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Abstract

For the congestion problems in high-speed netwakgenetic based fuzzy Q-learning flow controlker i
proposed. Because of the uncertainties and highig-varying, it is not easy to accurately obtaie th
complete information for high-speed networks. lis tlbase, the Q-learning, which is independent of
mathematic model, and prior-knowledge, has gootbpaance. The fuzzy inference is introduced in orde
to facilitate generalization in large state spao®] the genetic operators are used to obtain theeqoent
parts of fuzzy rules. Simulation results show tihat proposed controller can learn to take the detsbn to
regulate source flow with the features of high tigtmput and low packet loss ratio, and can avoid the
occurrence of congestion effectively.
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1. Introduction In this case, the reinforcement learning (RL) shdws/s
particular superiority, which just needs very siepl

The growing interest on congestion problems in high information such as estimable and critical inforiomat

speed networks arise from the control of sendibgsraf  19ht" or “wrong” [3]. RL is independent of matheatic
traffic sources. Congestion problems result from amodel and priori-knowledge of system. It obtaine th

mismatch of offered load and available link bandtvid Kknowledge through trial-and-error and interactioithw
between network nodes. Such problems can cause higBhvironment to improve its behavior policy. Soatthe
packet loss ratio (PLR) and long delays, and camev ability of self-learning. Because of the advantagjesve,
break down the entire network system because of thékL has been played a very important role in thevflo
congestion collapse. Therefore, high-speed networkscontrol in high-speed networks {4]. The Q-learning
must have an applicable flow control scheme noy eml  algorithm of RL is easy for application and hasirenf
guarantee the quality of service (QoS) for thetéxgs  foundation in the theory. In [8], a Metropolis eribn

links but also to achieve high system utilization. based Q-learning controller is proposed to solve th
The flow control of high-speed networks is diffitul problem of flow control in high-speed networks.
owing to the uncertainties and highly time-varyiaf In Q-learning based control, the learning agentikho

different traffic patterns. The flow control mainthecks  visit each state in a reasonable time. But in ighed
the availability of bandwidth and buffer space rssegy  networks, the state space is large, so the usypabaph
to guarantee the requested QoS. A major problemiser of storing the Q-values in a look-up table is ingpical.
the lack of information related to the charactessof In [8], a state space partitioning method is introedl to
source flow. Devising a mathematical model for seur reduce the number of state variables, but it cdrsolve
flow is the fundamental issue. However, it has beenthis problem ultimately. In this paper, we adoptzy
revealed to be a very difficult task, especiallyr fo Q-learning (FQL), which is an adaptation of Q-léagn
broadband sources. In order to overcome thefor fuzzy inference system (FIS), to facilitate
above-mentioned difficulties, the flow control sofe  generalization the state space. In FQL, both th®rac
with learning capability has been employed in flow and Q-values are inferred from fuzzy rules, andaib
control of high-speed network [1,2]. But the map a state-action pair to a Q-value in a contisusiate
priori-knowledge of system to train the parameterthe ~ space. Furthermore, we employ the changes qgof
controller is hard to achieve for high-speed neksor values as the fitness values, and use the gem#iaiors
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to obtain the consequent parts of fuzzy rules. In general form, Q-learning algorithm is defined dy
In this paper, a genetic based fuzzy Q-learning/flo tuple <S,A,r,p>, where S is the set of discrete state

controller (GFQC) for high-speed networks is pr@ibs  gpace of high-speed networks; is the discrete action

The proposed controller can behave optimally withou space, which is the feedback signal to traffic sesy

the _epr|C|t kno_wledge_ of th_e network envwonm_eurrujy r:SxA LR is the reward of the agentp: SxA — A(s)
relying on the interaction with the unknown enviment

and provide the best action for a given state. Bams of IS the transition probability map, wher&(s) UJ[0,1] is
learning process, the proposed controller adjbstsource  the set of probability distributions over state@pes.
sending rate to the optimal value to reduce theamee Q-learning provides us with a simple updating
Iength of queue in the buffer. Simulation resultevg that rocedure, in which the |earning agent starts with

the proposed chtrollgr can avoid the occurrence ofgrbitrary initial values ofQ(s,a) forall sO0S, alA,
congestion effectively with the features of highotighput,  and updates the Q-values as

low PLR, low end-to-end delay, and high utilization
Qt+1 (S ) at) = (1_a)Qt (S 1 ) +a[rt + IB maa)Qt (St+1 ﬁ):|

