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ABSTRACT 

An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In 
this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of inter-
est of the DAR(1) model. Theoretically, the proposed method has rate of convergence  3 2O n . Applying the pro-
posed method to a real-life data set shows that the results obtained by the proposed method can be quite different from 
the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accu-
racy of the proposed method even when the sample size is small. 
 
Keywords: Canonical Parameter; Double Autoregressive Model; p-Value Function; Signed Log-Likelihood Ratio  

Statistic 

1. Introduction 

ARCH error structure was first introduced to economet-
ric models by Engle [1] as a way of unleashing the con-
stant variance assumption. Weiss [2] studied the AR 
models with ARCH error structure. A special case of 
Weiss [2] model is the AR(1) model with ARCH(1) error 
structure, which is also known as the first-order double 
autoregressive (DAR(1)) model. The DAR(1) model can 
be expressed as:  

0 0Y  , 2
1t tY   1, ,t n 1t tY Y   ,   (1) 

where , 0    and 0 n, , 

r

 is a sequence of inde-
pendent standard normal random variables. Then  

 and  0Yva 1   2var Y Y Y   1, ,t n1 1t t t  ,  

1

, 
which is varying over time. This nonlinear time series 
model is also a special case of β-ARCH model investi-
gated in Guégan & Diebolt [3] with  

1



. This type of 
model is widely used for fitting financial time series data 
because the influence of the empirical observations is 
part of the source for volatility. Guégan & Diebolt [3] 
derived the sufficiency condition for the weak stationary 
DAR(1) model to be , and Borkovec & Klüp- 
pelberg [4] proved that it is also the necessity condition 
for the model. Figure 1 shows the weak stationary region 
for the DAR(1) model graphically. Note that, for the 
DAR(1) model, when 

2 

 ,   reaches the boundary 
points , the model becomes a nonstationary AR(1) 

model. 

 1,0

Ling [5] obtained a conditional likelihood function for 
the weak stationary DAR(1) model. Then he derived the 
asymptotic distribution for the maximum likelihood es-
timate of the parameters based on this conditional likeli-
hood function. 

In Section 2, some asymptotic likelihood-based infer-
ence procedures for a general model are reviewed. In 
Section 3, a modified signed log conditional likelihood 
ratio statistic for the weak stationary DAR(1) model is 
derived. The proposed method, theoretically, has rate of  

convergence 3 2O n

 0 , ,y y y

. A real-life example is presented  

in Section 4 to illustrate the implementation of the pro-
posed method and also to show that results obtained from 
the methods discussed in this paper can be quite different. 
Results from Monte Carlo simulation studies are also 
presented in Section 4 to illustrate the extreme accuracy 
of the proposed method even when the sample size is 
small. Some concluding remarks are given in Section 5. 

2. Asymptotic Likelihood-Based Inference 
for a General Model 

Let 1 n   be a sample from a canonical ex-
ponential family model with log likelihood function 

  0; y    ,, where      is the k-dimen- 
sional canonical parameter, with   being the scalar 
parameter of interest and   being the (k – 1)-dimen-  

sional nuisance parameter. Denote  ˆ ˆˆ ,     be the  *Corresponding author. 
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Figure 1. Weakly stationary region for DAR(1). 

overall maximum likelihood estimate (MLE) of  , and 
an estimate of the variance of ̂  is  1 ˆj 



   
 where  

2

j



 


 

 


 

is the on matrix. M  observed informati oreover, let 

 'ˆ ˆ,     be the constrained maximum likel


ihood  

estimate of   for a given  , and  

   2

j



 


 

 


 

is the  information m trix. 
With the regularity conditions stated in Wald [6], and 

nuisance observed a

a the scalar parameter of interest  , as n  , we 
ha

  

ve  

ˆ
( )q q

ˆvar

 



              (2) 

d as standar
  ˆvar

is asymptotically distribute d normal and  

  is the of  1,1  entry 1 ˆj  . Thus, a  

 1  1 for 00% co nce intervnfide al   based 
pproxim  by  

on (2) 
can be a ated

   

where 2z  is the   100th percentile of the stan-
dard normal distribution. Alternatively, the p-value func-
tion for 

1 2

 can be approximated by    p q   , 
where     is the cumulative distribution function of 
the standard normal distribution. Note that  q   is the 

um likel

se, one of th

e Wa

ar parameter of interest, a 
fa

standardized maxim ihood estimate departure in 
the canonical parameter scale. 

