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Abstract 
 
For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is 
proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the 
complete information for high-speed networks. In this case, the Q-learning, which is independent of 
mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order 
to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent 
parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to 
regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the 
occurrence of congestion effectively. 
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1.  Introduction 
 
The growing interest on congestion problems in high- 
speed networks arise from the control of sending rates of 
traffic sources. Congestion problems result from a 
mismatch of offered load and available link bandwidth 
between network nodes. Such problems can cause high 
packet loss ratio (PLR) and long delays, and can even 
break down the entire network system because of the 
congestion collapse. Therefore, high-speed networks 
must have an applicable flow control scheme not only to 
guarantee the quality of service (QoS) for the existing 
links but also to achieve high system utilization. 

The flow control of high-speed networks is difficult 
owing to the uncertainties and highly time-varying of 
different traffic patterns. The flow control mainly checks 
the availability of bandwidth and buffer space necessary 
to guarantee the requested QoS. A major problem here is 
the lack of information related to the characteristics of 
source flow. Devising a mathematical model for source 
flow is the fundamental issue. However, it has been 
revealed to be a very difficult task, especially for 
broadband sources. In order to overcome the 
above-mentioned difficulties, the flow control scheme 
with learning capability has been employed in flow 
control of high-speed network [1,2]. But the 
priori-knowledge of system to train the parameters in the 
controller is hard to achieve for high-speed networks. 

In this case, the reinforcement learning (RL) shows its 
particular superiority, which just needs very simple 
information such as estimable and critical information, 
“right” or “wrong” [3]. RL is independent of mathematic 
model and priori-knowledge of system. It obtains the 
knowledge through trial-and-error and interaction with 
environment to improve its behavior policy. So it has the 
ability of self-learning. Because of the advantages above, 
RL has been played a very important role in the flow 
control in high-speed networks [4-7]. The Q-learning 
algorithm of RL is easy for application and has a firm 
foundation in the theory. In [8], a Metropolis criterion 
based Q-learning controller is proposed to solve the 
problem of flow control in high-speed networks. 

In Q-learning based control, the learning agent should 
visit each state in a reasonable time. But in high-speed 
networks, the state space is large, so the usual approach 
of storing the Q-values in a look-up table is impractical. 
In [8], a state space partitioning method is introduced to 
reduce the number of state variables, but it can not solve 
this problem ultimately. In this paper, we adopt fuzzy 
Q-learning (FQL), which is an adaptation of Q-learning 
for fuzzy inference system (FIS), to facilitate 
generalization the state space. In FQL, both the actions 
and Q-values are inferred from fuzzy rules, and it can 
map a state-action pair to a Q-value in a continuous state 
space. Furthermore, we employ the changes of q  
values as the fitness values, and use the genetic operators 
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to obtain the consequent parts of fuzzy rules. 
In this paper, a genetic based fuzzy Q-learning flow 

controller (GFQC) for high-speed networks is proposed. 
The proposed controller can behave optimally without 
the explicit knowledge of the network environment, only 
relying on the interaction with the unknown environment 
and provide the best action for a given state. By means of 
learning process, the proposed controller adjusts the source 
sending rate to the optimal value to reduce the average 
length of queue in the buffer. Simulation results show that 
the proposed controller can avoid the occurrence of 
congestion effectively with the features of high throughput, 
low PLR, low end-to-end delay, and high utilization. 
 
2.  Theoretical Framework 
 
2.1.  Architecture of the Proposed Flow Controller 
 
The architecture of the proposed GFQC is shown in 
Figure 1. In high-speed networks, GFQC in bottleneck 
node acts as a flow control agent with flow control 
ability. The inputs of GFQC are state variables S  in 
high-speed networks composed of the current queue 
length Lq , the current change rate of queue length &Lq , 
and the current change rate of source sending rate &u . 
The output of GFQC is the feedback signal a  to the 
traffic sources, which is the ratio of the sending rate. It 
determines the sending rate u  of traffic sources. The 
learning agent and the network environment interact 
continually in the learning process. At the beginning of 
each time step of learning, the controller senses the states 
for the network and gets the reward signal. Then it 
selects an action to make decision on which ratio the 
sources should use to determine the source sending rate. 
The determined sending rate can reduce the PLR and 
increase the link utilization. After the sources take the 
determined rate to send the traffic, the network changes its 
state and gives a new reward to the controller. Then the 
next step of learning begins. 
 
