
Journal of Software Engineering and Applications, 2012, 5, 270-276
http://dx.doi.org/10.4236/jsea.2012.54032 Published Online April 2012 (http://www.SciRP.org/journal/jsea)

Comparative Study of the Performance of M5-Rules
Algorithm with Different Algorithms

Heetika Duggal, Parminder Singh

Department of Information Technology, Chandigarh Engineering College, Mohali, India.
Email: hitikaduggal@gmail.com, singh.parminder06@gmail.com

Received September 28th, 2011; revised February 5th, 2012; accepted March 1st, 2012

ABSTRACT

The effort invested in a software project is probably one of the most important and most analyzed variables in recent
years in the process of project management. The determination of the value of this variable when initiating software
projects allows us to plan adequately any forthcoming activities. As far as estimation and prediction is concerned there
is still a number of unsolved problems and errors. To obtain good results it is essential to take into consideration any
previous projects. Estimating the effort with a high grade of reliability is a problem which has not yet been solved and
even the project manager has to deal with it since the beginning. In this study, performance of M5-Rules Algorithm,
single conjunctive rule learner and decision table majority classifier are experimented for modeling of Effort Estimation
of Software Projects and performance of developed models is compared with the existing algorithms namely Halstead,
Walston-Felix, Bailey-Basili, Doty in terms of MAE and RMSE. The proposed techniques are run in the WEKA envi-
ronment for building the model structure for software effort and the formulae of existing models are calculated in the
MATLAB environment. The performance evaluation criteria are based on MAE and RMSE. The result shows that the
M5-Rules have the best performance and can be used for the effort estimation of all types of software projects.

Keywords: Software Cost Estimation; Effort Estimation; Effort Estimation Models; Rule Generation; COCOMO

Model; Conjunctive Rule Learner; Decision Table; M5-Rules Learner

1. Introduction

Software effort estimation is the critical part of software
projects. Effective development of software is based on
accurate effort estimation. Many quantitative software
cost estimation models have been developed and imple-
mented by practitioners in the past three decades. These
include predictive parametric models such as Boehm’s
COCOMO models [1], Price S [2] and analytical models
such as those introduced in [3-5]. An empirical model
uses data from previous projects to evaluate the current
project and derives the basic formulae from analysis of the
particular database available. An analytical model, on the
other hand, uses formulae based on global assumptions,
such as the rate at which developer solves problems and
the number of problems available [6]. A good software
cost estimate should be conceived and supported by the
project manager and the development team. It is accepted
by all stakeholders as realizable. It is based on a well-
defined software cost model with a credible basis. It is
based on a database of relevant project experience and it
should be defined in enough detail so that its key risk areas
are understood and the probability of success is objec-
tively assessed [7].

In this paper, the performance of single conjunctive rule
learner, M5-Rules Algorithm and decision table majority
classifier is compared for Modeling of Effort Estimation
of Software Projects. The dataset is based on the cost fa-
ctors in COCOMO II. The performance of the developed
model was tested on NASA software project dataset and
compared to the models presented in [8-11]. The deve-
loped models were able to provide good estimation capa-
bilities as compared to other models provided in the lite-
rature.

The remainder of this paper can be described as fol-
lows:

Section 2 outlines the literature review about the tech-
niques that are used for effort and cost estimation. Section
3 discusses the methodology adopted for generating and
comparing a number of models. Section 4 highlights re-
sults of implementation. It discusses the results of the
various models used for the effort estimation and Section
5 is all about conclusions of this research work.

2. Related Work

One of the most important problems faced by software
developers and users is the prediction of the size of a pro-

Copyright © 2012 SciRes. JSEA

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 271

gramming system and its development effort. Software
effort estimation stands as the oldest and most mature
aspect of software metrics towards rigorous software mea-
surement. Considerable research had been carried out in
the past, to come up with a variety of effort prediction
models. The background information of various software
effort and estimation models to be used in this research
work is discussed as follows:
 M. H. Halstead [11] in 1977 proposed the model which

predicts the rate of error and do not require the
in-depth analysis of programming structure. It pro-
posed the code length and volume metrics. Code leng-
th is used to measure the source code program and
volume corresponds to the amount of required storage
space. Numerous industry studies support the use of
Halstead in predicting programming effort and mean
number of programming bugs. However it depends on
completed code and has little or no use as a predictive
estimating model.