Although the Wald method is simple to u e 
major disadvantages is that the methodology is not in-
variant to reparameterization. Moroever, th ld me- 
thod does not take into consideration of the effect of the 
nuisance parameter. For a scal

miliar measure that is invariant to reparameterization is 
the signed log-likelihood ratio (SLR) statistic:  

        1 2
ˆ ˆˆsgn 2r r            .  (3) 

With regularity conditions as stated in DiCiccio, Field 
& Fraser [7], r  is also asymptotically distributed as the 
standard normal distribution. Hence, a  1 100% 
central confidence interval for 

  2ˆ ˆ ˆ ˆvarz 2, varz      

  based on (3) 
approximated by  

can be 

 2: ( )r z                (4) 

and the corresponding p-value function for   is  
   p r   . 
It is well-known that both the Wald method and the 
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SLR method are not very accurate e
sample size is small. Theoretically, they only have rate of  

e 

specially when the 

con ncverge  1 2n . In statistics literatur there eO e, xists  

other methods that have higher rate of convergence. In 
particular, Barndorff-Nielsen ([8,9]) derived a modified 
signed log-likelihood ratio statistic for any scalar pa-
rameter  :  

     
 
 

* * 1
log

Q
r r r

r r


 

 
      
  

    (5) 

and prov d that it is asymptotically distributed as the
standard n rm

e  
o al distribution with rate of convergence 

 3 2 ,O n  where  r   is the signed log-likeli
tio statistic as defined i (3), and  Q

hood ra-
n   is a 

that needs to d for each model being 

 

quantity 
be specifically define

considered. For the canonical exponential family model, 
and   bein

ete
g a component parameter of the canonical 

r,  Qparam   takes the form of  

   
 
 

1 2
ˆ

ˆ
ˆ

j
Q

j



 


  







 
    
  

 

which is th dized maximum likelihe standar ood departure 
in canonical parameter scale taking into consideration of 
removing the nuisance param a eter. Hence  1  100% 
central confiden rval for ce inte   based on  *r   is  

  *
2: r z               (6) 

and the corresponding p-value function for   is  
   *p r   . 
However, not every model longs to th onical be e can

exponential family model, and even 
rameter of interest may not be a component parameter of 

al par  that 
any statistical own density function de-
pe

if it does, the pa-

the canonic ameter. Fraser & Reid [10] showed
model with a kn

nding on a natural parameter   can be approximated 
by a tangent exponential model with a locally defined 
canonical parameter,    :  

   
0y

V
y


 


  




 

where 
 0 ˆ,y

'

y
V


is considered as the tangent direc-  

tion. Differentiating the locally defin d canonical pa-
rameter 


  

e
    with respect to the eter natural param  , 

e  

 

we hav

 


 
 

 
By ch g the parameter space from 


 . 

angin   to    , 
the maximum likelihood estim ure ˆate depart    in  

  scale is equivalent to      ˆ ˆˆsgn         in  

the locally   defined canonical parameter    scale, 
where  

 
 

 
  ̂

ˆ
 

 
    


, 

 factor is the unit row vector version of the gra-
dient vector, which is obtained from  

   

 

with first

    1



    
 

  



   1           .    




    
          

Moreover, by the chain rule in differentiation, deter-
minant of the observed information matrix in 


 

  


  scale,  

 ˆj   , expressed in   scale is  

       2
ˆ ˆ ˆj j      



   

and sim minan isance observed  

information matrix, 

ilarly, the deter t of the nu

 ˆj    , expressed in    scale  

is  

          1
ˆ ˆ ˆ ˆj j            



    . 

Hence Q  in     scale d as 

       
can be expresse  

   
     

1 22

ˆ ˆˆsgn

ˆ ˆ
    

ˆ ˆ ˆ

Q Q

j

j



     

      

  

    



  

   

1
                

  



 
 

 
 
 

 (7) 

Hence  *r , which has rate of convergence  
 3 2O n , can be obtained. Thus a  1  100% c

dence interval for 
onfi-

, and also the p-value function for 
  can be obtained. 