2. Theoretical Framework (1)

where a is the learning rate ands0[0,1) is the
2.1. Architectureof theProposed Flow Controller discount rate [9].

It is vital to choose an appropriatén Q-learning [10].

The architecture of the proposed GFQC is shown injn this paper, based on the requirement and expaief
Figure 1. In high-speed networks, GFQC in bottlénec the pyfferr is defined as

node acts as a flow control agent with flow control

ability. The inputs of GFQC are state variabl8sin 0 q 21.Jg orq < 0.9,
high-speed networks composed of the current queue 1197 —-q,

length g, , the current change rate of queue length T Or <q. <1.g;

and the current change rate of source sending uate r= LT 2
The output of GFQC is the feedback sigralto the q. —0.99,¢ 0.90, <q, <

traffic sources, which is the ratio of the sendiatg. It 0.19,; A <GS
determines the sending rate of traffic sources. The 1 _

learning agent and the network environment interact G =G

continually in the learning process. At the begindf  where q; is the set value of queue length in the buffer.
each time step of learning, the controller serisestates  Refer to (2), if the value ofg, is less than0.9q; or

forl the network and getks tge reward sigr?a:i -;',en 'more than1l.1g;, r =0, the control result should be
selects an action to make decision on which rdi® t . 1 iered bad. If the value aj, is equal to .

sources should use to determine the source senalieg A .

The determined sending rate can reduce the PLR an =1, 'F can 'be. thought that the control resu!t is good
increase the link utilization. After the source&etahe therwise,r is in the range(0,1), the largerr is, the
determined rate to send the traffic, the networnges its ~ Petter control affects.

state and gives a new reward to the controllernTthe In Q-learning based control, the usual approach of
next step of learning begins. storing the Q-values in a look-up table is impreaitin

the case of a large state space in high-speed retwo
Furthermore, it is unlikely to visit each state &
reasonable time. Fuzzy Q-learning is an adaptaion
Q-learning for fuzzy inference system, where bdtha t
actions and Q-values are inferred from fuzzy r{dd3.

In high-speed networks, FIS relies on three
parametersS(q,, ¢, ,U) to generate a selected acti@n

For an input states={q,, q.,d , we find the activate

2.2. Fuzzy Q-Learning Flow Controller

Q-learning learns utility values (Q-values) of stand
action pairs. During the learning process, learrdaggnt
uses its experience to improve its estimate byditen
new information into its prior experience.

Switch value of each ruleR : @(s) . Each rule hasm possible
discrete control actionsA ={a, a,---,a,} , and a

—Q—» parameter calledy value associated with each control

Multiplexer's action. The state associates to each actioR'ina quality

QD)

Se ; .
buffer et with respect to the task. In FQL, one builds an ®#ith
Feedback States competing actions for each rulellN designated as
Control y
Traffic| _ Signal Flow Control R: If isLl, andg, id, and I8
Sources Agent G Ll i 4 i 2 s (3)
— thera g witlo,

Figure 1. Architecture of the proposed GFQC. where q; is the jth q value in a rulei and
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L, =linguistic term (fuzzy label) of input variable, in
rule R, its membership function is denoted Iy, .

ET AL

where &) is the action selected in rul® using a
Metropolis criterion based exploration/exploitation

The q values in (3) are calculated according to total POlicy in [8].

accumulated rewards and rules’ activate values.