2.2.  Fuzzy Q-Learning Flow Controller 
 
Q-learning learns utility values (Q-values) of state and 
action pairs. During the learning process, learning agent 
uses its experience to improve its estimate by blending 
new information into its prior experience. 
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Figure 1. Architecture of the proposed GFQC. 

In general form, Q-learning algorithm is defined by a 
tuple , , ,< >S A r p , where S  is the set of discrete state 

space of high-speed networks; A  is the discrete action 
space, which is the feedback signal to traffic sources; 

: × →S A Rr  is the reward of the agent; : ( )× →∆S Ap s  

is the transition probability map, where ( ) [0,1]∆ ∈s  is 

the set of probability distributions over state space S . 
Q-learning provides us with a simple updating 

procedure, in which the learning agent starts with 
arbitrary initial values of ( , )Q s a  for all ∈Ss , ∈ Aa , 
and updates the Q-values as 

( ) ( ) ( ) ( )1 1, 1 , max ,t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
 = − + +
 

(1) 
where α  is the learning rate and [0,1)β ∈  is the 

discount rate [9]. 
It is vital to choose an appropriate r in Q-learning [10]. 

In this paper, based on the requirement and experience of 
the buffer, r is defined as 
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where LTq  is the set value of queue length in the buffer. 
Refer to (2), if the value of Lq  is less than 0.9 LTq  or 
more than 1.1 LTq , 0=r , the control result should be 
considered bad. If the value of Lq  is equal to Lq , 

1=r , it can be thought that the control result is good. 
Otherwise, r is in the range (0,1), the larger r is, the 
better control affects. 

In Q-learning based control, the usual approach of 
storing the Q-values in a look-up table is impractical in 
the case of a large state space in high-speed networks. 
Furthermore, it is unlikely to visit each state in a 
reasonable time. Fuzzy Q-learning is an adaptation of 
Q-learning for fuzzy inference system, where both the 
actions and Q-values are inferred from fuzzy rules [11]. 

In high-speed networks, FIS relies on three 
parameters ( , , )S & &L Lq q u  to generate a selected action a . 

For an input state { , , }=s & &L Lq q u , we find the activate 

value of each rule : ( )ω si
iR . Each rule has m  possible 

discrete control actions 1 2{ , , , }=A L ma a a , and a 

parameter called q  value associated with each control 

action. The state associates to each action in iR , a quality 
with respect to the task. In FQL, one builds an FIS with 
competing actions for each rule ∈i N  designated as 

1 2 3:  If  is  and  is  and  is 
          then  is  with 

i i i i
L L

i i
j j

R q L q L u L
a a q

& &
       (3) 

where i
jq  is the thj  q value in a rule i and 
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i
sL =linguistic term (fuzzy label) of input variable ss  in 

rule iR , its membership function is denoted by µ i
sL . 

The q  values in (3) are calculated according to total 

accumulated rewards and rules’ activate values. 
The functional blocks of FIS are a fuzzifier, a 

defuzzifier, and an inference engine containing a fuzzy 
rule base [12]. The fuzzifier performs the function of 
fuzzification that translates the value of each input 
linguistic variable into fuzzy linguistic terms. These 
fuzzy linguistic terms are defined in a term set ( )SF  and 
are characterized by a set of membership function ( )µ S . 
The defuzzier describes an output linguistic variable of 
selected action a  by a term set ( )F a , characterized by 
a set of membership functions ( )µ a , and adopts a 
defuzzification strategy to convert the linguistic terms of 

