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ABSTRACT

The purpose of this study is to compare a negative binomial distribution with a negative binomial—Lindley by using
stochastic orders. We characterize the comparisons in usual stochastic order, likelihood ratio order, convex order, ex-
pectation order and uniformly more variable order based on theorem and some numerical example of comparisons be-

tween negative binomial random variable and negative binomial—Lindley random variable.
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1. Introduction

The negative binomial (NB) distribution is a mixture of
Poisson distribution by mixing the Poisson distribution
and gamma distribution. The NB distribution is em-
ployed as a functional form that relaxes the overdisper-
sion (variance is greater than the mean) restriction of the
Poisson distribution (see [1]). If X denote a random
variable of NB distributed with parameter r and p then its
probability mass function is in form

1 .
f(x):(r+z )pr(l—p) , x=0,1,2,--,

r(1-p)
p

for r>0 and O<p<l1,with E(X)=

Var(X) = r(d zp) .
p

The negative binomial—Lindley (NB-L) distribution
which is a mixed negative binomial distribution obtained
by mixing the negative binomial distribution with a Lind-
ley distribution. The NB-L distribution was introduced
by Zamani and Ismail in [2] and it provides a model for
count data of insurance claims. If Y is a NB-L random
variable with parameter r and € then its probability

mass function is in form
;0 (0+1+]+1)

r+y-1\&(y
gl\y)= (-1
) [ y lzou( ) (0+r+i)
y=0,1,2,---,for r and 6>0, with

6’
(6+1)(6-1)°

E(Y)= —r,when 6>1,and
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Var(v) = (r2 +r)92 (6’—21) ~ (2r2 +r)¢93 2
(0+1)(0-2) (0+1)(6-1)
(o' =(o+1)(0-1) ]
(6+1) (6-1)’ ’
when 6>2.

In this respect, the aim of this work is to compare a
negative binomial distribution with negative binomial—
Lindley distribution base on stochastic orders such as
usual stochastic order, likelihood ratio order, convex or-
der, expectation order and uniformly more variable order.

2. Stochastic Orders

Stochastic orders are useful in comparing random vari-
ables measuring certain characteristics in many areas.
Such areas include insurance, operations research, queu-
ing theory, survival analysis and reliability theory (see
[3]). The simplest comparison is through comparing the
expected value of the two comparable random variables.
The following, we will define some notions of the sto-
chastic orders which will be used in the context of the
paper. For more details, we refer to Ross [4], Misra [5],
Shaked [6,7] and Singh [8].

Definition 1. Let X and Y be random variables with
densities f and g, respectively, such that g(k)/f(k) is
non-decreasing function in k over the union of the sup-
ports of X and Y, or, equivalently,
f(u)g(v)=f(v)g(u),forall u<v.Then X issmaller
than Y in the likelihood ratio order which is denoted by
X< Y.

—Ir
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Definition 2. Let X and Y be two random variables
such that Pr(Y <k)<Pr(X<k), for all keR. Then
X is smaller than Y in the usual stochastic order which is
denoted by X< Y.

Definition 3. Let X and Y be two random variables
such that E(¢p(X))<E(¢(Y)), for every real valued
convex function ¢ where expectations are assumed to
be existed. Then X is smaller than Y in convex order
which is denoted by X< Y.

Definition 4. Let X and Y be two random variables
such that E(X)<E(Y), where expectations are as-
sumed to be existed. Then X is smaller than Y in the ex-
pectation order which is denoted by X <, Y.

Definition 5. Let X and Y be two random variables
with densities f and g, respectively. Recall that supp(X)
and supp(Y) denote the respective support of X and re-
spective support of Y, such that supp(X) < supp(Y)
and the ratio f(k)/g(k) is a unimodal function over
supp(Y). Then X is smaller than Y in uniformly more
variable order which is denoted by X< Y.

3. Comparison

We make comparisons between the negative binomial
random variable and negative binomial—Lindley random
variable with respect to the likelihood ratio order, sto-
chastic order, convex order, expectation order and uni-
form more variable order. The following lemma will be
useful in proving the main results.

Lemma 1. Define,

ki[kJrlj(_l)j (O+1+j+1)

A : 2
a(k)=1- o\ J (9+I‘.+J) ond
Zk:[k](_l)j (O+r+j+1)
o\ (6’+r+j)2
k(j+r-1 ny
am-3["" jm[l-mr] ,
=0 ]
Vm, O<m<l1, k=0,1,2,--- Then,

1) a(k) isanon- increasing function of
ke{0.1,2,+},

2) For each fixed ke{0,1,2,---}, ¢ (m) is concave
function of me(0,1).

Proof.