The functional blocks of FIS are a fuzzifier, a

defuzzifier, and an inference engine containingizzy
rule base [12]. The fuzzifier performs the functiof
fuzzification that translates the value of eachuinp
linguistic variable into fuzzy linguistic terms. &ée
fuzzy linguistic terms are defined in a term $e{S) and
are characterized by a set of membership funciidf) .
The defuzzier describes an output linguistic vaeiatf
selected actiona by a term setF(a) , characterized by
a set of membership functiong/(a) , and adopts a
defuzzification strategy to convert the linguisigzms of
F(a) into a nonfuzzy value representing selected action

Following fuzzy inference, the Q-value for the
inferred action a, is calculated as
N .
2.@(s)a
Q(S[ , at) :-N—
2.4(s)

Under action a(s,), the system undergoes transition

()

S[LSM where r is the reward received by the

controller. This information is used to calculatenporal
difference (TD) approximation error as

The term set should be determined at an approximate

level of granularity to describe the values of lisgic
variables. The term set fog, is defined asF(q.) =

{Low(L), Medium(M),High(H)}, which is used to
describe the degree of queue length as
“Medium”, or “High”. The term set forg, is defined as
F(g.) ={Decreasq D), Increasg(1)} , which describes

“LOW",

AQ=r+ BMaxQ(s., @) -Q(s &) (6)
The change ofg value can be found by
Ad =AQ [_IN@ () 7
2.a(s)

We can rewrite the learning rule (1) af parameter

the change rate of queue length as “Decrease” owalues as

“Increase”. The term set fou is defined asF(u) =
{ Negative( N), Positivg P)} , which describes the change
rate of source sending rate as “Negative” or “Pasit
On the other hand, in order to provide a precisaled
feedback signal in various states, the term fodlbeek
signal is defined asF(a) ={Higher(HE), High(H),
Normal (N), Low(L),Lower (LE)}. The membership
functions (MFs) are shown in Figure 2.

In each ruleR', the learning agent (controller) can
choose one actiona; from the action setA=

{a, @y -+, a,} . The inferred global continuous acti@n
at states is calculated as

(4)

B,Lb MaHB,

He b Hy Hy Hie

a

>

LE,L, N, H, HE,

(d)
Figure 2. MFs of term set (&) F(a.), (b) F(), () F(y,
and (d) F(a) .
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2.3. TheGenetic Operator Based Flow Controller

In this section we develop the fuzzy Q-learning
controller by genetic operators. The consequerts par
fuzzy rules need to compete for survival withiniahe.
In this case, each rule in FIS maintaingjavalue, but it

is no longer an estimation of accumulated rewarfd®e
max operator in standard fuzzy Q-learning is natdus
since the rules that have maximumq value no longer

represent rules with the best rewards. Becaus® ribt
suitable to use theg values as the fithess values in the

learning, we employ their changesq as the fithess

values. In this paper the fuzzy rule in (3) carrdaritten

as follows:
R:Ifq isL, andg id), and ik,
thera is| withj antig;

©)

The fitness value for a rule is an inverse measfire
Ag. By using the fitness value calculation in [13], a

predicted rule accuracy at time stept is defined as

-(Ac, ~Adp)

K = ne Ag, > Ago (10)
n otherwise
The accuracy falls off exponentially foAq, > Aq,.

Aq, is an initial value. The predicted accuracy in)(10
can be used to adjust rule’s fitness valdie using the
standard Widrow-Hoff delta rule

ft = ft +X(Kt - ft)
wherex is an adjust rate of fithess values.

(11)
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The niche genetic operators can prevent theexecuted by the traffic sources. The network monts
population from the premature convergence or thenext state and receives evaluating reward from the

genetic drift resulting from the selection operatbhe
niche genetic operators maintain population divgisnd
promote the formation of sub-population in

network environment for its action.
The discovery component plays an action selection

the role. Two genetic operators are used to implemkaet t

neighbourhood of local optimal solutions. In fuzzy selection. Finally, a set of rule actions is sedddor the

Q-learning, the fitness sharing is implicitly impiented
by assigning fitness values to the activated roéessed on
their contributions. The fuzzy rule antecedent titutes

an evolving niche or sub-population where the fuzzy

rules with the same antecedent share similar emviemt
states. The rule consequences or actions needripete
for survival within a niche, while the rules fronffdrent
niches co-operate to generate the output.