( )F a  into a nonfuzzy value representing selected action a . 
The term set should be determined at an approximate 

level of granularity to describe the values of linguistic 
variables. The term set for Lq  is defined as ( ) =LF q  
{ ( ),Low L  ( ), ( )}Medium M High H , which is used to 
describe the degree of queue length as “Low”, 
“Medium”, or “High”. The term set for &Lq  is defined as 

( ) { ( ), ( )}=&LF q Decrease D Increase I , which describes 
the change rate of queue length as “Decrease” or 
“Increase”. The term set for &u  is defined as ( ) =&F u  
{ ( ), ( )}Negative N Positive P , which describes the change 
rate of source sending rate as “Negative” or “Positive”. 
On the other hand, in order to provide a precise graded 
feedback signal in various states, the term for feedback 
signal is defined as ( ) { ( ),=F a Higher HE  ( ),High H  

( ), ( ), ( )}Normal N Low L Lower LE . The membership 
functions (MFs) are shown in Figure 2. 

In each rule iR , the learning agent (controller) can 
choose one action i

ja  from the action set =A  

1 2{ , , , }L ma a a . The inferred global continuous action ta  
at state s  is calculated as 
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Figure 2. MFs of term set (a) ( )LF q , (b) ( )LF q& , (c) ( )F u& , 

and (d) ( )F a . 

where i
ja  is the action selected in rule iR  using a 

Metropolis criterion based exploration/exploitation 
policy in [8]. 

Following fuzzy inference, the Q-value for the 
inferred action ta  is calculated as 
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Under action ( )sta , the system undergoes transition 

1+→s s
r

t t  where r  is the reward received by the 
controller. This information is used to calculate temporal 
difference (TD) approximation error as 

( ) ( )1max , ,β +∆ = + ⋅ −s st t ta
Q r Q a Q a        (6) 

The change of q  value can be found by 

( )
( )

1

 
ω

ω
=

∆ = ∆ ⋅
∑

s

s

i ti
j N

i t
i

q Q                     (7) 

We can rewrite the learning rule (1) of q  parameter 
values as 

 α← + ⋅∆i i i
j j jq q q                        (8) 

 
2.3.  The Genetic Operator Based Flow Controller 
 
In this section we develop the fuzzy Q-learning 
controller by genetic operators. The consequent parts of 
fuzzy rules need to compete for survival within a niche. 
In this case, each rule in FIS maintains a q  value, but it 
is no longer an estimation of accumulated rewards. The 
max operator in standard fuzzy Q-learning is not used 
since the rules that have maximum q  value no longer 
represent rules with the best rewards. Because it is not 
suitable to use the q  values as the fitness values in the 

learning, we employ their changes ∆q  as the fitness 
values. In this paper the fuzzy rule in (3) can be rewritten 
as follows: 

1 2 3:  If  is  and  is  and  is 
          then  is  with  and 

i i i i
L L

i i i
j j j

R q L q L u L
a a q q∆

& &
         (9) 

The fitness value for a rule is an inverse measure of 
∆q . By using the fitness value calculation in [13], a 
predicted rule accuracy κ  at time step t  is defined as 

( )0

0  
otherwise

ηκ
η

− ∆ −∆ ∆ > ∆= 


tq q
t

t

e q q
            (10) 

The accuracy falls off exponentially for 0∆ > ∆tq q . 

0∆q  is an initial value. The predicted accuracy in (10) 
can be used to adjust rule’s fitness value tf  using the 
standard Widrow-Hoff delta rule 

( )  χ κ= + −t t t tf f f                    (11) 

where x is an adjust rate of fitness values. 
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The niche genetic operators can prevent the 
population from the premature convergence or the 
genetic drift resulting from the selection operator. The 
niche genetic operators maintain population diversity and 
promote the formation of sub-population in the 
neighbourhood of local optimal solutions. In fuzzy 
Q-learning, the fitness sharing is implicitly implemented 
by assigning fitness values to the activated rules based on 
their contributions. The fuzzy rule antecedent constitutes 
an evolving niche or sub-population where the fuzzy 
rules with the same antecedent share similar environment 
states. The rule consequences or actions need to compete 
for survival within a niche, while the rules from different 
niches co-operate to generate the output. 

