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ABSTRACT

An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In
this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of inter-
est of the DAR(1) model. Theoretically, the proposed method has rate of convergence 0(n’3/2). Applying the pro-
posed method to a real-life data set shows that the results obtained by the proposed method can be quite different from
the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accu-

racy of the proposed method even when the sample size is small.
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1. Introduction

ARCH error structure was first introduced to economet-
ric models by Engle [1] as a way of unleashing the con-
stant variance assumption. Weiss [2] studied the AR
models with ARCH error structure. A special case of
Weiss [2] model is the AR(1) model with ARCH(1) error
structure, which is also known as the first-order double
autoregressive (DAR(1)) model. The DAR(1) model can
be expressed as:

Yo=m,, Y,=¢Yr—1+771m, t=1---,n (1)

where w,a >0 and 7,,---,77, is a sequence of inde-
pendent standard normal random variables. Then

var(Y,)=1 and var(Y|Y_)=w+a¥? , t=1--n,
which is varying over time. This nonlinear time series
model is also a special case of f-ARCH model investi-
gated in Guégan & Diebolt [3] with g =1. This type of
model is widely used for fitting financial time series data
because the influence of the empirical observations is
part of the source for volatility. Guégan & Diebolt [3]
derived the sufficiency condition for the weak stationary
DAR(1) model to be ¢*+a <1, and Borkovec & Kliip-
pelberg [4] proved that it is also the necessity condition
for the model. Figure 1 shows the weak stationary region
for the DAR(1) model graphically. Note that, for the
DAR(1) model, when (¢,) reaches the boundary
points (+1,0), the model becomes a nonstationary AR(1)
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model.

Ling [5] obtained a conditional likelihood function for
the weak stationary DAR(1) model. Then he derived the
asymptotic distribution for the maximum likelihood es-
timate of the parameters based on this conditional likeli-
hood function.

In Section 2, some asymptotic likelihood-based infer-
ence procedures for a general model are reviewed. In
Section 3, a modified signed log conditional likelihood
ratio statistic for the weak stationary DAR(1) model is
derived. The proposed method, theoretically, has rate of

convergence 0(n‘3/2). A real-life example is presented

in Section 4 to illustrate the implementation of the pro-
posed method and also to show that results obtained from
the methods discussed in this paper can be quite different.
Results from Monte Carlo simulation studies are also
presented in Section 4 to illustrate the extreme accuracy
of the proposed method even when the sample size is
small. Some concluding remarks are given in Section 5.

2. Asymptotic Likelihood-Based Inference
for a General Model

Let »°=(y, ", ) be a sample from a canonical ex-
ponential family model with log likelihood function
f(@):f(a;y"), where Hz(y/,/l’)' is the k-dimen-
sional canonical parameter, with  being the scalar
parameter of interest and A being the (k — 1)-dimen-

sional nuisance parameter. Denote éz(;&,i') be the
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Figure 1. Weakly stationary region for DAR(1).

overall maximum likelihood estimate (MLE) of &, and
an estimate of the variance of & is j;;(e) where

, 0%0(0)
Jo (0)=———+
0600
is the observed information matrix. Moreover, let

éw =(1//,/iy',) be the constrained maximum likelihood
estimate of ¢ foragiven w,and
. (0
fu'(g):_—()
040

is the nuisance observed information matrix.

With the regularity conditions stated in Wald [6], and
a the scalar parameter of interest y, as n—> o, we
have

g=q(y)=——— )
var ()

is asymptotically distributed as standard normal and

\7a\r(1/7) isthe (L1) entryof j,; (é) . Thus, a

(1-7)100% confidence interval for y based on (2)
can be approximated by

(772, (7). + 2, oo fvar ()

Copyright © 2012 SciRes.

where z,, isthe (1-y/2)100" percentile of the stan-
dard normal distribution. Alternatively, the p-value func-
tion for y can be approximated by p(w)=®(q),
where ®(-) is the cumulative distribution function of
the standard normal distribution. Note that ¢ (i) is the
standardized maximum likelihood estimate departure in
the canonical parameter scale.