In the definition of a fuzzy rule in (9), a fuzzyle can
be defined as a sub-population and the rule actiwas
encoded as individuals in sub-population. If there N
rules in fuzzy Q-learning, there will beN
sub-population. As shown in Figure 3, in each leen
step, the reward from the environment is apportiotte
the rules that are activated in the previous stpe
rule’s fitness values are accordingly updated e ftrm
of (11). There is a winner action in each sub-pafoih

performance component.
The reinforcement component serves to assign terde
to the individual rules that are activated by autrtate.

3. Simulation and Comparison

The simulation model of high-speed network, as show
in Figure 4, is composed of two switches, Swl véth
control agent and Sw2 with no controller are casdad
The constant output link L is 80Mbps. The sendiaigs
of the sources are regulated by the flow contrsller
individually.

In the simulation, we assume that all packets atle w
a fixed length of 1000bytes, and adopt a finitefdauf
length of 20packets in the node. On the other hdr,
offered loading of the simulation varies betwee® &nd
1.2 corresponding to the systems’ dynamics; theeefo

and the winner actions from all sub-population are higher loading results in heavier traffic and vieersa.

formed the consequent parts of fuzzy rules. Thectieh
for the winners in sub-population is implementedtiog
niche genetic operator. The niche genetic operases
two operators to select the actions:
Reproduce operator: individuals

fitness values. The roulette wheel selection isluse

. S L
Mutation operator: the mutation is taken for each ™

sub-population with a mutation probability. The ogier
chooses an individual from sub-population randotoly
replace a winner in the sub-population.

In the learning process, the network environment

provides current states and rewards to the learaujant.

For the link of 80Mbps, the theoretical throughpsit
62.5K packets.

From the knowledge of evaluating system performance
the parameters of the membership functions for tinpu

in each sub- linguistic variables in FIS are selected as followsr
population are selected as winners in terms ofrthei 4 (q.), mw(q), and i, (q) ,

L.=0, L =6,

=10, M, =2, M,=8, M, =12, M, =20,
H,=9, H,=14, H,=20, and H, =20; for
Hp(q) and p(q) , D.=4, D,=D,, =2,

l, =1,=2, and 1,=4; for g (U) and (),
N.=0.8, N, =04, N, =0.2, B, =0.2, B, =04,

The learning agent produces actions to performhen t and R, =0.8. Also, the parameters of the membership
network. The learning agent includes a performancefunctions for output linguistic variables are givéry

component, a reinforcement component, and a disgove |E, =0.2 ,

component.

The performance component reads states from

network environment, calculates activation degrees
fuzzy rules, and generates an action. The actidhes

Reward
a: f & flf A i
a:f] |&:f] B f,
ac fd |a&:fd B : i
lai|af] - [a]]

Figure 3. Learning mechanism of genetic operator.

Copyright © 2009 SciRes.

L,b=04, Ny=06, Hy,=08, and
HE, =1.

The fuzzy rule base is an action knowledge base,
characterized by a set of linguistic statementhiénform
of “if-then” rules that describe the fuzzy logida&onship
between the input variables and selected actioter Alfie
leaning process, the inference rules in fuzzy hdae
under various system states are shown in Table I.
According to fuzzy set theory, the fuzzy rule bémens a

fuzzy set with dimensions 3x2x2=12. For examplég ru

Figure 4. The smulation model of network with two switches.

Swil Sw2

control
agent

L:80Mbps
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1 can be linguistically started as “if the queueghh is
low, the queue length change rate is decreasedthend
sending rate change rate is negative, then thebéséd
signal is Higher.”