3. A Modified Log Conditional Likelihood 

Fo l given in (1), Ling [5] obtained the 
conditional likelihood function for the weak stationary 

Ratio Statistic for the DAR(1) Model 

r the DAR(1) mode

DAR(1) model. Moreover, assuming   is known, Li
([5,11]) studied the asymptotic distribution for the ma

ng 
xi- 

mum likelihood estimate of  , , ˆ ˆ ˆ     based on 
the conditional likelihood function. More specifically, 
the log conditional likelihood function for DAR(1) model 
with   known is:  

     

   

0

2

12
1 2

1

, ;

1
      log .

2

n
t t

t
t

y

y y
y

y

   


 

 





 

 
    
 



  

  (8) 

1t 
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Hence,        
,

  
  

 
 

 


 where  
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2
1

t t t
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y y y
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t t t
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 0) 

and the   ˆ ˆ ˆ,overall MLE,     ,
solving  

 can be obtained by 

 
ˆ

0
 










, 


ˆ

( )
0

 


 







. 

atriThe observed informa x tion m j   is (see the 
bottom of the page) 

Ling [5] showed that the e pectation of ˆx   is asymp-  

totically equal to  , and inst nead of usi g  1 ˆj 
  as  

the asympotitic variance for ̂ , he showe at  d th
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Since this asymptotic variance of ̂  still involves the 
unkn arameter own p  , Ling [5] further proposed to use  
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Then inference concerning  , and  can be ob-
tained by the Wald method. 

) model  pointed out that it is 
s unde conditions on the pa-

rameters. Therefore, by Tay r expansion, we ha   

   

For the DAR(1 , Ling [5]
an ergodic proces r suitable 

lo ve

    1ˆ ˆ ˆ ˆ
2      

       . 

Hence  

        ˆ ˆ ˆ ˆ2
2

j 1     
           

is asymptotically distributed as a 2  distribution with 
p  degrees of freedom. Thus, when  dim 1p   , the 

signed log conditional likelihood ratio statistic for   
and for   of the DAR(1) model is asymptotically dis-
tributed as  0,1N  with rate of convergence 1 2 . 

We performed some simulation studies for testing the 
no  the log conditional likelihood ratio statistics 
for th odel. The Kolmogorov-Smirov test is 
employed. We considered a medium sample size of  

50n

O n

rmality of
e DAR(1) m

 
 and a large sample size of 200n  . For each 

ple
ameter values.

o


sample size, we generate 10,000 sam s from the DAR(1) 
model for each combination of par  For 
each generated sample, the signed log conditional likeli-
hood rati  statistic for   and for   are calculated. 
The simulat ults are presented in Tables : 
Ta

ion res  1 and 2

alues ea  sta

ble 1 records the p-values of the Kolmogorov-Smirov 
test when the parameters values are on the boundary of 
the weak stationary region; Table 2 records the p-values 
of the Kolmogorov-Smirov test when the parameters 
v  are the interior points of the w k tionary re-
gion. From the tables, the p-values of the Kolmogorov- 
Smirov test of the signed log conditional likelihood ratio 
statistic for   are large regardless of the sample sizes. 
Hence no evidence that th  signed log onditional likeli-
hood ratio statistic for 

e c
  is not distributed as  0,1N . 

On the other hand, the p-values of the Kolmogorov- 
Smirov test of the signed log conditional likelihood ratio 
statistic for   are large only for 200n  . Hence for 
n  is sufficiently large, there is no evidence that the 
signed log conditional likelihood ratio statistic for   is 
not distributed as  0,1N . 

Note that when   is unknown, Ling & Li [12] sug-          
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Table 1. The -values of the Kolmogorov-Smirnov test for th R when ω = 1,  and α are on the boundary of the weak 
stationary region.  