In the definition of a fuzzy rule in (9), a fuzzy rule can 
be defined as a sub-population and the rule actions are 
encoded as individuals in sub-population. If there are N  
rules in fuzzy Q-learning, there will be N  
sub-population. As shown in Figure 3, in each learning 
step, the reward from the environment is apportioned to 
the rules that are activated in the previous step. The 
rule’s fitness values are accordingly updated in the form 
of (11). There is a winner action in each sub-population 
and the winner actions from all sub-population are 
formed the consequent parts of fuzzy rules. The selection 
for the winners in sub-population is implemented by the 
niche genetic operator. The niche genetic operator uses 
two operators to select the actions: 

Reproduce operator: individuals in each sub- 
population are selected as winners in terms of their 
fitness values. The roulette wheel selection is used. 

Mutation operator: the mutation is taken for each 
sub-population with a mutation probability. The operator 
chooses an individual from sub-population randomly to 
replace a winner in the sub-population. 

In the learning process, the network environment 
provides current states and rewards to the learning agent. 
The learning agent produces actions to perform in the 
network. The learning agent includes a performance 
component, a reinforcement component, and a discovery 
component. 

The performance component reads states from 
network environment, calculates activation degrees of 
fuzzy rules, and generates an action. The action is then 
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Figure 3. Learning mechanism of genetic operator. 

executed by the traffic sources. The network moves into 
next state and receives evaluating reward from the 
network environment for its action. 

The discovery component plays an action selection 
role. Two genetic operators are used to implement the 
selection. Finally, a set of rule actions is selected for the 
performance component. 

The reinforcement component serves to assign the reward 
to the individual rules that are activated by current state. 
 
3.  Simulation and Comparison 
 
The simulation model of high-speed network, as shown 
in Figure 4, is composed of two switches, Sw1 with a 
control agent and Sw2 with no controller are cascaded. 
The constant output link L is 80Mbps. The sending rates 
of the sources are regulated by the flow controllers 
individually. 

In the simulation, we assume that all packets are with 
a fixed length of 1000bytes, and adopt a finite buffer 
length of 20packets in the node. On the other hand, the 
offered loading of the simulation varies between 0.6 and 
1.2 corresponding to the systems’ dynamics; therefore, 
higher loading results in heavier traffic and vice versa. 
For the link of 80Mbps, the theoretical throughput is 
62.5K packets. 

From the knowledge of evaluating system performance, 
the parameters of the membership functions for input 
linguistic variables in FIS are selected as follows. For 

( )µL Lq , ( )µM Lq , and ( )µH Lq , 0=aL , 6=bL , 

1
10=bL , 

1
2=aM , 8=aM , 12=bM , 

1
20=bM , 

1
9=aH , 14=aH , 20=bH , and 

1
20=bH ; for 

( )µ &D Lq  and ( )µ &I Lq , 4=aD , 
1

2= =b bD D , 

1
2= =a aI I , and 4=bI ; for ( )µ &N u  and ( )µ &P u , 

0.8=aN , 0.4=bN , 
1

0.2=bN , 
1

0.2=aP , 0.4=aP , 

and 0.8=bP . Also, the parameters of the membership 
functions for output linguistic variables are given by 

0 0.2=LE , 0 0.4=L , 0 0.6=N , 0 0.8=H , and 

0 1=HE . 
The fuzzy rule base is an action knowledge base, 

characterized by a set of linguistic statements in the form 
of “if-then” rules that describe the fuzzy logic relationship 
between the input variables and selected action. After the 
leaning process, the inference rules in fuzzy rule base 
under various system states are shown in Table I. 
According to fuzzy set theory, the fuzzy rule base forms a 
fuzzy set with dimensions 3×2×2=12. For example, rule 
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Figure 4. The simulation model of network with two switches. 
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1 can be linguistically started as “if the queue length is 
low, the queue length change rate is decreased, and the 
sending rate change rate is negative, then the feedback 
signal is Higher.” 

