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ABSTRACT 

The purpose of this study is to compare a negative binomial distribution with a negative binomial—Lindley by using 
stochastic orders. We characterize the comparisons in usual stochastic order, likelihood ratio order, convex order, ex-
pectation order and uniformly more variable order based on theorem and some numerical example of comparisons be-
tween negative binomial random variable and negative binomial—Lindley random variable. 
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1. Introduction    
  

 
  The negative binomial (NB) distribution is a mixture of 

Poisson distribution by mixing the Poisson distribution 
and gamma distribution. The NB distribution is em-
ployed as a functional form that relaxes the overdisper-
sion (variance is greater than the mean) restriction of the 
Poisson distribution (see [1]). If X denote a random 
variable of NB distributed with parameter r and p then its 
probability mass function is in form 
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The negative binomial—Lindley (NB-L) distribution 
which is a mixed negative binomial distribution obtained 
by mixing the negative binomial distribution with a Lind- 
ley distribution. The NB-L distribution was introduced 
by Zamani and Ismail in [2] and it provides a model for 
count data of insurance claims. If Y is a NB-L random 
variable with parameter r and   then its probability 
mass function is in form  
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In this respect, the aim of this work is to compare a 

negative binomial distribution with negative binomial— 
Lindley distribution base on stochastic orders such as 
usual stochastic order, likelihood ratio order, convex or-
der, expectation order and uniformly more variable order.  

2. Stochastic Orders 

Stochastic orders are useful in comparing random vari-
ables measuring certain characteristics in many areas. 
Such areas include insurance, operations research, queu-
ing theory, survival analysis and reliability theory (see 
[3]). The simplest comparison is through comparing the 
expected value of the two comparable random variables. 
The following, we will define some notions of the sto-
chastic orders which will be used in the context of the 
paper. For more details, we refer to Ross [4], Misra [5], 
Shaked [6,7] and Singh [8]. 

Definition 1. Let X and Y be random variables with 
densities f and g, respectively, such that  g k f k  is 
non-decreasing function in k over the union of the sup-
ports of X and Y, or, equivalently,  
       f u g v f v g u u v

lrX Y

, for all . Then X is smaller 
than Y in the likelihood ratio order which is denoted by 

 .  
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Definition 2. Let X and Y be two random variables 
such that , for all . Then 
X is smaller than Y in the usual stochastic order which is 
denoted by .  

 Pr Y k

X Y

 X kPr  k

  E Y 

st

Definition 3. Let X and Y be two random variables 
such that , for every real valued 
convex function 

  E X
  where expectations are assumed to 

be existed. Then X is smaller than Y in convex order 
which is denoted by .  cx

Definition 4. Let X and Y be two random variables 
such that , where expectations are as-
sumed to be existed. Then X is smaller than Y in the ex-
pectation order which is denoted by . 

X Y

   X YE E
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E

Definition 5. Let X and Y be two random variables 
with densities f and g, respectively. Recall that supp(X) 
and supp(Y) denote the respective support of X and re-
spective support of Y, such that supp(X)  supp(Y) 
and the ratio f k g k

uvX Y

 
 

 is a unimodal function over 
supp(Y). Then X is smaller than Y in uniformly more 
variable order which is denoted by . 

3. Comparison 

We make comparisons between the negative binomial 
random variable and negative binomial—Lindley random 
variable with respect to the likelihood ratio order, sto-
chastic order, convex order, expectation order and uni-
form more variable order. The following lemma will be 
useful in proving the main results. 

Lemma 1. Define,  
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where  is the Lindley distribution defined by  
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and kW  is a random variable havin proba ility 
density function: 
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For fixed  k 0,1,2,  , the ratio    k 1 kx x   
is obviously a non-increasing function of x 0 . Then, 
by  1 and 2, we lr k 1 Definitions  have kW W  , which 
yields k st k 1W W   and therefore    E Wk k 1E W   
or, equivalently,    a k a k 1  . This proves  a k  is 
a non-increasing function of k 0,1

2) For k 0
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(1)  

The relationship between negative binomial and beta
probabilities is of the form  
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Therefore,  k m  in Equation (1) can be written as  
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which proves concavity. □ 
Theorem 1. Let  X ~ NB r,p ,  Y ~ NB-L r,  and  
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Table 1. Stochastic orders comparisons of NB random variables with NB-L random variables. 

Random Variables Order Comparisons of NB Random Variables with NB-L Random Variables 

 NB r, p   NB-L r,  Usual stochastic order Likelihood ratio order Convex order Expectation order Uniformly more variable order
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