( ,  ) (–0.95, 0.0975) (–0. .755, 0 ) (0, 1) (0.5, 0.75) (0.95, 0.0975) 

 50n    0.2093 0.3089 0.0923 0.2519 0.1676 

 200n    0.7294 0.2544 0.2219 0.8769 0.3595 

  0.2162 0.6260 0.5481 0.3084 0.7428 

 50n    0.0054 0.0184 0.0102 0.0155 0.0217 

= 200n  

Table 2. The p-values of the Kolmog irnov test for the SLR when ,  and interior points of the weak 
staionary region.  

( ,

orov-Sm  ω = 1  α are 

  ) (–0.95, .0975) (–0.5, 0. 5, 0.25) ( (0.1 (0.5 (0.5, 0.5) , 0.09)  0 5) (–0. 0, 0.5) , 0.4) , 0.25) (0.95

  0.0647 0.0525 0.6512 0. 4067 0.5246  0.3877 0614 0. 0.9448 

(n = 50) 

   0.1418 0.2234 0.2626 0.3933 0.9673 0.7956 0.6339 0.0996 

(n = 200) 

   

n = 50) 

0.0703 0.0021 0.0628 0.0001 0.1980 0.0000 0.0011 0.0013 

(

  2778 0.1640 0.0659 0.1865 0.1779 0.5938 0.0660 0.1802 

n = 200)

 0.

(   

 
gested a method ate to estim   and the an n Ling
& Li [12] t ate 

alysis i  
reated the estim   as 
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Thus Q  can be obtained from (7) with  
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tistic  *r



   
 

 

 
 

 

the modified signed log conditio
  can be calculated from (5) and, therefore, a 

1  100% confiden terval for ce in   can be obtained 
om

 f interest is 
 

fr  (6). 
On the other hand, when the parameter o

   , the nuisance p ter is arame  

strained MLE 

. The con-  

of   is  = ,ˆ ˆ
    

 which can be ob-  

y tained ng  

 
 b solvi

̂ 





 r

0 . 

Again 



  can be calculated from he tangent  (3). T
in hanged as a

om (7) with  

   , 0,1

     
 

  

   
      

. And once  

again, the modified signed log con nal likelihood 
ratio statistic 

direction V  rema s unc bove and hence Q  
can be obtained fr

ditio
 *r   can be calculated from (5) and 

therefore a  1 100% confidence interval for   can 
be obtained from (6). 

4. Numerical Studies 

Anderson [13] considered the closing prices of the Impe-

ary, 1
calibra  t

secutive data points after a log 
transformation. A scatter plot for the calibrated data is 

 

rial Chemical Industries (I.C.I.) for the period 25 August, 
1972 to 19 Janu 973. Instead of using the raw data, 
we use the ted data, which is obtained by aking 
the difference of two con

shown in Figure 2. 
The DAR(1) model is employed. By applying Ling &

Li [12], we have an estimate of   being 0.0002. The 
overall MLE is obtained by maximizing (8) and we have 
̂  is  0.1553,0.1330  . Table 3 reports the 90% con-  

 

Figure 2. Scatter plot for calibrated data.    
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Table 3. 90% central confidence intervals for  and α. 

Method 90% Confidence Interval for  90% Confidence Interval for α



BN (–0.3629, 0.0389)  (0.0048, 0.4719)  

SLR (–0.3490, 0.0352)  (0.0000, 0.4072)  

Ling (–0.3438, 0.0333)  (0.0048, 0.3588)  

 
fide rvals for nce inte  , and the 90% confidence inter-
vals for  , obtained from the methods discussed in this 
paper:  is the proposed method based on Equation (5), 
SLR is t e signed log-likelihood ratio statistic (3), Ling 
is the m hod discussed in Ling [5]. SLR and Ling give 
similar confidence intervals which are quite different 
from th lts obtained by BN. Moreover, since 

 BN
h
et

e resu   is 
bounded by 0, both SLR and Ling have deficiency on the 
left boundary. 

The p-value functions are presented in Figures 3 and 4. 
Additionally, the two horizontal lines indicate upper and 
lower 0.05 levels respectively. The plots show that re-
sults obtained by the three methods discussed in this pa-
per are quite different. 