In the simulation, four schemes of flow control agje
AIMD, standard reinforcement learning-based neural
flow controller (RLNC), Metropolis criterion base@-
learning flow controller (MQLC), and the proposed
GFQC are implemented individually in high-speed
network. The first scheme AIMD increases its segdin
rate by a fixed increment (0.11) if the queue lénigt
less than the predefined threshold; otherwise é¢meliag
rate is decreased by a multiple of 0.8 of the mnewvi
sending rate to avoid congestion [14]. Finally, foe
other schemes, the sending rate is controlled ley th
feedback control signab, periodically. The controlled
sending rate is defined by the equation

u =aFL (12)

where a [1[0.2,1.0] is the feedback signal by the
flow controller, F is a relative value in the ratio of 10°
source offered load to the available output bierat
denotes the outgoing rate of link, ang 0[0.200FL,FL]
is the controlled sending rate at sample time

In simulation four measures, throughput, PLR, huffe
utilization, and packets’ mean delay, are usedhas t
performance indices. The throughput is the amodnt o
received packets at specified nodes (switches)owtth
retransmission. The status of the input multiplexer
buffer in node reflects the degree of congestimulting
in possible packet losses. For simplicity, packetsan
delay only takes into consideration the processing at 2
node plus the time needed to transmit packets.

The performance comparison of throughput, PLR,
buffer utilization, and mean delay controlled byurfo
different kinds of agents individually are shown in
Figure 5-8. The throughput for AIMD method decrease
seriously at loading of 0.9. Conversely, the GFQC
proposed remain a higher throughput even though the
offered loading is over 1.0, and can decrease ttiR P 20

throughput

il N\

%.6 0.7 0.8 0.9 1 11 1.2
offered loading

Figure 5. Throughput ver sus various offered loading.

—< — AIMD

— & — MQLC
—— ¢ GFQC

107} — |

packet loss rati
[
o

[y
o
>
I

-8
100.6 0.7 0.8 0.9 1 1.1 1.2

offered loading

Figure 6. PLR versusvarious offered loading.

enormously with high throughput and low mean delay. e AMD.
The GFQC has a better performance over RLNC and —8 — MQLC
. o . —— GFQC
MQLC in PLR, buffer utilization, and mean delay. It = 15"
demonstrates once again that GFQC possesses lity abi % /
to predict the network behavior in advance. =] /Q(
o
Table 1. Ruletable of FIS. £ 10r ye
Ke] —4
Rue 90 ¢ u a |Rue 9 4 u a § e /o/
£ / o
1 L N HE| 7 M | N N 5l e 4
—e
2 L P H| 8 M | P LE o —g — T
e
— =
3 L I N N| 9 H D N L g— —F e ]
4 L | P N 10 H D P LE %.6 0.7 0.8 0.9 1 1.1 1.2
offered loading
5 M D N H 11 H | N L
6 M D P L 12 H ' P LE Figure 7. M ean buffer versusvarious offered loading.
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10" :
—= — AMD
BN
10°k 1 / |
o
> 10 e
« O
3 e /
§ 10°L e o — 4
/ /D
S - o 5
?@ é B
5 ==
10— ]
10>6 L L L L L
0.6 0.7 0.8 0.9 1 1.1 1.2

offered.loading
Figure 8. M ean delay versus various offered loading.

4. Conclusions

In the flow control of high-speed networks, thectese

scheme AIMD could not accurately respond to a

time-varying environment due to the lack of preidict

capability. The fuzzy Q-learning flow controller sha

(3]
(4]

(5]

(6]

(7]

(8]

good performance when the state space of high-speed

network is large and continuous. The genetic operiat
introduced to obtain the consequent parts of fuziss.

Through a proper training process, the proposed GFQ
can respond to the networks’ dynamics and learn
information on the
environmental dynamics. The sending rate of traffic [10]
sources can be determined by the well-trained flow
control agent. Simulation results have shown tlnat t

empirically  without  prior

proposed controller can increase the utilizationttod

buffer and decrease the PLR simultaneously. Thexefo
the GFQC proposed not only guarantees low PLRHer t

existing links, but also achieves high systemaation.
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