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ABSTRACT 

The idea of this research is to apply sustainability and augment efficiency of the aquatic systems by intelligent tools. 
This paper exploits fuzzy logic approach as a flexible methodology for providing supplementary information about 
mercury removal in natural waters. Fuzzy logic generates information on Hg behaviour in water according to its uptake 
by bio-species and adsorption by sediments. Fuzzy Decision Support System (FDSS) comprises knowledge base (i.e. 
premises and conclusions), fuzzy sets, and fuzzy rules. Knowledge base and rules are being built manually and by algo- 
rithm. GA-FDSS incorporates genetic algorithm GA to build optimal approximation for knowledge base, fuzzy sets, 
and rules. The role of integrating GA with FDSS is to train knowledge base and rules automatically from available data, 
hence FDSS models and predicts conclusion acquired. The findings of this research show more than 95% correlation 
between observed data and soft computed data. The optimal biological uptake occurs at pH of 5.5. The optimal sedi-
ment adsorption occurs at pH of 8. The final mercury concentration calculated in natural waters is about 7  10–8 
mole/L. The results show that the removal efficiency of mercury by natural waters approaches 97%. Consequently the 
obtained fuzzy logic informative hierarchy is proficient to manage metals removal by aquatic systems. 
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1. Introduction 

In environmental engineering, natural ecosystems have 
been used as an efficient low-cost treatment processes for 
polluted waters [10]. Natural waters normally receive 
pollutants from human activities. The release of heavy 
metals into natural environments affects human and eco- 
logical ecosystems [22]. The presence of heavy metals in 
the environment is of major concern because of their 
toxicity, bio-accumulating tendency, threat to human life 
and the environment [25,26]. Heavy metals can be parti-
tioned to natural water components in different ways. 
The allocation of heavy metals to water components de- 
pends on variable environmental conditions [14,17]. The 
removal of metals from the water column within an 
aquatic system (e.g. streams, ponds, reservoirs, lakes) is 
achieved generally by biological uptake by bio-species 
and by adsorption onto sediments.  

A large quantity of materials has been investigated as 
biosorbents for the removal of metals extensively. The 
tested biosorbents can be basically classified into the fol- 
lowing categories: bacteria (e.g. Bacillus subtillis), fungi 
(e.g., Rhizopus arrhizus), yeast (e.g., Saccharomyces ce-  

revisiae), algae, industrial wastes (e.g., S. cerevisiae 
waste biomass from fermentation and food industry), wa- 
ter plants (e.g., Water Hyacinths and Reeds) [24]. The 
most important removal process in wetlands is biological 
by uptake in roots, stems and Leaves in plants [27]. The 
main route of metal uptake in aquatic plants was through 
the roots in surface floating plants, where roots and 
leaves take part in removing heavy metals and nutrients. 
Submerged rooted plants have metal uptake potential 
from water as well as sediments [28]. 

2. Methodology 

In this research, genetic algorithm and fuzzy logic are 
being used to model, assess, and predict mercury remo- 
val in natural waters. Investigational data and informa- 
tion for mercury bioavailability in water and adsorption 
on sediments were adopted from previous research work 
conducted in Concordia University-Canada [1,5,6,8,11, 
12]. The concept of utilizing genetic algorithm and fuzzy 
logic expert system to manage natural processes is being 
applied here by using GA-FDSS software that was de- 
veloped by the third author, professor Balazinski at École 
Polytechnique de Montréal-Canada [2,3]. 
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3. Fuzzy Decision Support System and 
Genetic Algorithm 

For the universe X and given the membership degree 
function μ{0, 1} the fuzzy set A is defined as: 

   ,, AA x XX X   Fuzzy logic is a superset of conventional logic that has 
been extended to handle the concept of partial truth, 
truth-values between “completely true” and “completely 
false”. It was introduced by Lotfi Zadeh of UC/Berkeley 
in the 1960’s as a mean to model the uncertainty of na- 
tural language. Fuzzy Logic is a departure from classical 
two-valued sets and logic, which uses “soft” linguistic 
(e.g. large, hot, tall) system variables and a continuous 
range of truth-values in the interval (0, 1), rather than 
strict binary (True or False) decisions and assignments 
[23].  

Fuzzy logic is derived from fuzzy set theory dealing 
with reasoning that is approximate rather than precisely 
deduced from classical predicate logic. It can be thought 
of as the application side of fuzzy set theory dealing with 
well thought out real world expert values for a complex 
problem. 

In classical set theory, a subset U of a set S can be de-
fined as a mapping from the elements of S to the ele-
ments of the set {0, 1}: 

 : 0,  1U S   

This mapping may be represented as a set of ordered 
pairs, with exactly one ordered pair present for each ele- 
ment of S. The first element of the ordered pair is an 
element of the set S, and the second element is an ele- 
ment of the set {0, 1}. The value zero is used to represent 
non-membership, and the value one is used to represent 
membership.  

The truth or falsity of the statement: 

x is in U 

is determined by finding the ordered pair whose first 
element is x.  The statement is true if the second element 
of the ordered pair is 1, and the statement is false if it is 
0. For example, the measure of temperature has to be 
transformed into a “high” or “low” value with a respec- 
tive degree of membership, before being processed by 
the inference engine. 