 Walston-Felix Model developed by C. E. Walston and
C. P. Felix in 1977 at IBM provides the relationship
between delivered lines of source code (L in thousands
of lines) and effort E (E in person-month).

 Doty Model [12] published in 1977, is used to estimate
efforts for Kilo lines of code (KLOC). This model
constitutes various aspects of the software develop-
ment environment such as user participation, customer-
oriented changes, memory constraints etc.

 Bailey and Basily [13] in 1981 described a meta-model
which allows the development of effort estimation
equations which are best adapted to a given develop-
ment environment. The resultant estimation model will
be similar to that of IBM and COCOMO is based on
data collected by organization which captures its en-
vironmental factors and the differences among given
projects.

 Albrecht has developed a methodology to estimate the
amount of the “function” the software is to perform, in
terms of the data it is to use (absorb) and to generate
(produce). The “function” is quantified as “function
points,” essentially, a weighted sum of the numbers of
“inputs”, “outputs”, “master files”, “inquiries” provided
to, or generated by, the software. Albrecht-Gaffney
model established by IBM DP Services Organization,
uses function point to estimate efforts.

Typical major models that are being used as bench-
marks for software effort estimation are:
 Halstead
 Walston-Felix
 Doty (for KLOC > 9)
 Bailey-Basili

All these models have been derived by studying large
number of completed software projects from various or-
ganizations and applications to explore how project sizes

mapped into project effort. But still these models are not
able to predict the effort estimation accurately.

As the exact relationship between the attributes of the
effort estimation is difficult to establish, so machine learn-
ing approaches could serve as an automatic tool to gene-
rate model by formulating the relationship based on its
training. In this proposed study, it is tried to build a more
accurate model that can provide accurate estimates of
effort required to build a software system when compared
with the other models provided in the literature.

Cost Estimation Model

COnstructive COst MOdel (COCOMO) [14,15] is used
to estimate the software cost. It was first published in 1981
(COCOMO 81) and in 1997 (COCOMO II). Some dif-
ferences between COCOMO 81 and COCOMO II are as
follows: COCOMO 81 has 63 data points, uses Kilo De-
liverable Source Instructions (KDSI) to measure the pro-
ject size and three development modes to be represented
by scale factors. In contrast, COCOMO II has 161 data
points, uses KSLOC project size, and five scale factors.

The COCOMO software cost model measures effort in
calendar months of 152 hours (and includes development
and management hours). COCOMO assumes that the
effort grows more than linearly on software size; i.e.
months = a*KSLOC^b*c. Here, “a” and “b” are domain-
specific parameters; “KSLOC” is estimated directly or
computed from a function point analysis; and “c” is the
product of over a dozen “effort multipliers” i.e. months =
a*(KSLOC^b)*(EM1* EM2 * EM3 * ...). In COCOMO I,
the exponent on KSLOC was a single value ranging from
1.05 to 1.2.

In COCOMO II, the exponent “b” was divided into a
constant, plus the sum of five “scale factors” which mo-
deled issues such as “have we built this kind of system
before?”. The COCOMO I, effort multipliers are similar
but COCOMO II dropped one of the effort multiplier
parameters; renamed some others; and added a few more
(for “required level of reuse”, “multiple-site develop-
ment”, and “schedule pressure”). The effort multipliers
fall into three groups: those that are positively correlated
to more effort; those that are negatively correlated to
more effort; and a third group containing just schedule
information. In COCOMO I, “sced” have a U-shaped
correlation to effort; i.e. giving programmers either too
much or too little time to develop a system can be detri-
mental. The actual development effort is expressed in
months (one month = 152 hours and includes develop-
ment and management hours). The cost factors are shown
in Table 1.

3. Used Methodology

The following steps are used for the comparative study:

Copyright © 2012 SciRes. JSEA

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 272

Table 1. Cost factors in COCOMO II.

