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ABSTRACT 

The effort invested in a software project is probably one of the most important and most analyzed variables in recent 
years in the process of project management. The determination of the value of this variable when initiating software 
projects allows us to plan adequately any forthcoming activities. As far as estimation and prediction is concerned there 
is still a number of unsolved problems and errors. To obtain good results it is essential to take into consideration any 
previous projects. Estimating the effort with a high grade of reliability is a problem which has not yet been solved and 
even the project manager has to deal with it since the beginning. In this study, performance of M5-Rules Algorithm, 
single conjunctive rule learner and decision table majority classifier are experimented for modeling of Effort Estimation 
of Software Projects and performance of developed models is compared with the existing algorithms namely Halstead, 
Walston-Felix, Bailey-Basili, Doty in terms of MAE and RMSE. The proposed techniques are run in the WEKA envi-
ronment for building the model structure for software effort and the formulae of existing models are calculated in the 
MATLAB environment. The performance evaluation criteria are based on MAE and RMSE. The result shows that the 
M5-Rules have the best performance and can be used for the effort estimation of all types of software projects. 
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1. Introduction 

Software effort estimation is the critical part of software 
projects. Effective development of software is based on 
accurate effort estimation. Many quantitative software 
cost estimation models have been developed and imple- 
mented by practitioners in the past three decades. These 
include predictive parametric models such as Boehm’s 
COCOMO models [1], Price S [2] and analytical models 
such as those introduced in [3-5]. An empirical model 
uses data from previous projects to evaluate the current 
project and derives the basic formulae from analysis of the 
particular database available. An analytical model, on the 
other hand, uses formulae based on global assumptions, 
such as the rate at which developer solves problems and 
the number of problems available [6]. A good software 
cost estimate should be conceived and supported by the 
project manager and the development team. It is accepted 
by all stakeholders as realizable. It is based on a well- 
defined software cost model with a credible basis. It is 
based on a database of relevant project experience and it 
should be defined in enough detail so that its key risk areas 
are understood and the probability of success is objec- 
tively assessed [7]. 

In this paper, the performance of single conjunctive rule 
learner, M5-Rules Algorithm and decision table majority 
classifier is compared for Modeling of Effort Estimation 
of Software Projects. The dataset is based on the cost fa- 
ctors in COCOMO II. The performance of the developed 
model was tested on NASA software project dataset and 
compared to the models presented in [8-11]. The deve- 
loped models were able to provide good estimation capa- 
bilities as compared to other models provided in the lite- 
rature. 

The remainder of this paper can be described as fol- 
lows: 

Section 2 outlines the literature review about the tech- 
niques that are used for effort and cost estimation. Section 
3 discusses the methodology adopted for generating and 
comparing a number of models. Section 4 highlights re- 
sults of implementation. It discusses the results of the 
various models used for the effort estimation and Section 
5 is all about conclusions of this research work. 

2. Related Work 

One of the most important problems faced by software 
developers and users is the prediction of the size of a pro- 
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gramming system and its development effort. Software 
effort estimation stands as the oldest and most mature 
aspect of software metrics towards rigorous software mea- 
surement. Considerable research had been carried out in 
the past, to come up with a variety of effort prediction 
models. The background information of various software 
effort and estimation models to be used in this research 
work is discussed as follows: 
 M. H. Halstead [11] in 1977 proposed the model which 

predicts the rate of error and do not require the 
in-depth analysis of programming structure. It pro- 
posed the code length and volume metrics. Code leng- 
th is used to measure the source code program and 
volume corresponds to the amount of required storage 
space. Numerous industry studies support the use of 
Halstead in predicting programming effort and mean 
number of programming bugs. However it depends on 
completed code and has little or no use as a predictive 
estimating model. 

 Walston-Felix Model developed by C. E. Walston and 
C. P. Felix in 1977 at IBM provides the relationship 
between delivered lines of source code (L in thousands 
of lines) and effort E (E in person-month).  

 Doty Model [12] published in 1977, is used to estimate 
efforts for Kilo lines of code (KLOC). This model 
constitutes various aspects of the software develop- 
ment environment such as user participation, customer- 
oriented changes, memory constraints etc.  

 Bailey and Basily [13] in 1981 described a meta-model 
which allows the development of effort estimation 
equations which are best adapted to a given develop- 
ment environment. The resultant estimation model will 
be similar to that of IBM and COCOMO is based on 
data collected by organization which captures its en- 
vironmental factors and the differences among given 
projects. 