To examine the accuracy of the methods discussed in 
this paper, Monte Carlo simulation studies are performed. 
For each co on of  ,mbinati   , 10,000 Monte Carlo 
samples, for each  sample sizes takeing values n = 50, 
200 and 4  are generated from the DAR(1) model 

, 0, ,t n  . Withou

ality, 

 of
00,

 0,1Nwhere t 

 is set to be 1. 
Tables 4-9 recorded the central coverage probability 

(CCP) which is the proportion of intervals that contains 
the true  , the lower error probability (L) which is the 
proportion of true   that falls outside the lower bound 
of the confidence interval, and upper error probability (U) 
which is the proportion of true   that falls outside the 
upper bound of the confidence interval. The nominal 
values for the central coverage probability, and the lower 
and upper errors probabilities are 0.90, 0.05, and 0.05 
respectively. In additional to this, we also report the av-  

erage bias (Avg Bias) defined by 
L 0.05 U 0.05

2

  
,  

which has the nominal value of 0. 
For both 

t loss of gener-  

   and   , simulation studies show 
that BN is remarkably accurate even when the sample 
size is small. As n  increases, there is significant im-
provement on the precision of both the SLR method and 
the Ling’s method in terms of both cental coverage and 
average bias but the results are still not as accurate as 
those obtained by the proposed method. 

5. Conclusion 

A conditional likelihood based method is proposed to 
obtain confidence intervals for  and for    of the 
weak stationary DAR(1) model. Theoretically, the pro-  

 

Figure 3. p-value functions for  of I.C.I. Data. 
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Figure 4. p-value functions for α of I.C.I. Data. 

Table 4. Simulation results for some boundary points of the DAR(1) model when n = 50.  

              

  Method L U CCP Avg Bias L U CCP Avg Bias  

–0.95 0.0975 BN 0.0544 0.0451 0.9005 0.0046 0.0372 0.0573 0.9055 0.0101 

  SLR 0.0343 0.0760 0.8897 0.0209 0.0870 0.0314 0.8816 0.0278 

  Ling 0.0384 0.0924 0.8692 0.0270 0.1228 0.0020 0.8752 0.0604 

–0.5 0.75 BN 0.0542 0.0494 0.8964 0.0024 0.0542 0.0494 0.8964 0.0024 

  SLR 0.0950 0.0272 0.8778 0.0339 0.0950 0.0272 0.8778 0.0339 

  Ling 0.1558 0.0041 0.8401 0.0759 0.1558 0.0041 0.8401 0.0759 

0 1 BN 97 0.0524 0.8979 0.0014 

  SLR 0.0560 0.0571 0.8869 0.0065 0.0987 0.0275 0.8738 0.0356 

  Ling 0.0625 0.0645 0.8730 0.0135 0.1532 0.0044 0.8424 0.0744 

0.5 0.75 BN 0.0487 0.0506 0.9007 0.0009 0.0536 0.0492 0.8972 0.0022 

  SLR 0.0630 0.0491 0.8879 0.0070 0.0964 0.0264 0.8772 0.0350 

  Ling 0.0745 0.0565 0.8690 0.0155 0.1545 0.0026 0.8429 0.0760 

0.95 0.0975 BN 0.0446 0.0576 0.8978 0.0065 0.0375 0.0542 0.9083 0.0083 

  SLR 0.0761 0.0369 0.8870 0.0196 0.0856 0.0331 0.8813 0.0262 

  Ling 0.0893 0.0408 0.8699 0.0243 0.1223 0.0014 0.8763 0.0605 

0.0521 0.0529 0.8950 0.0025 0.04
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Table 5. Simulation results for some interior points of the DAR(1) model when n = 50.  

               