1) We may write for a(k), k=0,1,2,--- that

[ (1=e) " n(2:0)d2
0

a(k)=1— s :E(Wk)s
[e# (1-¢7) n(4:6)d2
0

where h(-) isthe Lindley distribution defined by

2

h(z;H):; (1+z)e™, z>0 and >0

+1
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and W, is a random variable having the probability
density function:

() (0+1)e™ (1-¢) h(z0) oo,

oo

=0\ J (t9+r+j)2

For fixed ke{0,1,2,--}, the ratio y,,, (x)/w; (x)
is obviously a non-increasing function of x >0. Then,
by Definitions 1 and 2, we have W, >, W,,,, which
yields W, >, W, and therefore E(W,)>E(W,,,)
or, equivalently, a(k)>a(k+1). This proves a(k) is
a non-increasing function of k e {0,1,2,- . } .

2) For k=0, note that ¢,(m)=m is both convex
and concave. For k=1,2,---, we can write

gpk(m):l—Z(J r jm(l—mf],Vm,0<m<l.
j=k+1 ]
(1)

The relationship between negative binomial and beta
probabilities is of the form

© (r+r—1 - (k+r-1)! " 1
"(l-p) =—— [ ¢(1—t) dt,
2 O = A
K=0,1,2,--.

Therefore, ¢, (m) in Equation (1) can be written as

1

- T g

VYm, O<m«<I.

Thus,
o Lk b ! .
angok(m)__;(r—l)!r!m B e

Vm, O0<m<l1.

which proves concavity. O
Theorem 1. Let X ~NB(r,p), Y ~NB-L(r,d) and
1

_(6?+r+2)(0+r)2 . :[492(¢9+r+1)]r,

’ (¢9+r+1)3 (¢9+r)2
(6+1)(6-1)
P, :T.Then 0<p,<p, <p,<l.
Furthermore,

1) X<,Y ifandonlyif p2p,,

2) X<,Y ifandonlyif p2p,,

3) X< (2)Y ifandonlyif p>(<)p,,

Proof.

1) The likelihood ratio order between Y and X can be
written as
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k (k i 0 (0+1+]+1)
1(k)=Pr(Y:k):jZ(;(jj( (6+r+j) @
Pr(X=k) p(1-p)(0+1)

k=012,

By Definition 1, we have
X<, Y e l(k)<l(k+1), vk, ke{0,1,2,-},

e

i(O+r+j+1) 7
(6?+r+j)2
Sp> a(k), vk, k e {0,1,2,~--},
< p=p, =a(0).
Since a(k) is non-increasing in k (by part 1) in
Lemma 1), then p =p, which provides a necessary and
sufficient condition for the 1(k) in Equation (2) to be

non-decreasing. This completes the proof of the result.
2)Let X<, Y by Definition 2, we have

6’2(¢9+r+1)
(49+r) '

1
@ (O+r+1) [
>p2|———| =p,

(6’+r)2

Conversely, suppose that 0 <p, <p<1.
For k=0,1,2,---, consider

A, (k)= Pr(X <k)~Pr(Y <k)= i[”f‘ljpr (1-p)

i=0 1

ST ]

and if X ~NB(r,p) and X~ NB(r,p,), then
X<, X, . Hence, we get X< X, .

—Ir

Consequently,

) R RTEES Y R T I R

i=0 1 i

Sp2l-

Pr(Y<0)<Pr(X<0)=p' >

-0
and therefore A ( )= A (k)

& (0+r+1)
For fixed ke{0,1,2,---}, p, = (9—)

p=exp(-1) and A~ Lindley(0). We get

3, 00=3( " -0

o g
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= =

B

k (i+r—1 i
- E(P"(1-P
37 el -m))
Using concave function (by part 2) in Lemma 1),
A, (k) can be written as
E(q. (P1))-

Am (k) =P (E(Pr)) -

Applying Jensen’s inequality to concave function, we
have ¢, (E(Pr )) > E(¢k (Pr)) and A, (k)=0 for
vk, ke {0,1,2,--‘} . Conversely, where X<, Y im-
plies that Pr(Y <0)<Pr(X <0). This proves p=>p;.

3) The proofs of the results are obvious. O

Theorem 2. Suppose that, for every 0<t<I,
Pr(t<p<1)>0,then

1) No value of 0<p <1 canensurethat X< Y,

2) X<, Y ifandonlyif O0<p<p, <lI.