For any set S, its characteristic function fS(x) describes 
whether or not an element x is an element of the set S. 
Where fS(x) = 1 if true, and fS(x) = 0 if false. 

The membership function μA(x) quantifies the grade of 
membership of the elements x to the fundamental set X. 
The value 0 means that the member is not included in the 
given set, 1 describes a fully included member. The va- 
lues between 0 and 1 characterize fuzzy members  

Fuzzy decision support systems (FDSS) comprise rule- 
based approach to decision making using fuzzy logic 
techniques, based on the compositional rule of inference 
(CRI). This approach is used to handle uncertain know- 
ledge that can be collected and delivered by a human 
expert like decision-maker or designer. The CRI may be 
written in the following form: 

 U RC B A                (1) 

where: U  represents the output (conclusions); 
 , , ,A B C    represents the inputs (observations); the 
symbol   represents the CRI operator; R represents the 
global relation that aggregates all rules (knowledge base) 
[3]. 

Fuzzy rule-based systems are being applied to solve 
many types of real-world problems, especially where a 
system is difficult to model. Human operator or expert 
controls these systems. A typical fuzzy system consists 
of a rule base, membership functions, and inference pro-
cedures. Three defuzzification methods are usually avai- 
lable, i.e. center of area (COA), average of maximums 
(AOM), and the modified center of area (MCOA).  

Genetic algorithms (GA) deal with stochastic search 
method introduced in the 1970s by researchers such as 
Holland (1975) and Ingo Rechenberg (1973) [19,20]. GA 
is an optimization technique that simulates and imitates 
the analogy of biological genetics and emulates the phe- 
nomenon of selection of the fittest approach [16]. Based 
on generalization of natural evolutionary processes, ge- 
netic algorithms operate on a population of solutions 
rather than a single solution. Each individual of a popula- 
tion is a potential knowledge base that is encoded before 
applying four operations: crossover, mutation, evaluation/ 
natural selection, and decoding [15,18,21]. 

In Boolean logic: 
1, if

( )
0, ifs

x S
f x

x S

 
   

 

In Fuzzy logic, µS(x) describes the membership func- 
tion of S, or the degree to which x is a member of the set 
S, this is known as the degree of truth: 

1,

( ) 0,

0 ( ) 1,
s

s

if x is totally S

x if x is S

x if x is partially S





 
   







 

In GA-FDSS, the GA produces an optimal approxima- 
tion of a set of sampled data from a certain amount of 
input information [4]. The GA uses two main contradic- 
tory optimization criteria (i.e. the approximation error 
and the complexity level of the knowledge base). The 
approximation error is computed as the root mean square 
error between the sampled outputs and the answers of 
FDSS at the corresponding sampled input data. The com- 
plexity level is computed as the number of fuzzy rules 
contained in the knowledge base. The GA deals with 
many other criteria that also control the optimization pro- 
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bination of parameters: cess, e.g. the probability of crossover, the probability of 
fuzzy-sets displacement, the probability of fuzzy-rules 
reduction and the probability of mutation [15]. 

- Initial concentration of total mercury is in the range 
between 2.5  10–8 and 1  10–3 mole/L; 

- The pH value is situated between 5.36 and 8 [7,9]. 
The settings of FDSS implemented to maximum-mini- 

mum inference, COA defuzzification, MIN aggregation, 
MIN propagation, and MAX fusion. Nine rules were 
assigned to infer fuzzy premises into conclusion. 

FDSS was able to predict the speciation of bioavaila- 
ble mercury for variable combination of initial mercury 
concentration and pH. Subsequently, comparison is con- 
ducted between results obtained from the model of FDSS 
and experimental results (Figure 2). 

3.1. Fuzzy Decision Support System for Mercury 
Speciation 

The Fuzzy Decision Support System was constructed ma- 
nually into two premises (mercury concentration and pH) 
and one conclusion to predict mercury bioavailability for 
species bio-uptake (Figure 1). 

FDSS solutions were applied for any particular situa-
tion where natural conditions satisfy the following com- 
 

 

Figure 1. FDSS settings, premises, conclusion, and rules for mercury bioavailability within natural waters. 

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

9.00E-06

1.00E-05

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00

Hg initial  (mole/L)

B
io

av
ai

la
b

le
 H

g
 (

m
o

le
/L

)

Exp

Fuzzy

 

 

Figure 2. FDSS modeling for bioavailable mercury vs. initial mercury concentration in water when pH equals 5.36. 
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3.2. GA FDSS for Mercury Adsorption 

When genetic algorithm in FDSS is in a steady state, a 
newly-born child replaces the worst genotype of the po- 
pulation (data) in the process of creating solution using 
genetic operators. This process is repeated until optimi- 
zation criterion is met, which normally takes place when 
many of iterations have been accomplished. Hence ge- 
netically generated knowledge bases are ready for fuzzy 
inference system. 

The Genetic Algorithm is conducted through the fol-
lowing processes: 

1) Coding scheme for each possible solution by using 
a finite string of bits in the chromosome. 

