRIORE 88

stored into the i-th protection table entry.
Let T be the type of object B and S0, S1, ··· be the op-

erations defined by this type. The operation call primitive
Call(m, i) starts up execution of operation Sm on B. Ar-
gument i is the index of the protection table entry con-
taining a p-reference for B. The value AR of the access
right field of this p-reference is transmitted to Sm as an
input parameter. The actions involved in the execution of
Sm will include the access right checks necessary to as-
certain whether AR contains the access rights required to
accomplish Sm successfully. If this is not the case, execu-
tion of Sm fails and generates an exception of violated
protection.

2.4. Transferring P-References

Let P1 and P2 be tightly coupled processes, and let D be
their common domain. Suppose that P1 holds p-reference
R. In order to grant P2 the access permissions included in
R, P1 transfers R to P2 by a simple action of a memory
copy. In fact, the two processes share the same domain
key kD. By issuing the LoadRef() primitive, P2 will de-
crypt R into the corresponding plaintext p-reference R.
Then, by issuing the Call() primitive, P2 will be in the
position to use R for object access.

Let us now suppose that P1 and P2 belong to different
domains, D1 and D2, and let k1 and k2 be the keys of these
domains. If P1 transfers a copy of R to P2, no access pri-
vilege is actually granted to P2. In fact, if P2 issues
LoadRef() to decrypt R, the B component of R will be
decrypted by using the key k2 associated with domain D2
instead of the key k1 that was originally used to encrypt B.
The result of this translation will be the identifier of an
arbitrary object whose key will be used to translate the
AR component of R into plaintext. Of course, validation
of the result of this translation is destined to fail.

Instead, the copy of a p-reference between two proc-
esses of different domains must be preceded by a con-
version of the p-reference, from the domain of the grant-
ing process to the domain of the process that receives the
p-reference (the target domain). To this aim, an object
called the encryption channel is associated with each
domain. The protection system maintains the association
between each encryption channel and the key of the cor-
responding domain. P-reference conversion will be actu-
ally obtained by taking advantage of the StoreRef(i, j,
addr) primitive. Arguments i and j of this primitive are
the indexes of two entries in the protection table of the
process issuing the primitive; these entries contain a
p-reference for the encryption channel of the target do-
main and the p-reference to be converted. Execution of
this primitive converts this p-reference into a ciphertext
using the key associated with the encryption channel, and
stores the result of the conversion into memory at address
addr.

In our previous example, let EC be the ciphertext form
of a p-reference for the encryption channel of the target
domain D2. In order to grant the access privileges in R to
P2, process P1 will issue the LoadRef() primitive twice, to
translate EC and R into plaintext and load the results EC
and R of these translations into free protection table en-
tries. Then, P1 will issue the StoreRef() primitive to con-
vert R into a ciphertext using the domain key k2 associ-
ated with EC. Finally, P1 will copy this ciphertext to pro-
cess P2, which will be able to take advantage of it, as it is
now part of its own domain, D2.

3. Discussion

P-references are stored in memory as ordinary informa-
tion items, albeit in ciphertext form. Consequently, a proc-
ess may well try to modify an existing p-reference and
amplify the access rights it contains, or attempt to gener-
ate a p-reference for an existing object from scratch. A
process may even perform fraudulent actions of p-reference
copy. Storage of p-references in the stack and heap memory
areas results in occasions for application of well-known
techniques for data stealing [14,15], for instance. As a
matter of fact, these attempts to p-reference manipulation
are destined to fail.

3.1. Forging P-References

Let us refer to p-reference R = <B, AR>, and let R = <B,
AR> be the corresponding ciphertext in memory. The AR
field of R is the result of application of an encryption
involving both quantity B and the access right specifica-
tion AR (see Figure 1). We shall hypothesize that the
cipher guarantees a careful mixing of the bits of B and
AR. In a situation of this type, it is impossible to modify
the resulting ciphertext AR for the sole portion corre-
sponding to the access rights without corrupting quantity
B. In order to use the modified R to access B, the process
holding R must preventively issue the LoadRef() primi-
tive to translate R into plaintext and load the result R into
the protection table. The actions involved in the transla-
tion from R to R include a validation of AR that involves
quantity B (see Figure 2). If AR has been modified, the
probability of a casual match leading to successful vali-
dation depends on the size of object identifiers; for large
identifiers, e.g. 64 bits, this probability is vanishingly
low [16]. When LoadRef() fails, an exception of violated
protection is generated.