 Albrecht has developed a methodology to estimate the 
amount of the “function” the software is to perform, in 
terms of the data it is to use (absorb) and to generate 
(produce). The “function” is quantified as “function 
points,” essentially, a weighted sum of the numbers of 
“inputs”, “outputs”, “master files”, “inquiries” provided 
to, or generated by, the software. Albrecht-Gaffney 
model established by IBM DP Services Organization, 
uses function point to estimate efforts. 

Typical major models that are being used as bench- 
marks for software effort estimation are: 
 Halstead 
 Walston-Felix 
 Doty (for KLOC > 9) 
 Bailey-Basili  

All these models have been derived by studying large 
number of completed software projects from various or- 
ganizations and applications to explore how project sizes 

mapped into project effort. But still these models are not 
able to predict the effort estimation accurately. 

As the exact relationship between the attributes of the 
effort estimation is difficult to establish, so machine learn- 
ing approaches could serve as an automatic tool to gene- 
rate model by formulating the relationship based on its 
training. In this proposed study, it is tried to build a more 
accurate model that can provide accurate estimates of 
effort required to build a software system when compared 
with the other models provided in the literature. 

Cost Estimation Model 

COnstructive COst MOdel (COCOMO) [14,15] is used 
to estimate the software cost. It was first published in 1981 
(COCOMO 81) and in 1997 (COCOMO II). Some dif- 
ferences between COCOMO 81 and COCOMO II are as 
follows: COCOMO 81 has 63 data points, uses Kilo De- 
liverable Source Instructions (KDSI) to measure the pro- 
ject size and three development modes to be represented 
by scale factors. In contrast, COCOMO II has 161 data 
points, uses KSLOC project size, and five scale factors. 

The COCOMO software cost model measures effort in 
calendar months of 152 hours (and includes development 
and management hours). COCOMO assumes that the 
effort grows more than linearly on software size; i.e. 
months = a*KSLOC^b*c. Here, “a” and “b” are domain- 
specific parameters; “KSLOC” is estimated directly or 
computed from a function point analysis; and “c” is the 
product of over a dozen “effort multipliers” i.e. months = 
a*(KSLOC^b)*(EM1* EM2 * EM3 * ...). In COCOMO I, 
the exponent on KSLOC was a single value ranging from 
1.05 to 1.2. 

In COCOMO II, the exponent “b” was divided into a 
constant, plus the sum of five “scale factors” which mo- 
deled issues such as “have we built this kind of system 
before?”. The COCOMO I, effort multipliers are similar 
but COCOMO II dropped one of the effort multiplier 
parameters; renamed some others; and added a few more 
(for “required level of reuse”, “multiple-site develop- 
ment”, and “schedule pressure”). The effort multipliers 
fall into three groups: those that are positively correlated 
to more effort; those that are negatively correlated to 
more effort; and a third group containing just schedule 
information. In COCOMO I, “sced” have a U-shaped 
correlation to effort; i.e. giving programmers either too 
much or too little time to develop a system can be detri- 
mental. The actual development effort is expressed in 
months (one month = 152 hours and includes develop- 
ment and management hours). The cost factors are shown 
in Table 1. 

3. Used Methodology 

The following steps are used for the comparative study: 
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Table 1. Cost factors in COCOMO II. 

Cost Factors Description 

 Product 

RELY required software reliability 

DATA database size 

CPLX product complexity 

 Computer 

TIME execution time constraint 

STOR main storage constraint 

VIRT virtual machine volatility 

TURN computer turnaround time 

 Personnel 

ACAP analyst capability 

AEXP application experience 

PCAP programmer capability 

VEXP virtual machine experience 

LEXP language experience 

 Project 

MODP modern programming practice 

TOOL software tools 

SCEP development schedule 

3.1. Preliminary Study 

First, Survey of the existing Models of Effort Estimation 
is to be performed. 

3.2. Data Collection 

Secondly, Historical Data being used by various existing 
models for the cost estimation is collected.  