Although the Wald method is simple to use, one of the
major disadvantages is that the methodology is not in-
variant to reparameterization. Moroever, the Wald me-
thod does not take into consideration of the effect of the
nuisance parameter. For a scalar parameter of interest, a
familiar measure that is invariant to reparameterization is
the signed log-likelihood ratio (SLR) statistic:

rer)=son(p-v){2[(8)-(3,)]]" ©

With regularity conditions as stated in DiCiccio, Field
& Fraser [7], r is also asymptotically distributed as the
standard normal distribution. Hence, a (1-y) 100%
central confidence interval for w based on (3) can be
approximated by

Wilrp) <z, @)
and the corresponding p-value function for y is

p(v)=(r).
It is well-known that both the Wald method and the
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SLR method are not very accurate especially when the
sample size is small. Theoretically, they only have rate of

convergence O(n’]/ 2) . In statistics literature, there exists

other methods that have higher rate of convergence. In
particular, Barndorff-Nielsen ([8,9]) derived a modified
signed log-likelihood ratio statistic for any scalar pa-
rameter y :

V*Er*(w)zr(w)+$log{%} 5)

and proved that it is asymptotically distributed as the
standard normal distribution with rate of convergence
0(n‘3/2), where r(y) is the signed log-likelihood ra-
tio statistic as defined in (3), and Q(w) is a quantity
that needs to be specifically defined for each model being
considered. For the canonical exponential family model,
and y being a component parameter of the canonical
parameter, Q(y ) takes the form of

Jur(0) |

Ju(0,)

which is the standardized maximum likelihood departure
in canonical parameter scale taking into consideration of
removing the nuisance parameter. Hence a (1-y)100%
central confidence interval for y basedon r (y) is

il )<z, 6)

and the corresponding p-value function for y is
r(v)= <D<r*§.

However, not every model belongs to the canonical
exponential family model, and even if it does, the pa-
rameter of interest may not be a component parameter of
the canonical parameter. Fraser & Reid [10] showed that
any statistical model with a known density function de-
pending on a natural parameter & can be approximated
by a tangent exponential model with a locally defined
canonical parameter, ¢(6):

O(w)=(v-v)

or(o
(p'(@) = L xV
Oy 0
where V = 6—5 is considered as the tangent direc-
(°4)

tion. Differentiating the locally defined canonical pa-
rameter go(a) with respect to the natural parameter 4,
we have
29(9)
(0)=——=.
gz)'9( ) 69/

By changing the parameter space from 6 to ¢(6),

the maximum likelihood estimate departure w —w in

Copyright © 2012 SciRes.
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@ scale is equivalent to sgn(zﬁ—w)‘;((é)—;g(éw)‘ in

the locally defined canonical parameter ¢(¢) scale,
where

_ve(4)
x(0) v (6)

with first factor is the unit row vector version of the gra-
dient vector, which is obtained from

q ):al,,(?): a"’(f;) a(ﬂ(?) B
v, (0 V/j((pg)%,l{(;;t? ]( o0 J

Moreover, by the chain rule in differentiation, deter-
minant of the observed information matrix in @ scale,

?(0),

Joor (é)‘ ,expressed in ¢(6) scale is

o (#(0)) = () (2)

and similarly, the determinant of the nuisance observed

-2

information matrix, jM,(BW) , expressed in (p(a) scale

is
-1

o () = e (9, )0 (6, ) (8,

Hence Q in (@) scale can be expressed as
0=0(y)=sgn(v-v) z(é)—z(%)

Joo (é)‘ Do (é) ’

i (0, ) [0 (0, ) (8,
Hence " (w), which has rate of convergence

0 n’3/2), can be obtained. Thus a (1-y)100% confi-

dence interval for y , and also the p-value function for
w can be obtained.

G

-1

3. A Modified Log Conditional Likelihood
Ratio Statistic for the DAR(1) Model

For the DAR(1) model given in (1), Ling [5] obtained the
conditional likelihood function for the weak stationary
DAR(1) model. Moreover, assuming @ is known, Ling
([5,11]) studied the asymptotic distribution for the maxi-
mum likelihood estimate of &, 6=(¢,a) based on
the conditional likelihood function. More specifically,
the log conditional likelihood function for DAR(1) model
with @ known is:

1(0)=t(¢.a)=1(6:5°)
(v, —#y1) _ (8)

1 n
S ol 2
2; og(a)+ayH)+ =
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Hence, ¢,(0)= o0) :(66(9),%(9)} where

20 op ' oa
or(6) _3 Vi (¥, —dv.41) 9)
6¢ t=1 o+ aytz—l ,
or(e " 2 - j
(9) _1 Vi (, ¢y’j) ~1| (10
oo 25 o+ay ;| o+tay,

and the overall MLE, é=(¢3,&)’, can be obtained by
solving

o¢(0)

op

The observed information matrix j,, (¢) is (see the
bottom of the page) R
Ling [5] showed that the expectation of & is asymp-

totically equal to @, and instead of using jggl,(é) as

0, or(0)
oa

=0.