In the simulation, four schemes of flow control agent, 
AIMD, standard reinforcement learning-based neural 
flow controller (RLNC), Metropolis criterion based Q- 
learning flow controller (MQLC), and the proposed 
GFQC are implemented individually in high-speed 
network. The first scheme AIMD increases its sending 
rate by a fixed increment (0.11) if the queue length is 
less than the predefined threshold; otherwise the sending 
rate is decreased by a multiple of 0.8 of the previous 
sending rate to avoid congestion [14]. Finally, for the 
other schemes, the sending rate is controlled by the 
feedback control signal ta  periodically. The controlled 
sending rate is defined by the equation 

 =t tu a FL                    (12) 

where [0.2,1.0]∈ta  is the feedback signal by the 
flow controller, F  is a relative value in the ratio of 
source offered load to the available output bit rate, L  
denotes the outgoing rate of link, and [0.2 , ]∈ ⋅tu FL FL  
is the controlled sending rate at sample time t . 

In simulation four measures, throughput, PLR, buffer 
utilization, and packets’ mean delay, are used as the 
performance indices. The throughput is the amount of 
received packets at specified nodes (switches) without 
retransmission. The status of the input multiplexer’s 
buffer in node reflects the degree of congestion resulting 
in possible packet losses. For simplicity, packets’ mean 
delay only takes into consideration the processing time at 
node plus the time needed to transmit packets. 

The performance comparison of throughput, PLR, 
buffer utilization, and mean delay controlled by four 
different kinds of agents individually are shown in 
Figure 5-8. The throughput for AIMD method decrease 
seriously at loading of 0.9. Conversely, the GFQC 
proposed remain a higher throughput even though the 
offered loading is over 1.0, and can decrease the PLR 
enormously with high throughput and low mean delay. 
The GFQC has a better performance over RLNC and 
MQLC in PLR, buffer utilization, and mean delay. It 
demonstrates once again that GFQC possesses the ability 
to predict the network behavior in advance. 
 

Table 1. Rule table of FIS. 

Rule Lq Lq& u& a Rule Lq Lq& u& a 

1 L D N HE 7 M I N N 

2 L D P H 8 M I P LE 

3 L I N N 9 H D N L 

4 L I P N 10 H D P LE 

5 M D N H 11 H I N L 

6 M D P L 12 H I P LE 

0.6 0.7 0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7
x 10

5

offered loading

th
ro

u
g

h
p

u
t

AIMD
RLNC
MQLC
GFQC

 
 

Figure 5. Throughput versus various offered loading. 
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Figure 6. PLR versus various offered loading. 
 
 

0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

offered loading

m
e

a
n

 b
u

ff
e

r 
(p

a
ck

e
t)

AIMD
RLNC
MQLC
GFQC

 
 

Figure 7. Mean buffer versus various offered loading. 
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Figure 8. Mean delay versus various offered loading. 

 
4.  Conclusions 
 
In the flow control of high-speed networks, the reactive 
scheme AIMD could not accurately respond to a 
time-varying environment due to the lack of prediction 
capability. The fuzzy Q-learning flow controller has 
good performance when the state space of high-speed 
network is large and continuous. The genetic operator is 
introduced to obtain the consequent parts of fuzzy rules. 
Through a proper training process, the proposed GFQC 
can respond to the networks’ dynamics and learn 
empirically without prior information on the 
environmental dynamics. The sending rate of traffic 
sources can be determined by the well-trained flow 
control agent. Simulation results have shown that the 
proposed controller can increase the utilization of the 
buffer and decrease the PLR simultaneously. Therefore, 
the GFQC proposed not only guarantees low PLR for the 
existing links, but also achieves high system utilization. 
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