Of course, similar considerations can be made for a
process attempting to forge a new p-reference for an ex-
isting object. The process will have to issue LoadRef() to
translate the forged p-reference into plaintext and load it
into the protection table; in this case, too, validation of
the result of this translation is destined to fail.

Copyright © 2012 SciRes. JIS

L. LOPRIORE 89

3.2. Stealing P-References

Let D1 be the domain of process P1, and let k1 be the key
associated with this domain. Suppose that P1 holds a
p-reference in the ciphertext form R = <B, AR> obtained
by using key k1. Suppose also that a different process P2,
which is part of domain D2, steals a copy of R from P1. In
order to take advantage of R and access the object it ref-
erences, P2 has to issue the LoadRef() primitive to trans-
late R into plaintext and load the result of this translation
into its own protection table. In the execution of LoadRef(),
quantity B will be decrypted using the key k2 associated
with domain D2 instead of the key k1 that was originally
used to encrypt B. The result of this action will be an
object identifier BB. In the hypothesis of large object
names, the probability that BB be the identifier of an ex-
isting object will be low, and the search for the decryp-
tion key kBB associated with BB is likely to fail. Even in
the improbable situation that BB is a valid identifier, the
corresponding key kBB will not match the key that was
used to generate AR, and consequently, validation of the
result of the translation of AR into plaintext is destined to
fail. In both cases, LoadRef() terminates with an excep-
tion of violated protection.

4. Concluding Remarks

With reference to a protection environment featuring proc-
esses, objects and domains, we have approached the sali-
ent aspects of the protection problem, domain representa-
tion and access right segregation in memory. We have
proposed a solution based on protected references, each
consisting of the identifier of an object and the specifica-
tion of a collection of access rights for this object. The
protection system associates an encryption key with each
object and each domain. A p-reference for a given object
is always part of a domain, and is stored in memory in
the ciphertext form that results from application of a
double encryption using both the domain key and the
object key.

Double encryption enhances security only marginally
[17]; in our protection system, we take advantage of a
double encryption and the duality between object keys
and domain keys to guarantees the practical impossibility
to acquire access permissions for an existing object by
forging a new p-reference for this object or modifying an
existing p-reference to amplify the access rights it con-
tains. Furthermore, a process running in a given domain
cannot take advantage of a p-reference encrypted as part
of a different domain. In sharp contrast with capability
and password-capability systems, this aspect of p-reference
segregation in memory prevents the stealing of access
permissions between processes of different domains. On
the other hand, two processes that share the same father
process belong to the same domain; these processes are

considered mutually trustworthy, and the transfer of a
p-reference between them can be obtained by a simple
action of memory copy, at low processing time cost.

REFERENCES
[1] L. Lopriore, “Access Control Mechanisms in a Distrib-

uted, Persistent Memory System,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 13, No. 10, 2002,
pp. 1066-1083. doi:10.1109/TPDS.2002.1041883

[2] R. S. Sandhu and P. Samarati, “Access Control: Principle
and Practice,” IEEE Communications Magazine, Vol. 32,
No. 9, 1994, pp. 40-48. doi:10.1109/35.312842

[3] H. M. Levy, “Capability-Based Computer Systems,” But-
terworth-Heinemann, Oxford, 1984.