6=6

6=0

the asympotitic variance for 6, he showed that

[nE Y’Z le 0
(é): w+al, (11)

(a)+ aY? )2

Since this asymptotic variance of 6 still involves the
unknown parameter « , Ling [5] further proposed to use

z”:yf

)
\Ta\r(é): 1 o+ay,

0 ,\;\Z—AA
AC — B?
as an estimate of \7a\r(67), where
~ n 1 N n yZ
A=) ——= B=2—"—3,
tzl(a)+ayt) le(a)+ay, )

4

é: y y—izz
tzl(a)+ayt)

Then inference concerning ¢, and « can be ob-
tained by the Wald method.

For the DAR(1) model, Ling [5] pointed out that it is
an ergodic process under suitable conditions on the pa-
rameters. Therefore, by Taylor expansion, we have

1(0)-1(0)= %(9—@)' 14 (0)(0-6).
Hence

2[10)-1(9)]1(6-0) 1 3)(5-)

is asymptotically distributed as a y* distribution with
p degrees of freedom. Thus, when dim(8)=p =1, the
signed log conditional likelihood ratio statistic for ¢
and for o« of the DAR(1) model is asymptotically dis-
tributed as N (0,1) with rate of convergence O(n‘l/zl.

We performed some simulation studies for testing the
normality of the log conditional likelihood ratio statistics
for the DAR(1) model. The Kolmogorov-Smirov test is
employed. We considered a medium sample size of
n=50 and a large sample size of »=200. For each
sample size, we generate 10,000 samples from the DAR(1)
model for each combination of parameter values. For
each generated sample, the signed log conditional likeli-
hood ratio statistic for ¢ and for « are calculated.
The simulation results are presented in Tables 1 and 2:
Table 1 records the p-values of the Kolmogorov-Smirov
test when the parameters values are on the boundary of
the weak stationary region; Table 2 records the p-values
of the Kolmogorov-Smirov test when the parameters
values are the interior points of the weak stationary re-
gion. From the tables, the p-values of the Kolmogorov-
Smirov test of the signed log conditional likelihood ratio
statistic for ¢ are large regardless of the sample sizes.
Hence no evidence that the signed log conditional likeli-
hood ratio statistic for ¢ is not distributed as N (0,1).
On the other hand, the p-values of the Kolmogorov-
Smirov test of the signed log conditional likelihood ratio
statistic for « are large only for n=200. Hence for
n is sufficiently large, there is no evidence that the
signed log conditional likelihood ratio statistic for « is
not distributed as N (0,1).

Note that when @ is unknown, Ling & Li [12] sug-

B

yt?)—l(yt _¢yt—l)

2 2
7 (orat)

yr—l
0P
Joo I =
0600 v ey (¥~ by
2 (wrat,
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Table 1. The p-values of the Kolmogorov-Smirnov test for the SLR when @ = 1, ¢ and « are on the boundary of the weak

stationary region.

(ga) (-0.95, 0.0975) (-0.5,0.75) 0,1) (0.5, 0.75) (0.95, 0.0975)
v =¢(n=50) 0.2093 0.3089 0.0923 0.2519 0.1676
v =¢(n=200) 0.7294 0.2544 0.2219 0.8769 0.3595
v =a(n=50) 0.0054 0.0184 0.0102 0.0155 0.0217
v = a(n=200) 0.2162 0.6260 0.5481 0.3084 0.7428

Table 2. The p-values of the Kolmogorov-Smirnov test for the SLR when w = 1, ¢ and a are interior points of the weak

staionary region.