  Method L U CCP Avg Bias L U CCP Avg Bias  

–0.95 0.09 BN 0.0574 0.0435 0.8991 0.0070 0.0322 0.0533 0.9145 0.0106 

  SLR 0.0363 0.0734 0.8903 0.0186 0.0838 0.0290 0.8872 0.0274 

  Ling 0.0399 0.0880 0.8721 0.0240 0.1161 0.0017 0.8822 0.0572 

–0.5 0.5 BN 0.0536 0.0483 0.8981 0.0026 0.0497 0.0524 0.8979 0.0014 

  SLR 0.0508 0.0606 0.8886 0.0057 0.1078 0.0291 0.8631 0.0394 

  Ling 0.0569 0.0702 0.8729 0.0135 0.1724 0.0032 0.8244 0.0846 

–0.5 0.25 BN 0.0507 0.0488 0.9005 0.0009 0.0113 0.0514 0.9373 0.0201 

  SLR 0.0467 0.0598 0.8935 0.0066 0.0997 0.0249 0.8754 0.0374 

  Ling 0.0527 0.0686 0.8787 0.0106 0.1522 0.0016 0.8462 0.0753 

0 0.5 BN 0.0507 0.0499 0.8994 0.0004 0.0391 0.0542 0.9067 0.0075 

  SLR 0.0552 0.0535 0.8913 0.0043 0.1077 0.0279 0.8644 0.0399 

  Ling 0.0623 0.0612 0.8765 0.0117 0.1750 0.0027 0.8223 0.0861 

0.1 0.4 BN 0.0507 0.0506 0.8987 0.0006 0.0201 0.0538 0.9261 0.0169 

  SLR 0.0552 0.0524 0.8924 0.0038 0.1078 0.0259 0.8663 0.0410 

  Ling 0.0639 0.0580 0.8781 0.0109 0.1802 0.0012 0.8186 0.0895 

0.5 0.25 BN 0.0490 0.0481 0.9029 0.0015 0.0125 0.0518 0.9357 0.0197 

  SLR 0.0601 0.0445 0.8954 0.0078 0.1034 0.0279 0.8687 0.0378 

  Ling 0. 7 0.0013 0.8330 0.0822 

0.5 0.5 BN 0.0488 0.0472 0.9040 0.0020 0.0459 0.0566 0.8975 0.0053 

  88 0.0360 

 Ling 0.0731 0.0524 0.8745 0.0127 0.1651 0.0028 0.8321 0.0812 

0.95 0.09 BN 0.0457 0.0538 0.9005 0.0041 0.0342 0.0531 0.9127 0.0095 

 0.0783 0.0344 0. 0.0847 0.0306 0.

Li 0. 0. 0 0

0709 0.0512 0.8779 0.0111 0.165

SLR 0.0627 0.0453 0.8920 0.0087 0.1016 0.0296 0.86

 

 SLR 8873 0.0219 8847 0.0270 

  ng 0928 0386 .8686 .0271 0.1166 0.0023 0.8811 0.0571 

Table 6. Simulation r or s und nts AR(1) model w  20esults f ome bo ary poi of the D hen n = 0.  

               

    M  A Aethod L U CCP vg Bias L U CCP vg Bias

–0. 0.0975 95 BN 0.0552 0.0516 0.8932 0.0034 0.0622 0.0498 0.8880 0.0062 

 

 

 

 

SLR 

Ling 

0.0415 

0.0427 

0.0623 

0.0655 

0.8962 

0.8918 

0.0104 

0.0114 0.

0.0699 

0832 0.

0.0398 

0093 

0.8903 

0.9075 

0.0151 

0.0369 

– 0.  

0 1 

0.5 0.75 BN 0.0534 0.0500 0.8966 0.0017 0.0472 0.0545 0.8983 0.0037 

0.  0.0975 

  SLR 0.0677 0.0384 0.8939 0.0147 0.0653 0.0379 0.8968 0.0137 

0.5 75 BN 0.0519 0.0509 0.8972 0.0014 0.0485 0.0521 0.8994 0.0018 

  SLR 0.0506 0.0534 0.8960 0.0020 0.0641 0.0361 0.8998 0.0140 

  Ling 

BN 

0.0521 

0.0517 

0.0551 

0.0514 

0.8928 

0.8969 

0.0036 0.

0.0015 0.

0769 0.

0522 0.

0010 

0515 

0.9221 

0.8963 

0.0379 

0.0019 

  SLR 0.0527 0.0528 0.8945 0.0027 0.0686 0.0381 0.8933 0.0153 

  Ling 0.0515 0.0520 0.8965 0.0017 0.1049 0.0208 0.8743 0.0421 

  SLR 0.0557 0.0494 0.8949 0.0032 0.0674 0.0388 0.8938 0.0143 

  Ling 0.0580 0.0504 0.8916 0.0042 0.0777 0.0009 0.9214 0.0384 

95 BN 0.0576 0.0499 0.8925 0.0038 0.0597 0.0503 0.8900 0.0050 

  Ling 0.0709 0.0396 0.8895 0.0157 0.0787 0.0097 0.9116 0.0345 
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Table 7. Simulation results for some interior points of the DAR(1) model when n = 200.  