2) Fitness value is assigned to each solution to check 
the quality of solution. 

3) Initial set of solutions to the problem, called initial 
population, is randomly generated or chosen according to 
prior knowledge. 

4) A set of reproduction is performed through muta- 
tion and natural selection operators that allow the deve- 
lopment of the population. 

To assess mercury removal by adsorption on sediments 
in natural aquatic systems, where the specific surface 
area is 130 m2/g and the adsorbent concentration is 10 g/L, 
GA-FDSS was applied for following variable conditions: 
- The initial concentration of total mercury is in the 

range between 1  10–7 to 1  10–3 moles; 
- The pH value is located between 5.36 to 8. 

Investigational data for mercury adsorption for differ- 
rent pH values are shown in Table 1. After GA approxi- 
mates the knowledge base, GA-FDSS model is able to si- 
mulate and predict mercury sorption on sediments (Fig- 
ure 3). For certain initial mercury concentrations the 
adsorbed mercury is decreasing from its upper value 
when pH equals 8 to its lower value when pH equals 5.36 
(Table 2). GA-FDSS was able to model mercury adsorp- 
tion with high correlation to experimental data as shown 
in Figure 4. 

4. Removal Efficiency 

The knowledge obtained in previous sections by fuzzy 
decision support systems is being used to assess removal 
efficiency. Heavy metal removal is allocated to uptake by 
bio-species and adsorption by sediments (Figure 5). The 
optimal biological uptake occurs at pH of 5.5. The opti- 
mal sediment adsorption occurs at pH of 8. The initial 
mercury concentration reported in natural waters is about 
7  10–7 mole/L (Table 3). The results show that the re- 
moval efficiency of mercury by natural waters appro- 
aches 97% (Figure 6). 

In the view of sorption mechanism that is implied in 
this research, Thomas expression for adsorption in co- 
lumns [13] spots the light about sorption capacity to be  

Table 1. Investigations of Adsorbed Hg concentration vs. 
(Hg Initial-pH of Solution), where the sediment concentra-
tion equals 10 g/L, and soil specific surface area equals 130 
m2/g [6]. 

pH of solution Hg initial (mole) Adsorbed Hg (mole) 

8 0.1 10 

6.5 0.1 1 

5.36 0.1 0.1 

8 1 10 

6.5 1 1 

5.36 1 0.1 

8 10 100 

6.5 10 10 

5.36 10 1 

8 100 100 

6.5 100 10 

5.36 100 1 

8 1000 1000 

6.5 1000 100 

5.36 1000 10 

 
Table 2. Experimental and FDSS-GA results for different 
initial mercury concentration and for different pH values, 
where the sediment concentration equals 10 g/L, and soil 
specific surface area equals 130 m2/g. 

Hg initial 
(mole) 

Exp. Adsorbed Hg 
(mole)  

GA-Fuzzy Hg adsorbed 
(mole) 

0.1 10 0.1 

0.1 1 0.1 

0.1 0.1 0.1 

1 10 4.6 

1 1 0.1 

1 0.1 0.1 

10 100 49.6 

10 10 0.1 

10 1 0.1 

100 100 499.6 

100 10 0.1 

100 1 0.1 

1000 1000 937.506 

1000 100 123.464 

 
Table 3: Parameters value for aquatic systems for optimal 
mercury removal. 

Design parameter Unit Value 

pH value For Sediments 8 

pH value For Bio-species 5.5 

Soil surface area m2/g 130 

Sediment concentration g/L 10 
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Figure 3. GA-FDSS settings, premises, conclusion, and rules for mercury adsorption on sediments within natural waters. 
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Figure 4. Comparison between Experimental and FDSS-GA results for different initial mercury concentration, when pH is 
varying between 5.36 - 8, for natural soil, where specific surface area equals to 130 m2/g and the adsorbent concentration 
equals to 10 g/L. 
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Figure 5. Mercury removal by bio-uptake and sediment adsorption in natural waters during 4 days (findings of FDSS for pH 
of 6.5 and initial Hg of 7E-7 mole/L). 
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Figure 6. Net Hg concentration during four days of time in aquatic natural system (findings of FDSS). 
 
taken in consideration. The sorbing materials are re- 
newed in nature, so if this system is to be engineered in a 
confined system, then the sorbing materials should not 
approach their capacity, or the system left naturally re- 
generated.  

5. Conclusion 

This research implies fuzzy decision support system to 
evaluate and manage mercury sorption in natural waters. 
FDSS model is consisted of premises, conclusion and 
rules to judge the conclusion from given input. FDSS 
models and predicts the amount of mercury uptaken by 
biological species and that adsorbed by sediments. The 
results of this research show more than 95% fitness be- 
tween observed data and modeled data by fuzzy. The op- 
timal biological uptake occurs at pH of 5.5. The optimal 
sediment adsorption occurs at pH of 8. The removal effi- 
ciency of mercury in natural waters approaches 97%. The 
findings and scenarios presented in this research can be 
applied to intelligent and sustainable water systems for 
heavy metal removal. 
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