(gax) (-0.95,0.0975)  (-0.5,0.5) (-0.5,0.25) 0,0.5) 0.1,0.4) (0.5,0.25) (0.5,0.5) (0.95, 0.09)

y=¢ 0.0647 0.0525 0.6512 0.3877 0.0614 0.4067 0.5246 0.9448
(n =50)

v=¢ 0.1418 0.2234 0.2626 0.3933 0.9673 0.7956 0.6339 0.0996
(n = 200)

y=a 0.0703 0.0021 0.0628 0.0001 0.1980 0.0000 0.0011 0.0013
(n =50)

y=a 0.2778 0.1640 0.0659 0.1865 0.1779 0.5938 0.0660 0.1802
(n = 200)

gested a method to estimate @ and the analysis in Ling
& Li [12] treated the estimate @ as the known @ . For
the rest of the section, we following the approach of Ling
& Li [12] and derived the modified signed log condi-
tional likelihood ratio statistic for ¢ and « respec-
tively.

When the parameter of interest is y () =¢, the nui-
sance parameter is A=« , and hence the constrained

= yg(yl_&yo) J’12(J’2_¢?Y1)

MLE of @ is 67¢ =(¢, &¢), which can be obtained by
solving

Hence, r(y) can be calculated from (3). Moreover,

Mo N Yna

J’:-l (yn - &yn—l)

L R
gl o o 3
0Ols) | . W
Ja Oa oa (+°.6)
_[ Yo N Yna
Yoo M Vi)

For 1<t<n-1,
a€(9)| _ ay, (yt+1_¢y;)2 +¢yt+1_(¢2+0!)yt
Wl (orer)

_ Y _¢yt—l
o+ay’,

o+ay’

Z(a)-i-dfyg) Z(a)+0?y12) 2(w+&y3_1)
andfor t=n,
@) _ y -
oy, |yo a)+ay5—1

Then, the locally defined canonical parameter
(p'(@) = ((01 (9)* 2 ('9)) is

2 2
ay,y (Vi —9v,) N PViaVia— (¢ + a)ytyt—l SV $y2,

(a)+oey,2)2

2 2
w+ay, =1 otay.,

@y (= 93,)"  $readia~ (8 +) 93,1 = vy, + 65

(a)+ayf)2
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2 2
at ayv,, (yr+1 _¢yl‘) i ¢v’*1y”1 _(¢ +a)y’v”l _ = YViVia _¢yt—lvt—1

(02(9):2

=1 (a)—i-aytz)z

2 2
otay, =1 o+ay,

=1 (a)+ayf)2

Thus Q can be obtained from (7) with

ow(0) (ow(6) ow(0) .

vy (0) v [ 20 oa J (10). Finally,
the modified signed log conditional likelihood ratio sta-
tistic " (y) can be calculated from (5) and, therefore, a
(1-7) 100% confidence interval for y can be obtained
from (6).

On the other hand, when the parameter of interest is
w(0)=a, the nuisance parameter is 4=¢. The con-

strained MLE of @ is éa =(¢?a,a)’ which can be ob-
tained by solving
o) _
9 |,
Again () can be calculated from (3). The tangent

direction ¥ remains unchanged as above and hence O
can be obtained from (7) with

&ayva (yr+1 -9y, )2 + PVi1Vin _(¢2 + a)ytvt—l = VetV OV,

o+ay?

vy (0)= 61/6/;6) = [812((:) : al’gie)j =(0,1). And once

again, the modified signed log conditional likelihood
ratio statistic »"(y) can be calculated from (5) and
therefore a (1-y)100% confidence interval for y can
be obtained from (6).

4. Numerical Studies

Anderson [13] considered the closing prices of the Impe-
rial Chemical Industries (1.C.1.) for the period 25 August,
1972 to 19 January, 1973. Instead of using the raw data,
we use the calibrated data, which is obtained by taking
the difference of two consecutive data points after a log
transformation. A scatter plot for the calibrated data is
shown in Figure 2.

The DAR(1) model is employed. By applying Ling &
Li [12], we have an estimate of @ being 0.0002. The
overall MLE is obtained by maximizing (8) and we have

’

6 is (-0.1553,0.1330) . Table 3 reports the 90% con-

0.04 T T
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-0.01
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-0.02
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—0.04
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Figure 2. Scatter plot for calibrated data.
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Table 3. 90% central confidence intervals for g and a.