[4] I. Kuz, G. Klein, C. Lewis and A. Walker, “CapDL: A
Language for Describing Capability-Based Systems,”
Proceedings of the 1st ACM Asia-Pacific Workshop on
Systems, New Delhi, 30 August-3 September August 2010,
pp. 31-36. doi:10.1145/1851276.1851284

[5] M. de Vivo, G. O. de Vivo and L. Gonzalez, “A Brief Es-
say on Capabilities,” SIGPLAN Notices, Vol. 30, No. 7,
1995, pp. 29-36. doi:10.1145/208639.208641

[6] G. Klein, et al., “seL4: Formal Verification of an OS
Kernel,” Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, Big Sky, 11-14 October
2009, pp. 207-220. doi:10.1145/1629575.1629596

[7] E. I. Organick, “A Programmer’s View of the Intel 432
System,” McGraw-Hill, New York, 1983.

[8] P. G. Neumann and R. J. Feiertag, “PSOS Revisited,”
Proceedings of the 19th Annual Computer Security Ap-
plications Conference, Las Vegas, 8-12 December 2003,
pp. 208-216. doi:10.1109/CSAC.2003.1254326

[9] L. Lopriore, “Capability Based Tagged Architectures,”
IEEE Transactions on Computers, Vol. C-33, No. 9, 1984,
pp. 786-803. doi:10.1109/TC.1984.1676495

[10] M. D. Castro, R. D. Pose and C. Kopp, “Password-Capa-
bilities and the Walnut Kernel,” The Computer Journal,
Vol. 51, No. 5, 2008, pp. 595-607.
doi:10.1093/comjnl/bxm124

[11] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell and J.
Liedtke, “The Mungi Single-Address-Space Operating Sys-
tem,” Software: Practice and Experience, Vol. 28, No. 9,
1998, pp. 901-928.
doi:10.1002/(SICI)1097-024X(19980725)28:9<901::AID
-SPE181>3.0.CO;2-7

[12] M. Stamp, “Information Security: Principles and Prac-
tice,” 2nd Edition, Wiley, Hoboken, 2011.
doi:10.1002/9781118027974

[13] J. Burke, J. McDonald and T. Austin, “Architectural Sup-
port for Fast Symmetric-Key Cryptography,” Proceed-
ings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Cambridge, 12-15 November 2000, pp. 178-189.
doi:10.1145/378993.379238

[14] N. Tuck, B. Calder and G. Varghese, “Hardware and Bi-
nary Modification Support for Code Pointer Protection

Copyright © 2012 SciRes. JIS

http://dx.doi.org/10.1109/TPDS.2002.1041883
http://dx.doi.org/10.1109/35.312842
http://dx.doi.org/10.1145/1851276.1851284
http://dx.doi.org/10.1145/208639.208641
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1109/CSAC.2003.1254326
http://dx.doi.org/10.1109/TC.1984.1676495
http://dx.doi.org/10.1093/comjnl/bxm124
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9%3c901::AID-SPE181%3e3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9%3c901::AID-SPE181%3e3.0.CO;2-7
http://dx.doi.org/10.1002/9781118027974
http://dx.doi.org/10.1145/378993.379238

L. LOPRIORE

Copyright © 2012 SciRes. JIS

90

from Buffer Overflow,” Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, Portland, 4-8 December 2004, pp. 209-220.
doi:10.1109/MICRO.2004.20

[15] Y. Younan, F. Piessens and W. Joosen, “Protecting Glo-
bal and Static Variables from Buffer Overflow Attacks,”
Proceedings of the 4th International Conference on Avail-
ability, Reliability and Security, Fukuoka, 16-19 March
2009, pp. 798-803. doi:10.1109/ARES.2009.126

[16] M. Anderson, R. D. Pose and C. S. Wallace, “A Password-
Capability System,” The Computer Journal, Vol. 29, No.
1, 1986, pp. 1-8. doi:10.1093/comjnl/29.1.1

[17] P. Gaži and U. Maurer, “Cascade Encryption Revisited,”
Proceedings of the 15th International Conference on the
Theory and Application of Cryptology and Information
Security, Tokyo, 6-10 December 2009, pp. 37-51.
doi:10.1007/978-3-642-10366-7_3

http://dx.doi.org/10.1109/ARES.2009.126
http://dx.doi.org/10.1093/comjnl/29.1.1
http://dx.doi.org/10.1007/978-3-642-10366-7_3