Cost Factors Description

 Product

RELY required software reliability

DATA database size

CPLX product complexity

 Computer

TIME execution time constraint

STOR main storage constraint

VIRT virtual machine volatility

TURN computer turnaround time

 Personnel

ACAP analyst capability

AEXP application experience

PCAP programmer capability

VEXP virtual machine experience

LEXP language experience

 Project

MODP modern programming practice

TOOL software tools

SCEP development schedule

3.1. Preliminary Study

First, Survey of the existing Models of Effort Estimation
is to be performed.

3.2. Data Collection

Secondly, Historical Data being used by various existing
models for the cost estimation is collected.

3.3. Effort Calculation Using Different Models

The following models are used for the data collected in the
previous step and the effort for each developed approach
is calculated.
 M5-Rules Algorithm
 Decision Table Majority Classifier
 Single Conjunctive Rule Learner
 Halstead Model
 Walston-Felix Model
 Bailey-Basili Model
 Doty Model

In addition to single conjunctive rule learner, M5-
Rules Algorithm and decision table majority classifier,
the different existing models: Halstead Models, Walston-
Felix Model, Bailey-Basili Model and Doty Model are
also used for the comparison of results. The equations for
the existing models are as under: (Table 2)

3.4. Performance Evaluation Criteria for
Comparison of Models

The following performance criteria’s are adapted to ac-

Table 2. Existing effort estimation models.

Model Name Effort

Halstead Model Effort = 5.2(KLOC)1.50

Walston-Felix Model Effort = 0.7(KLOC)0.91

Bailey-Basili Model Effort = 5.5 + 0.73(KLOC)1.16

Doty (for KLOC > 9) Effort = 5.288(KLOC)1.047

cess and evaluate the performance of effort estimation
models.
 Mean absolute error (MAE)

1 1 2 2MAE n na c a c a c

n

     




where actual output is a, expected output is c.
Mean absolute error, MAE, is the average of the diffe-

rence between predicted and actual value in all test cases;
it is the average prediction error [16].
 Root Mean-Squared Error (RMSE)

     22 2

1 1 2 2RMSE
2

n na ca c a c    




where actual output is a, expected output is c.
Root Mean Square Error, RMSE is frequently used

measure of differences between values predicted by a
model or estimator and the values actually observed from
the thing being modeled or estimated [16]. It is just the
square root of the mean square error.

The mean-squared error, MSE is one of the most com-
monly used measures of success for numeric prediction.
This value is computed by taking the average of the
squared differences between each computed value and its
corresponding correct value.

The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error
gives the error value the same dimensionality as the actual
and predicted values. The mean absolute error and root
mean squared error is calculated for each machine learn-
ing algorithm.

4. Results & Discussion

The implementation of used methodology is done in WEKA
open source software [17], and certain calculations are
performed in the MATLAB environment. Different steps
discussed in the methodology are implemented and the
comparative analysis of various models is done in terms of
MAE and RMSE values.

Table 3 shows the publicly available PROMISE Soft-
ware Engineering Repository data set which is used for
the experimentation. It consists of 93 instances each with
23 input attributes and one output attribute named as ef-
fort. Figures 1-3 describes the statistical analysis of dif-
ferent input attributes.

Copyright © 2012 SciRes. JSEA

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 273

Table 3. COCOCMO NASA 2 data set.

Figure 1. Statistical analysis of input attribute (mode) used
in dataset.

Figure 2. Statistical analysis of input attribute (equivphys-
loc) in dataset.

Figure 3. Statistical analysis of input attribute (act_effort)
in dataset.

COCOMO attributes expressed in terms of classes {vl,
l, n, h, vh, xh} is described in Figure 4.

Experimental Results of Machine Learning
Algorithms

Historical COCOMO NASA 2/Software cost estimation
dataset for the effort estimation is collected and used for

Figure 4. Effort multipliers of COCOMO II model.

the modeling in WEKA environment. The dataset consists
of 93 NASA projects from different centers. The single
conjunctive rule learner, M5-Rules Algorithm and deci-
sion table majority classifier are run in the WEKA envi-
ronment and are evaluated by the cross validation using
the 10 number of folds.

The Mean Absolute Error is taken as the average of
the difference between predicted and actual value. Root
Mean Square Error is taken as the measure of the diffe-
rences between values predicted by a model and values
actually observed from the thing being modeled. It is the
average of the squared differences. The performance of
the models is tested on the NASA software project data
shown in Table 3.