Method 90% Confidence Interval for ¢ 90% Confidence Interval for a
BN (-0.3629, 0.0389) (0.0048, 0.4719)
SLR (-0.3490, 0.0352) (0.0000, 0.4072)
Ling (-0.3438, 0.0333) (0.0048, 0.3588)

fidence intervals for ¢, and the 90% confidence inter-
vals for « , obtained from the methods discussed in this
paper: BN is the proposed method based on Equation (5),
SLR is the signed log-likelihood ratio statistic (3), Ling
is the method discussed in Ling [5]. SLR and Ling give
similar confidence intervals which are quite different
from the results obtained by BN. Moreover, since « is
bounded by 0, both SLR and Ling have deficiency on the
left boundary.

The p-value functions are presented in Figures 3 and 4.
Additionally, the two horizontal lines indicate upper and
lower 0.05 levels respectively. The plots show that re-
sults obtained by the three methods discussed in this pa-
per are quite different.

To examine the accuracy of the methods discussed in
this paper, Monte Carlo simulation studies are performed.
For each combination of (¢,«), 10,000 Monte Carlo
samples, for each of sample sizes takeing values n = 50,
200 and 400, are generated from the DAR(1) model
where 7, ~N(0,1), =0,---,n. Without loss of gener-

ality, o issettobe 1.

Tables 4-9 recorded the central coverage probability
(CCP) which is the proportion of intervals that contains
the true y , the lower error probability (L) which is the
proportion of true y that falls outside the lower bound
of the confidence interval, and upper error probability (U)
which is the proportion of true y that falls outside the
upper bound of the confidence interval. The nominal
values for the central coverage probability, and the lower
and upper errors probabilities are 0.90, 0.05, and 0.05
respectively. In additional to this, we also report the av-
|L—0.05|+|U—0.05|

> ,

erage bias (Avg Bias) defined by

which has the nominal value of 0.

For both w =¢ and w =« , simulation studies show
that BN is remarkably accurate even when the sample
size is small. As »n increases, there is significant im-
provement on the precision of both the SLR method and
the Ling’s method in terms of both cental coverage and
average bias but the results are still not as accurate as
those obtained by the proposed method.

5. Conclusion

A conditional likelihood based method is proposed to
obtain confidence intervals for « and for ¢ of the
weak stationary DAR(1) model. Theoretically, the pro-