3.3. Effort Calculation Using Different Models 

The following models are used for the data collected in the 
previous step and the effort for each developed approach 
is calculated. 
 M5-Rules Algorithm 
 Decision Table Majority Classifier 
 Single Conjunctive Rule Learner 
 Halstead Model 
 Walston-Felix Model 
 Bailey-Basili Model 
 Doty Model 

In addition to single conjunctive rule learner, M5- 
Rules Algorithm and decision table majority classifier, 
the different existing models: Halstead Models, Walston- 
Felix Model, Bailey-Basili Model and Doty Model are 
also used for the comparison of results. The equations for 
the existing models are as under: (Table 2) 

3.4. Performance Evaluation Criteria for 
Comparison of Models 

The following performance criteria’s are adapted to ac- 

Table 2. Existing effort estimation models. 

Model Name Effort 

Halstead Model Effort = 5.2(KLOC)1.50 

Walston-Felix Model Effort = 0.7(KLOC)0.91 

Bailey-Basili Model Effort = 5.5 + 0.73(KLOC)1.16 

Doty (for KLOC > 9) Effort = 5.288(KLOC)1.047 

 
cess and evaluate the performance of effort estimation 
models. 
 Mean absolute error (MAE) 

1 1 2 2MAE n na c a c a c

n

     



 

where actual output is a, expected output is c. 
Mean absolute error, MAE, is the average of the diffe- 

rence between predicted and actual value in all test cases; 
it is the average prediction error [16]. 
 Root Mean-Squared Error (RMSE) 

     22 2

1 1 2 2RMSE
2

n na ca c a c    



 

where actual output is a, expected output is c. 
Root Mean Square Error, RMSE is frequently used 

measure of differences between values predicted by a 
model or estimator and the values actually observed from 
the thing being modeled or estimated [16]. It is just the 
square root of the mean square error. 

The mean-squared error, MSE is one of the most com- 
monly used measures of success for numeric prediction. 
This value is computed by taking the average of the 
squared differences between each computed value and its 
corresponding correct value.  

The root mean-squared error is simply the square root 
of the mean-squared-error. The root mean-squared error 
gives the error value the same dimensionality as the actual 
and predicted values. The mean absolute error and root 
mean squared error is calculated for each machine learn- 
ing algorithm. 

4. Results & Discussion 

The implementation of used methodology is done in WEKA 
open source software [17], and certain calculations are 
performed in the MATLAB environment. Different steps 
discussed in the methodology are implemented and the 
comparative analysis of various models is done in terms of 
MAE and RMSE values. 

Table 3 shows the publicly available PROMISE Soft-
ware Engineering Repository data set which is used for 
the experimentation. It consists of 93 instances each with 
23 input attributes and one output attribute named as ef-
fort. Figures 1-3 describes the statistical analysis of dif-
ferent input attributes. 
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Table 3. COCOCMO NASA 2 data set. 

 
 

 

Figure 1. Statistical analysis of input attribute (mode) used 
in dataset. 
 

 

Figure 2. Statistical analysis of input attribute (equivphys-
loc) in dataset. 
 

 

Figure 3. Statistical analysis of input attribute (act_effort) 
in dataset. 
 

COCOMO attributes expressed in terms of classes {vl, 
l, n, h, vh, xh} is described in Figure 4. 

Experimental Results of Machine Learning 
Algorithms 

Historical COCOMO NASA 2/Software cost estimation 
dataset for the effort estimation is collected and used for  

 

Figure 4. Effort multipliers of COCOMO II model. 
 
the modeling in WEKA environment. The dataset consists 
of 93 NASA projects from different centers. The single 
conjunctive rule learner, M5-Rules Algorithm and deci- 
sion table majority classifier are run in the WEKA envi- 
ronment and are evaluated by the cross validation using 
the 10 number of folds. 

The Mean Absolute Error is taken as the average of 
the difference between predicted and actual value. Root 
Mean Square Error is taken as the measure of the diffe- 
rences between values predicted by a model and values 
actually observed from the thing being modeled. It is the 
average of the squared differences. The performance of 
the models is tested on the NASA software project data 
shown in Table 3. 

Table 4 shows that the M5-Rules learner has the least 
MAE and RMSE value in comparison to Conjunctive 
Rule Learner and Decision table classifier. Hence the 
M5-Rules algorithm is the best methodology for classifi- 
cation as shown in Figure 5. 

The 2d plot between the actual effort and the predicted 
actual effort shown in Figure 6 gives the classifier errors. 
It gives the result of classification. Crosses represent the 
correctly classified instances. 