Table 4 shows that the M5-Rules learner has the least
MAE and RMSE value in comparison to Conjunctive
Rule Learner and Decision table classifier. Hence the
M5-Rules algorithm is the best methodology for classifi-
cation as shown in Figure 5.

The 2d plot between the actual effort and the predicted
actual effort shown in Figure 6 gives the classifier errors.
It gives the result of classification. Crosses represent the
correctly classified instances.

The existing effort estimation models namely Halstead
Model, Waltson-Felix Model, Bailey-Basili Model, Doty
(for KLOC > 9) are run in the MATLAB environment.
Effort Estimation for these models are evaluated by using
the formulas mentioned in the Table 2. The Historical
COCOMO NASA 2 dataset is used for effort estimation
by existing models. Table 5 describes the KLOC and
actual effort pair used for the effort estimation. The
KLOC is the Kilo lines of Code. E is effort in man-
months. The performance of the machine learning algo-
rithms and existing algorithms measured in MAE and
RMSE values is shown in Table 6. Figure 7 depicts the

Copyright © 2012 SciRes. JSEA

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 274

Table 4. Performance of machine learning algorithms

Performance Criteria
Models

MAE RMSE

M5 Rules 377.35 801.09

Decision Table 536.26 1127.37

Conjunctive Rule 695.31 1246.63

Table 5. KLOC and actual effort pair for effort estimation.

SNo. KLOC Actual Effort

1 25.9 117.6

2 24.6 117.6

3 7.7 31.2

4 8.2 36

5 9.7 25.2

6 2.2 8.4

7 3.5 10.8

8 66.6 352.8

9 7.5 72

10 20 72

11 6 24

12 100 360

13 11.3 36

14 100 215

15 20 48

16 100 360

17 150 324

18 31.5 60

19 15 48

20 32.5 60

21 19.7 60

22 66.6 300

23 29.5 120

24 15 90

25 38 210

26 10 48

27 15.4 70

28 48.5 239

29 16.3 82

30 12.8 62

31 32.6 170

32 35.5 192

33 5.5 18

34 10.4 50

35 14 60

36 6.5 42

37 13 60

38 90 444

39 8 42

40 16 114

41 177.9 1248

Continued

42 302 2400

43 282.1 1368

44 284.7 973
45 79 400
46 423 2400
47 190 420

48 47.5 252

49 21 107

50 78 571.4

51 11.4 98.8

52 19.3 155

53 101 750

54 219 2120

55 50 370

56 227 1181

57 70 278

58 0.9 8.4

59 980 4560

60 350 720

61 70 458

62 271 2460

63 90 162

64 40 150

65 137 636

66 150 882

67 339 444

68 240 192

69 144 576

70 151 432

71 34 72

72 98 300

73 85 300

74 20 240

75 111 600

76 162 756

77 352 1200

78 165 97

79 60 409

80 100 703

81 32 1350

82 53 480

83 41 599

84 24 430

85 165 4178.2

86 65 1772.5

87 70 1645.9

88 50 1924.5

89 7.25 648

90 233 8211

91 16.3 480

92 6.2 12

93 3 38

Copyright © 2012 SciRes. JSEA

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms 275

Table 6. Performance of machine learning algorithms along
with other existing models.

Performance Criteria
Models

MAE RMSE

M5 Rules 377.35 801.09

Decision Table 536.26 1127.37

Conjunctive Rule 695.31 1246.63

Halstead 6814 18963

Walston-Felix 583 1244.3

Bailey-Basili 472.2 1097.2

Doty 416.99 954.37

Figure 5. Comparison among machine learning models in
terms of MAE and RMSE.

Figure 6. 2-d plot between the actual effort and the predicted
actual effort for M5 rules learner.

Figure 7. Comparison among different models.

comparison in terms of mean absolute error and root
mean square error for different models.