1 — T T

09 r

08

07 I

06

05 1

Probability

04

03

02 r

0.1

SLR []
Ling

0 I I I
-0.5 -0.3 —0.2

0.1 0 0.1

Hypothesized value for ¢

Figure 3. p-value functions for ¢ of 1.C.1. Data.
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Figure 4. p-value functions for « of 1.C.I. Data.
Table 4. Simulation results for some boundary points of the DAR(1) model when r = 50.
=9 y=a
@ a Method L U ccp Avg Bias L U CCP Avg Bias
-0.95 0.0975 BN 0.0544 0.0451 0.9005 0.0046 0.0372 0.0573 0.9055 0.0101
SLR 0.0343 0.0760 0.8897 0.0209 0.0870 0.0314 0.8816 0.0278
Ling 0.0384 0.0924 0.8692 0.0270 0.1228 0.0020 0.8752 0.0604
-05 0.75 BN 0.0542 0.0494 0.8964 0.0024 0.0542 0.0494 0.8964 0.0024
SLR 0.0950 0.0272 0.8778 0.0339 0.0950 0.0272 0.8778 0.0339
Ling 0.1558 0.0041 0.8401 0.0759 0.1558 0.0041 0.8401 0.0759
0 1 BN 0.0521 0.0529 0.8950 0.0025 0.0497 0.0524 0.8979 0.0014
SLR 0.0560 0.0571 0.8869 0.0065 0.0987 0.0275 0.8738 0.0356
Ling 0.0625 0.0645 0.8730 0.0135 0.1532 0.0044 0.8424 0.0744
0.5 0.75 BN 0.0487 0.0506 0.9007 0.0009 0.0536 0.0492 0.8972 0.0022
SLR 0.0630 0.0491 0.8879 0.0070 0.0964 0.0264 0.8772 0.0350
Ling 0.0745 0.0565 0.8690 0.0155 0.1545 0.0026 0.8429 0.0760
0.95 0.0975 BN 0.0446 0.0576 0.8978 0.0065 0.0375 0.0542 0.9083 0.0083
SLR 0.0761 0.0369 0.8870 0.0196 0.0856 0.0331 0.8813 0.0262
Ling 0.0893 0.0408 0.8699 0.0243 0.1223 0.0014 0.8763 0.0605
Copyright © 2012 SciRes. oJs
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y=9¢ y=a
I a Method L U CCP Avg Bias L U CCP Avg Bias
-0.95 0.09 BN 0.0574 0.0435 0.8991 0.0070 0.0322 0.0533 0.9145 0.0106
SLR 0.0363 0.0734 0.8903 0.0186 0.0838 0.0290 0.8872 0.0274
Ling 0.0399 0.0880 0.8721 0.0240 0.1161 0.0017 0.8822 0.0572
-0.5 05 BN 0.0536 0.0483 0.8981 0.0026 0.0497 0.0524 0.8979 0.0014
SLR 0.0508 0.0606 0.8886 0.0057 0.1078 0.0291 0.8631 0.0394
Ling 0.0569 0.0702 0.8729 0.0135 0.1724 0.0032 0.8244 0.0846
-0.5 0.25 BN 0.0507 0.0488 0.9005 0.0009 0.0113 0.0514 0.9373 0.0201
SLR 0.0467 0.0598 0.8935 0.0066 0.0997 0.0249 0.8754 0.0374
Ling 0.0527 0.0686 0.8787 0.0106 0.1522 0.0016 0.8462 0.0753
0 05 BN 0.0507 0.0499 0.8994 0.0004 0.0391 0.0542 0.9067 0.0075
SLR 0.0552 0.0535 0.8913 0.0043 0.1077 0.0279 0.8644 0.0399
Ling 0.0623 0.0612 0.8765 0.0117 0.1750 0.0027 0.8223 0.0861
0.1 0.4 BN 0.0507 0.0506 0.8987 0.0006 0.0201 0.0538 0.9261 0.0169
SLR 0.0552 0.0524 0.8924 0.0038 0.1078 0.0259 0.8663 0.0410
Ling 0.0639 0.0580 0.8781 0.0109 0.1802 0.0012 0.8186 0.0895
0.5 0.25 BN 0.0490 0.0481 0.9029 0.0015 0.0125 0.0518 0.9357 0.0197
SLR 0.0601 0.0445 0.8954 0.0078 0.1034 0.0279 0.8687 0.0378
Ling 0.0709 0.0512 0.8779 0.0111 0.1657 0.0013 0.8330 0.0822
0.5 0.5 BN 0.0488 0.0472 0.9040 0.0020 0.0459 0.0566 0.8975 0.0053
SLR 0.0627 0.0453 0.8920 0.0087 0.1016 0.0296 0.8688 0.0360
Ling 0.0731 0.0524 0.8745 0.0127 0.1651 0.0028 0.8321 0.0812
0.95 0.09 BN 0.0457 0.0538 0.9005 0.0041 0.0342 0.0531 0.9127 0.0095
SLR 0.0783 0.0344 0.8873 0.0219 0.0847 0.0306 0.8847 0.0270
Ling 0.0928 0.0386 0.8686 0.0271 0.1166 0.0023 0.8811 0.0571
Table 6. Simulation results for some boundary points of the DAR(1) model when »n = 200.
v=¢ y=a
@ a Method L u CCP Avg Bias L U CCP Avg Bias
-0.95 0.0975 BN 0.0552 0.0516 0.8932 0.0034 0.0622 0.0498 0.8880 0.0062
SLR 0.0415 0.0623 0.8962 0.0104 0.0699 0.0398 0.8903 0.0151
Ling 0.0427 0.0655 0.8918 0.0114 0.0832 0.0093 0.9075 0.0369
-0.5 0.75 BN 0.0519 0.0509 0.8972 0.0014 0.0485 0.0521 0.8994 0.0018
SLR 0.0506 0.0534 0.8960 0.0020 0.0641 0.0361 0.8998 0.0140
Ling 0.0521 0.0551 0.8928 0.0036 0.0769 0.0010 0.9221 0.0379
0 1 BN 0.0517 0.0514 0.8969 0.0015 0.0522 0.0515 0.8963 0.0019
SLR 0.0527 0.0528 0.8945 0.0027 0.0686 0.0381 0.8933 0.0153
Ling 0.0515 0.0520 0.8965 0.0017 0.1049 0.0208 0.8743 0.0421
0.5 0.75 BN 0.0534 0.0500 0.8966 0.0017 0.0472 0.0545 0.8983 0.0037
SLR 0.0557 0.0494 0.8949 0.0032 0.0674 0.0388 0.8938 0.0143
Ling 0.0580 0.0504 0.8916 0.0042 0.0777 0.0009 0.9214 0.0384
0.95 0.0975 BN 0.0576 0.0499 0.8925 0.0038 0.0597 0.0503 0.8900 0.0050
SLR 0.0677 0.0384 0.8939 0.0147 0.0653 0.0379 0.8968 0.0137
Ling 0.0709 0.0396 0.8895 0.0157 0.0787 0.0097 0.9116 0.0345
Copyright © 2012 SciRes. oJs