               

    Method L U CCP Avg Bias L U CCP Avg Bias

–0.95 0.09 BN 0.0509 0.0512 0.8979 0.0010 0.0585 0.0529 0.8886 0.0057 

  SLR 0.0401 0.0641 0.8958 0.0120 0.0706 0.0390 0.8904 0.0158 

  Ling 0.0411 0.0663 0.8926 0.0126 0.0844 0.0091 0.9065 0.0377 

–0.5 0.5 BN 0.0486 0.0512 0.9002 0.0013 0.0497 0.0469 0.9034 0.0017 

  SLR 0.0478 0.0545 0.8977 0.0033 0.0659 0.0354 0.8987 0.0153 

  Ling 0.0491 0.0564 0.8945 0.0037 0.0787 0.0101 0.9112 0.0343 

–0.5 0.25 BN 0.0458 0.0524 0.9018 0.0033 0.0559 0.0503 0.8938 0.0031 

  SLR 0.0452 0.0563 0.8985 0.0056 0.0771 0.0352 0.8877 0.0210 

  Ling 0.0464 0.0595 0.8941 0.0066 0.0891 0.0057 0.9052 0.0417 

0 0.5 BN 0.0495 0.0544 0.8961 0.0024 0.0512 0.0523 0.8965 0.0017 

  SLR 0.0518 0.0568 0.8914 0.0043 0.0732 0.0378 0.8890 0.0177 

  Ling 0.0623 0.0612 0.8765 0.0117 0.0808 0.0093 0.9099 0.0357 

0.1 0.4 BN 0.0514 0.0504 0.8982 0.0009 0.0499 0.0487 0.9014 0.0007 

  SLR 0.0523 0.0506 0.8971 0.0014 0.0740 0.0330 0.8930 0.0205 

  Ling 0.0538 0.0519 0.8943 0.0028 0.0827 0.0073 0.9100 0.0377 

0.5 0.25 BN 0.0478 0.0465 0.9057 0.0029 0.0537 0.0500 0.8963 0.0018 

  SLR 0.0522 0.0449 0.9029 0.0037 0.0733 0.0370 0.8897 0.0182 

  Ling 0.0549 0.0467 0.8984 0.0041 0.0873 0.0064 0.9063 0.0405 

0.5 0.5 BN 0.0514 0.0472 0.9014 0.0021 0.0513 0.0462 0.9025 0.0026 

  SLR 0.0537 0.0459 0.9004 0.0039 0.0665 0.0319 0.9016 0.0173 

  Ling 0.0558 0.0478 0.8964 0.0040 0.0782 0.0073 0.9145 0.0355 

0.95 0.09 BN 0.0543 0.0481 0.8976 0.0031 0.0571 0.0531 0.8898 0.0051 

  SLR 0.0669 0.0364 0.8967 0.0153 0.0682 0.0383 0.8935 0.0149 

  Ling 0.0691 0.0373 0.8936 0.0159 0.0820 0.0088 0.9092 0.0366 

Table 8. Simulation results for some boundary points of the DAR(1) model when n = 400.  

               