The existing effort estimation models namely Halstead 
Model, Waltson-Felix Model, Bailey-Basili Model, Doty 
(for KLOC > 9) are run in the MATLAB environment. 
Effort Estimation for these models are evaluated by using 
the formulas mentioned in the Table 2. The Historical 
COCOMO NASA 2 dataset is used for effort estimation 
by existing models. Table 5 describes the KLOC and 
actual effort pair used for the effort estimation. The 
KLOC is the Kilo lines of Code. E is effort in man- 
months. The performance of the machine learning algo- 
rithms and existing algorithms measured in MAE and 
RMSE values is shown in Table 6. Figure 7 depicts the  
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Table 4. Performance of machine learning algorithms 

Performance Criteria 
Models 

MAE RMSE 

M5 Rules 377.35 801.09 

Decision Table 536.26 1127.37 

Conjunctive Rule 695.31 1246.63 

 
Table 5. KLOC and actual effort pair for effort estimation. 

SNo. KLOC Actual Effort 

1 25.9 117.6 

2 24.6 117.6 

3 7.7 31.2 

4 8.2 36 

5 9.7 25.2 

6 2.2 8.4 

7 3.5 10.8 

8 66.6 352.8 

9 7.5 72 

10 20 72 

11 6 24 

12 100 360 

13 11.3 36 

14 100 215 

15 20 48 

16 100 360 

17 150 324 

18 31.5 60 

19 15 48 

20 32.5 60 

21 19.7 60 

22 66.6 300 

23 29.5 120 

24 15 90 

25 38 210 

26 10 48 

27 15.4 70 

28 48.5 239 

29 16.3 82 

30 12.8 62 

31 32.6 170 

32 35.5 192 

33 5.5 18 

34 10.4 50 

35 14 60 

36 6.5 42 

37 13 60 

38 90 444 

39 8 42 

40 16 114 

41 177.9 1248 

Continued 

42 302 2400 

43 282.1 1368 

44 284.7 973 
45 79 400 
46 423 2400 
47 190 420 

48 47.5 252 

49 21 107 

50 78 571.4 

51 11.4 98.8 

52 19.3 155 

53 101 750 

54 219 2120 

55 50 370 

56 227 1181 

57 70 278 

58 0.9 8.4 

59 980 4560 

60 350 720 

61 70 458 

62 271 2460 

63 90 162 

64 40 150 

65 137 636 

66 150 882 

67 339 444 

68 240 192 

69 144 576 

70 151 432 

71 34 72 

72 98 300 

73 85 300 

74 20 240 

75 111 600 

76 162 756 

77 352 1200 

78 165 97 

79 60 409 

80 100 703 

81 32 1350 

82 53 480 

83 41 599 

84 24 430 

85 165 4178.2 

86 65 1772.5 

87 70 1645.9 

88 50 1924.5 

89 7.25 648 

90 233 8211 

91 16.3 480 

92 6.2 12 

93 3 38 

Copyright © 2012 SciRes.                                                                                 JSEA 



Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 275

Table 6. Performance of machine learning algorithms along 
with other existing models. 

Performance Criteria 
Models 

MAE RMSE 

M5 Rules 377.35 801.09 

Decision Table 536.26 1127.37 

Conjunctive Rule 695.31 1246.63 

Halstead 6814 18963 

Walston-Felix 583 1244.3 

Bailey-Basili 472.2 1097.2 

Doty 416.99 954.37 

 

 

Figure 5. Comparison among machine learning models in 
terms of MAE and RMSE. 
 

 

Figure 6. 2-d plot between the actual effort and the predicted 
actual effort for M5 rules learner. 
 

 

Figure 7. Comparison among different models. 

comparison in terms of mean absolute error and root 
mean square error for different models. 

5. Conclusion 

In this paper, various Machine learning Algorithms, Con- 
junctive Rule Learner, M5-Rules algorithm and Decision 
Table Majority Classifier are experimented to estimate 
the software effort for projects. Performances of these 
models are tested on NASA Software Project Data and 
the results are compared with the Halstead, Walston- 
Felix, Bailey Basili, Doty Models mentioned in the lite- 
rature. The proposed M5 Rule learner shows best results 
than among other algorithms experimented in the study 
with lower values of MAE and RMSE calculated as 
377.35 and 801.09 respectively and able to provide good 
estimation capabilities as compared to other models. 
Hence, it is suggested to use of M5-Rules technique to 
build suitable model structure for the software effort. 
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