150

F.CHANG ET AL.

Table 7. Simulation results for some interior points of the DAR(1) model when n = 200.

y=9¢ y=a

I a Method L U CCP Avg Bias L U CCP Avg Bias
-0.95 0.09 BN 0.0509 0.0512 0.8979 0.0010 0.0585 0.0529 0.8886 0.0057
SLR 0.0401 0.0641 0.8958 0.0120 0.0706 0.0390 0.8904 0.0158
Ling 0.0411 0.0663 0.8926 0.0126 0.0844 0.0091 0.9065 0.0377
-0.5 05 BN 0.0486 0.0512 0.9002 0.0013 0.0497 0.0469 0.9034 0.0017
SLR 0.0478 0.0545 0.8977 0.0033 0.0659 0.0354 0.8987 0.0153
Ling 0.0491 0.0564 0.8945 0.0037 0.0787 0.0101 0.9112 0.0343
-0.5 0.25 BN 0.0458 0.0524 0.9018 0.0033 0.0559 0.0503 0.8938 0.0031
SLR 0.0452 0.0563 0.8985 0.0056 0.0771 0.0352 0.8877 0.0210
Ling 0.0464 0.0595 0.8941 0.0066 0.0891 0.0057 0.9052 0.0417
0 05 BN 0.0495 0.0544 0.8961 0.0024 0.0512 0.0523 0.8965 0.0017
SLR 0.0518 0.0568 0.8914 0.0043 0.0732 0.0378 0.8890 0.0177
Ling 0.0623 0.0612 0.8765 0.0117 0.0808 0.0093 0.9099 0.0357
0.1 0.4 BN 0.0514 0.0504 0.8982 0.0009 0.0499 0.0487 0.9014 0.0007
SLR 0.0523 0.0506 0.8971 0.0014 0.0740 0.0330 0.8930 0.0205
Ling 0.0538 0.0519 0.8943 0.0028 0.0827 0.0073 0.9100 0.0377
0.5 0.25 BN 0.0478 0.0465 0.9057 0.0029 0.0537 0.0500 0.8963 0.0018
SLR 0.0522 0.0449 0.9029 0.0037 0.0733 0.0370 0.8897 0.0182
Ling 0.0549 0.0467 0.8984 0.0041 0.0873 0.0064 0.9063 0.0405
0.5 0.5 BN 0.0514 0.0472 0.9014 0.0021 0.0513 0.0462 0.9025 0.0026
SLR 0.0537 0.0459 0.9004 0.0039 0.0665 0.0319 0.9016 0.0173
Ling 0.0558 0.0478 0.8964 0.0040 0.0782 0.0073 0.9145 0.0355
0.95 0.09 BN 0.0543 0.0481 0.8976 0.0031 0.0571 0.0531 0.8898 0.0051
SLR 0.0669 0.0364 0.8967 0.0153 0.0682 0.0383 0.8935 0.0149
Ling 0.0691 0.0373 0.8936 0.0159 0.0820 0.0088 0.9092 0.0366

Table 8. Simulation results for some boundary points of the DAR(1) model when n = 400.
v=¢ y=a