Proof.
Pr(X k)

Pr(Y =)

frying the numerator and denominator as following:

Pr(X zk):i[jJrj_ljpr(l—p)j,

1) We find R( ) , k=0,1,2,---, by re-

e

 (k+r-1)! (l—pr)(l—p)k
(k 1) (r 1) r(l—p) '

Forany O<p<p, <1, k=0,1,2,---,

-3 )

(6+1+j)
=i{ rﬁ—lﬁeM(l_ez)ih(,z;e)d/l}

0

E [r+ii_1je’“(l—e’l)ijh(l;ﬁ)dﬂ,
[ (k+r-1)t ="
k

OIS ! 1 (1-¢)" dtjh(l;@)dﬂ,

]og[ﬁ)
[ h(4:6)da |dt,

:£(1<—1)!(r—1)!tk71 (1=t
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Table 1. Stochastic orders comparisons of NB random variables with NB-L random variables.

Random Variables

Order Comparisons of NB Random Variables with NB-L Random Variables

NB(r,p) NB-L(r,0)
Y, ~NB-L(3,1.5 X<, Y,
Y, ~ NB-L(3,2.0 X<, Y, -

)
)
X ~NB(3,0.8) Y, ~NB-L(3,35) - -
)
)

X<, Y,

Usual stochastic order Likelihood ratio order Convex order Expectation order Uniformly more variable order

X<, Y, -
X<, Y, -
X<, Y, X< Y
X<, Y, X<, Y,

X< Y. X=, Y, X<, Y,

where H(-) is cumulative distribution function of
Lindley distribution:

0+1+0z _,,

H(z;0)=1- ool

, z>0 and 6>0.

B (k+r-1)!
Pr(Y>k)>H(p,;0)p " [ ———L—t"
r(Y2k)2 H(p:0)p -([(k—l)!(r—l)!
(k+r-1)! H(p1;49)p1"1(1—p1)k
k—1)!(r-1)! k '
(k=1)!(r=1)
k(1-r") (1_ka

r(1-p)pi H(p;0)\1-p, )

k 1_ r _ k

Since lim <Hp) [1 pj =0, we have

e r(1-p)p; H(p;;0)\1-p;

then llimR(k)zo, Vp, <p<l1.

dt,

So, R(k)<

Therefore, it follows that, for any 0 <p <1, there ex-
ists a sufficiently large k such that
Pr(X >k)<Pr(Y >k). This validates the result.

2) Suppose that 0 <p, <p<1. Then, from part 2) in
Theorem 1 and part 1) in Theorem 2, it is clear that ran-
dom variables X and Y are not ordered by the usual sto-
chastic order. Also, from the arguments used in the proof
of part 1) in Theorem 1, since p <p, it follows that
Pr(X =k)/Pr(Y =k) is non-increasing and unimodal,
implying that X <_ Y . The converse part follows by
using the similar arguments. O

Theorem 3. Suppose that p =p, . Then,

1) X<, Y

2) X<, Y.

Proof.

1) Follows from part 2) in Theorem 2, we have
X<, Y ,where p, <p,.

2)Since X<,Y and

3
EY)=— 0 TP gy,
(6+1)(6-1) P
by the result of Shaked in [4], X<, Y.

Next, We shows some numerical examples of the

comparisons between negative binomial random variable
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with negative binomial—Lindley random variable in
usual stochastic order, likelihood ratio order, convex or-
der, expectation order and uniformly more variable order
and the results are provided in Table 1.

Then, we explain that negative binomial random vari-
able (X) is smaller than negative binomial—Lindley ran-
dom variable (Y) in the usual stochastic order implies
that X <. Y. In addition, if X and Y have respective
supports supp(X) and supp(Y), such that supp(X) <
supp(Y) and the ratio Pr(X =k)/Pr(Y =k) is a uni-
modal function over supp(Y) but X and Y are not or-
dered in the usual stochastic order. Furthermore, if X and
Y have a same mean. Then X <Y implies that
X<, Y.

4. Conclusion

This paper shows stochastic orders comparison of nega-
tive binomial random variable with a negative binomial—
Lindley random variable by usual stochastic order, like-
lihood ratio order, convex order, expectation order and
uniformly more variable order. Some advantages of sto-
chastic orders comparison between negative binomial
random variable and negative binomial—Lindley random
variable are as follows: If negative binomial random
variable (X) is smaller than negative binomial—Lindley
random variable (Y) in the usual stochastic order. Its
usefulness is that it gives a simple sufficient condition for
X is smaller than Y in the expectation order. Next, if
supp(X) < supp(Y) is that it implies that the ratio

Pr(X =k)/Pr(Y =k) is a unimodal function over supp(Y)
but X and Y are not ordered in the usual stochastic order.
Finally, If X and Y have a same mean, it is known that X
is smaller than Y in uniformly more variable order im-
plies that X is smaller than Y in convex order. This con-
clusion is supported by numerical examples.
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