5. Conclusion

In this paper, various Machine learning Algorithms, Con-
junctive Rule Learner, M5-Rules algorithm and Decision
Table Majority Classifier are experimented to estimate
the software effort for projects. Performances of these
models are tested on NASA Software Project Data and
the results are compared with the Halstead, Walston-
Felix, Bailey Basili, Doty Models mentioned in the lite-
rature. The proposed M5 Rule learner shows best results
than among other algorithms experimented in the study
with lower values of MAE and RMSE calculated as
377.35 and 801.09 respectively and able to provide good
estimation capabilities as compared to other models.
Hence, it is suggested to use of M5-Rules technique to
build suitable model structure for the software effort.

REFERENCES
[1] B. W. Boehm, “Software Engineering Economics,” 1st

Edition, Prentice-Hall, Englewood Cliffs, 1981.

[2] S. Price, 2007. http://www.pricesystems.com

[3] G. Cantone, A. Cimitile and U. De Carlini, “A Compari-
son of Models for Software Cost Estimation and Man-
agement of Software Projects,” In: Computer Systems: Per-
formance and Simulation, Elsevier Science, Amsterdam,
1986, pp. 123-140.

[4] L. H. Putnam, “A General Empirical Solution to the Macro
Software Sizing and Estimating Problem,” IEEE Trans-
actions on Software Engineering, Vol. SE-4, No. 4, 1978,
pp. 345-361. doi:10.1109/TSE.1978.231521

[5] N. A. Parr, “An Alternative to the Raleigh Curve Model
for Software Development Effort,” IEEE Transactions on
Software Engineering, 1980, pp. 77-85.

[6] P. S. Sandhu, M. Prashar, P. Bassi and A. Bisht, “A
Model for Estimation of Efforts in Development of Soft-
ware Systems,” World Academy of Science, Engineering
and Technology, Vol. 56, 2009.

[7] W. Royce, “Software Project Management: A Unified
Framework,” Addison Wesley, Boston, 1998.

[8] B. W. Boehm, et al., “The COCOMO 2.0 Software Cost
Estimation Model,” American Programmer, 1996, pp. 2-
17.

[9] C. E. Walston and C. P. Felix, “A Method of Program-
ming Measurement and Estimation,” IBM Systems Jour-
nal, Vol. 16, No. 1, 1977, pp. 54-73.
doi:10.1147/sj.161.0054

[10] J. Albrecht and J. E. Gaffney, “Software Function, Source
Lines of Codes, and Development Effort Prediction: A
Software Science Validation,” IEEE Transactions on Soft-
ware Engineering, Vol. SE-9, No. 6, pp. 639-648.
doi:10.1109/TSE.1983.235271

[11] M. H. Halstead, “Elements of Software Science,” Elsevier,

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/TSE.1978.231521
http://dx.doi.org/10.1147/sj.161.0054
http://dx.doi.org/10.1109/TSE.1983.235271

Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms

Copyright © 2012 SciRes. JSEA

276

New York, 1977.

[12] Doty Associates, Inc., “Software Cost Estimates Study,”
Vol. 1, 1977, pp. 77-220.

[13] J. W. Bailey and V. R. Basili, “A Meta-Model for Soft
Ware Development Resource Expenditures,” Proceedings
of the 5th International Conference on Software Engi-
neering, 1981, pp. 107-116.

[14] J. Baik, B. Boehm and B. Steece, “Disaggregating and
Calibrating the CASE Tool Variable in COCOMO II,” IEEE
Transactions on Software Engineering, Vol. 28, No. 11,
2002, pp. 1009-1022. doi:10.1109/TSE.2002.1049401

[15] S. Devnani-Chulani, B. Clark and B. Boehm, “Calibration
Results of COCOMO II.1997,” 22nd Annual Software
Engineering Workshop, NASA Goddard Space Flight
Center, 1997.

[16] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen and R. A.
Paul, “Empirical Assessment of Machine Learning Based
Software Defect Prediction Techniques,” 10th IEEE Inter-
national Workshop on Object-Oriented Real-Time Depend-
able Systems, Sedona, 2-4 February 2005, pp. 263-270.
doi:10.1109/WORDS.2005.32

[17] WEKA, 2007. http://www.cs.waikato.ac.nz/~ml/weka

http://dx.doi.org/10.1109/TSE.2002.1049401
http://dx.doi.org/10.1109/WORDS.2005.32