    Method L U CCP Avg Bias L U CCP Avg Bias

–0.95 0.0975 BN 0.0488 0.0523 0.8989 0.0017 0.0613 0.0528 0.8859 0.0070 

  SLR 0.0398 0.0599 0.9003 0.0101 0.0602 0.0415 0.8983 0.0093 

  Ling 0.0404 0.0607 0.8989 0.0101 0.0635 0.0152 0.9213 0.0242 

–0.5 0.75 BN 0.0531 0.0488 0.8981 0.0021 0.0503 0.0541 0.8956 0.0022 

  SLR 0.0523 0.0510 0.8967 0.0016 0.0603 0.0419 0.8978 0.0092 

  Ling 0.0529 0.0516 0.8955 0.0022 0.0610 0.0178 0.9212 0.0216 

0 1 BN 0.0577 0.0513 0.8910 0.0045 0.0496 0.0512 0.8992 0.0008 

  SLR 0.0563 0.0506 0.8931 0.0034 0.0611 0.0413 0.8976 0.0099 

  Ling 0.0566 0.0510 0.8924 0.0038 0.0815 0.0280 0.8905 0.0268 

0.5 0.75 BN 0.0529 0.0528 0.8943 0.0028 0.0533 0.0546 0.8921 0.0039 

  SLR 0.0544 0.0514 0.8942 0.0029 0.0646 0.0411 0.8943 0.0118 

  Ling 0.0550 0.0521 0.8929 0.0035 0.0655 0.0192 0.9153 0.0232 

0.95 0.0975 BN 0.0524 0.0528 0.8948 0.0026 0.0634 0.0528 0.8838 0.0081 

  SLR 0.0612 0.0435 0.8953 0.0089 0.0640 0.0429 0.8931 0.0106 

  Ling 0.0625 0.0442 0.8933 0.0091 0.0675 0.0159 0.9166 0.0258 
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Table 9. Simulation results for some interior points of the DAR(1) model when n = 400.  

               

    Method L U CCP Avg Bias L U CCP Avg Bias

–0.95 0.09 BN 0.0481 0.0519 0.9000 0.0019 0.0529 0.0551 0.8920 0.0040 

  SLR 0.0402 0.0594 0.9004 0.0096 0.0569 0.0407 0.9024 0.0081 

  Ling 0.0404 0.0603 0.8993 0.0100 0.0611 0.0159 0.9230 0.0226 

–0.5 0.5 BN 0.0540 0.0506 0.8954 0.0023 0.0520 0.0471 0.9009 0.0024 

  SLR 0.0526 0.0520 0.8954 0.0023 0.0622 0.0384 0.8994 0.0119 

  Ling 0.0537 0.0538 0.8925 0.0037 0.0623 0.0133 0.9244 0.0245 

–0.5 0.25 BN 0.0529 0.0502 0.8969 0.0015 0.0549 0.0524 0.8927 0.0036 

  SLR 0.0514 0.0525 0.8961 0.0019 0.0652 0.0403 0.8945 0.0124 

  Ling 0.0521 0.0533 0.8946 0.0027 0.0634 0.0105 0.9261 0.0264 

0 0.5 BN 0.0539 0.0511 0.8950 0.0025 0.0528 0.0463 0.9009 0.0032 

  SLR 0.0537 0.0513 0.8950 0.0025 0.0636 0.0353 0.9011 0.0142 

  Ling 0.0544 0.0524 0.8932 0.0034 0.0613 0.0109 0.9278 0.0252 

0.1 0.4 BN 0.0549 0.0538 0.8913 0.0043 0.0499 0.0568 0.8933 0.0035 

  SLR 0.0548 0.0533 0.8919 0.0040 0.0641 0.0411 0.8948 0.0115 

  Ling 0.0559 0.0544 0.8897 0.0051 0.0610 0.0126 0.9264 0.0242 

0.5 0.25 BN 0.0530 0.0485 0.8985 0.0022 0.0563 0.0497 0.8940 0.0033 

  SLR 0.0545 0.0474 0.8981 0.0036 0.0679 0.0382 0.8939 0.0149 

  Ling 0.0556 0.0487 0.8957 0.0034 0.0648 0.0113 0.9239 0.0267 

0.5 0.5 BN 0.0521 0.0476 0.9003 0.0022 0.0545 0.0502 0.8953 0.0023 

  SLR 0.0535 0.0466 0.8999 0.0034 0.0638 0.0401 0.8961 0.0118 

  Ling 0.0542 0.0472 0.8986 0.0035 0.0637 0.0141 0.9222 0.0248 

0.95 0.09 BN 0.0515 0.0537 0.8948 0.0026 0.0526 0.0571 0.8903 0.0048 

  SLR 0.0594 0.0424 0.8982 0.0085 0.0577 0.0453 0.8970 0.0062 

  Ling 0.0605 0.0434 0.8961 0.0085 0.0608 0.0171 0.9221 0.0218 
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