@ a Method L u CCP Avg Bias L U CCP Avg Bias
-0.95 0.0975 BN 0.0488 0.0523 0.8989 0.0017 0.0613 0.0528 0.8859 0.0070
SLR 0.0398 0.0599 0.9003 0.0101 0.0602 0.0415 0.8983 0.0093
Ling 0.0404 0.0607 0.8989 0.0101 0.0635 0.0152 0.9213 0.0242
-0.5 0.75 BN 0.0531 0.0488 0.8981 0.0021 0.0503 0.0541 0.8956 0.0022
SLR 0.0523 0.0510 0.8967 0.0016 0.0603 0.0419 0.8978 0.0092
Ling 0.0529 0.0516 0.8955 0.0022 0.0610 0.0178 0.9212 0.0216
0 1 BN 0.0577 0.0513 0.8910 0.0045 0.0496 0.0512 0.8992 0.0008
SLR 0.0563 0.0506 0.8931 0.0034 0.0611 0.0413 0.8976 0.0099
Ling 0.0566 0.0510 0.8924 0.0038 0.0815 0.0280 0.8905 0.0268
0.5 0.75 BN 0.0529 0.0528 0.8943 0.0028 0.0533 0.0546 0.8921 0.0039
SLR 0.0544 0.0514 0.8942 0.0029 0.0646 0.0411 0.8943 0.0118
Ling 0.0550 0.0521 0.8929 0.0035 0.0655 0.0192 0.9153 0.0232
0.95 0.0975 BN 0.0524 0.0528 0.8948 0.0026 0.0634 0.0528 0.8838 0.0081
SLR 0.0612 0.0435 0.8953 0.0089 0.0640 0.0429 0.8931 0.0106
Ling 0.0625 0.0442 0.8933 0.0091 0.0675 0.0159 0.9166 0.0258
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Table 9. Simulation results for some interior points of the DAR(1) model when n = 400.

y=¢ y=a
I a Method L U CCP Avg Bias L U CCP Avg Bias
-0.95 0.09 BN 0.0481 0.0519 0.9000 0.0019 0.0529 0.0551 0.8920 0.0040
SLR 0.0402 0.0594 0.9004 0.0096 0.0569 0.0407 0.9024 0.0081
Ling 0.0404 0.0603 0.8993 0.0100 0.0611 0.0159 0.9230 0.0226
-0.5 0.5 BN 0.0540 0.0506 0.8954 0.0023 0.0520 0.0471 0.9009 0.0024
SLR 0.0526 0.0520 0.8954 0.0023 0.0622 0.0384 0.8994 0.0119
Ling 0.0537 0.0538 0.8925 0.0037 0.0623 0.0133 0.9244 0.0245
-0.5 0.25 BN 0.0529 0.0502 0.8969 0.0015 0.0549 0.0524 0.8927 0.0036
SLR 0.0514 0.0525 0.8961 0.0019 0.0652 0.0403 0.8945 0.0124
Ling 0.0521 0.0533 0.8946 0.0027 0.0634 0.0105 0.9261 0.0264
0 0.5 BN 0.0539 0.0511 0.8950 0.0025 0.0528 0.0463 0.9009 0.0032
SLR 0.0537 0.0513 0.8950 0.0025 0.0636 0.0353 0.9011 0.0142
Ling 0.0544 0.0524 0.8932 0.0034 0.0613 0.0109 0.9278 0.0252
0.1 0.4 BN 0.0549 0.0538 0.8913 0.0043 0.0499 0.0568 0.8933 0.0035
SLR 0.0548 0.0533 0.8919 0.0040 0.0641 0.0411 0.8948 0.0115
Ling 0.0559 0.0544 0.8897 0.0051 0.0610 0.0126 0.9264 0.0242
0.5 0.25 BN 0.0530 0.0485 0.8985 0.0022 0.0563 0.0497 0.8940 0.0033
SLR 0.0545 0.0474 0.8981 0.0036 0.0679 0.0382 0.8939 0.0149
Ling 0.0556 0.0487 0.8957 0.0034 0.0648 0.0113 0.9239 0.0267
0.5 0.5 BN 0.0521 0.0476 0.9003 0.0022 0.0545 0.0502 0.8953 0.0023
SLR 0.0535 0.0466 0.8999 0.0034 0.0638 0.0401 0.8961 0.0118
Ling 0.0542 0.0472 0.8986 0.0035 0.0637 0.0141 0.9222 0.0248
0.95 0.09 BN 0.0515 0.0537 0.8948 0.0026 0.0526 0.0571 0.8903 0.0048
SLR 0.0594 0.0424 0.8982 0.0085 0.0577 0.0453 0.8970 0.0062
Ling 0.0605 0.0434 0.8961 0.0085 0.0608 0.0171 0.9221 0.0218
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