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ABSTRACT 

In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network 
is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct 
adaptive approach is performed after the training process is achieved. A Lyapunov-Base training algorithm is proposed 
and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation 
results obtained verify the effectiveness of the proposed control method. 
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1. Introduction 

For several decades, the problem of adaptive control of 
complex dynamic systems causes the interest of automa- 
tion specialists. The use of Proportional-Integral-Deriva- 
tive (PID) controllers is simple to perform, that give poor 
performance if there are uncertainties and nonlinearities 
in the system to be controlled. In several references like 
[1-3], neural networks are presented as tools to solve 
control problems due to their ability to model systems 
without analyzing them theoretically and their posses- 
sions a great capacity for generalization, which gives 
them a good robustness to noise [4]. 

Several strategies of the neural adaptive control exist 
which we quote: direct adaptive neural control, indirect 
adaptive neuronal control, adaptive neural internal model 
control, adaptive depth control based on feedforward ne- 
ural networks, robust adaptive neural control, Feedback- 
Linearization based neural adaptive control, adaptive ne- 
ural network model based nonlinear predictive control 
[5-13]. Each strategy has neural adaptive control archi- 
tecture, the algorithms used during the calculation of the 
parameters and stability conditions. It has three types of 
neural adaptive control architectures. The first type of 
architecture consists of a neural controller and a system 
to be controlled. The second type of neural architecture 
includes a controller, a system to be controlled and his 
neural model. The third type of architecture is composed 
of a neuronal controller, one or more robustness filter, a 
system to be controlled and his neural model. 

The adjustment of the model parameters and the con- 

troller is performed by neural learning algorithms that are 
based on the choice of the criterion to minimize, a mini- 
mization method and the theory of Lyapunov for stability 
and borniture of all signals existing. Several minimiza- 
tion methods exist which are presented: simple gradient 
method, gradient method with variable pitch, Newton 
method and Levenberg-Marquardt method [14]. 

The contribution of this paper is to propose an adap- 
tive Lyapunov-Based control strategy for complex dyna- 
mic system. The control structure takes advantage of 
Artificial Neural Network (ANN) learning and generali- 
zation capabilities to achieve accurate speed tracking and 
estimation. ANN-Based controllers lack stability proofs 
in many control structure applications and tuning them in 
a cascaded control structure is a difficult task to under- 
take. Therefore, we proposed a Lyapunov stability-Based 
adaptation technique as an alternative to the conventional 
gradient-Based and heuristic tuning methods. Thus, the 
stability of the proposed approach is guaranteed by Lya- 
punov Stability direct method unlike many computa- 
tional intelligence- Based controllers. 

The different sections of this paper are organized as 
follows: in Section 2, we present the considered recurrent 
neural network and the proposed Lyapunov learning al- 
gorithm used for updating the weight parameters of the 
model system. 

The proposed adaptive control approach training while 
a Lyapunov Stability-Based adaptation algorithm is de- 
tailed in Section 3. Numerical results are reported and 
discussed in Section 4, and a conclusion is drawn in Sec- 
tion 5. 
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2. Neural Network Modeling Approach 

Neural network modeling of a system from samples af- 
fected by noise usually requires three steps. The first step 
is the choice of neural network architecture, that is to say, 
the number of neurons in the input layer which is a func- 
tion of past values of the input and output, the number of 
hidden neurons, the number of neurons in the output 
layer neurons and the organization of them. The work 
[15,16] show that every continuous function can be ap- 
proximated by a neural network with three layers, the 
activation functions of neurons are respectively the sig- 
moid function for hidden layer neurons and linear func- 
tion for neurons in the output layer. There are two types 
of architectures of multilayer neural networks: neural 
networks, non-curly (static networks) and neural net- 
works curly or recurrent (dynamic networks). Neural net- 
works are non curly most used in the identification and 
control systems [17]. They may not be powerful enough 
to model complex dynamic systems with respect to neu- 
ral networks curly. Different types of recurrent neural 
networks have been proposed and have been successfully 
applied in many fields [18-25]. The structure of fully 
connected recurrent neural networks which was proposed 
by Williams and Zipser [26], is most often used [27,28] 
because of its generality. The second step is learning or 
in other words, estimating the parameters of the network 
from examples of input-output system identification. The 
methods of learning are numerous and depend on several 
factors, including the choice of error function, the initia- 
lization of weights, and the selection of the learning al- 
gorithm and the stopping criteria of learning. Learning 
strategies were presented in several research works that 
we cite [29-31]. The third step is the validation of the 
neural network obtained using the testing criteria for 
measuring performance. Most of these tests require a 
data set that was not used in learning. Such a test set or 
validation should, if possible, cover the same range of 
operation given that all learning. 

2.1. Architecture of the Recurrent Neural 
Network 

In this work, we consider a recurrent neural network 
(Figure 1) for identification of complex dynamic systems 
to a single input and single output. The architecture of 
these networks is composed of two parts: a linear model 
the linear behavior of the system and a non-linear ap- 
proach to nonlinear dynamics. 
where: 

 ŷ k
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 is the output of the neural network at time , k
 and y are respectively the input and output system to 
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Figure 1. Architecture of the considered neural network. 
 
ctions of neurons, 

h  the number of neurons in the hidden layer respec- 
tively of the model and controller, 

n

The coefficients of the vector of parameters of the ne- 
ural model are decomposed into 7 groups, formed re- 
spectively by:  

w

1 1
11 1

1

1 1
1

r

h h

n

n n

w w

w

w w
rn

 
 

  
 
  



  


 the weights between neurons  

in the input layer and neurons in the hidden layer, 
2
11

2

2
1hn

w

w

w

 
 

  
 
 

  the bias of neurons in the hidden layer,  

3 3 3
11 1 hnw w w     the weights between neurons in the  

hidden layer neurons and output layer,  
4 4

11w w     the bias of neuron in the output layer, 

5 5 5
11 1 rnw w w     the weights between neurons of in-  

put layer neurons and output layer,  
6 6
11 1

6

6 6
1

h

h h

n

n n

w w

w

w w
hn

 
 

  
 
  



  


 the weights between neurons  

in the hidden layer,  
7 7

11w w     back weight of neuron in the output layer, 

11

1h

h

h

h
n

x

x

x

 
 

  
 
 

  the outputs of the hidden layer of neural  

model, 

r a bn n n nc    number of neurons in the input layer. 

       

     

   1

1 , , , 1 ,

ˆ ˆ  , , 1 , ,

, ,
r

a k

T

k b c

T

n

y k y k n u k nk

u k n n y k y k n

k k



 

    

    

   



 



 

(1) x  are the activation fun- 
The vector of parameters of the neural model is de-
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fined as: 
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The neural model of the system can be expressed by 
the following expression: 

       ˆ 1 , , , 1 ,a ky k f y k y k n u k n    

       ˆ ˆ          , , 1 , , ,k b cu k n n y k y k n w k    
(8) 

2.2. Proposed Lyapunov-Base Learning 
Algorithms 

Several Lyapunov stability-based ANN learning techni- 
ques are also proposed to insure the ANNs’ convergence 
and stability [32,33]. In this section we present three 
learning procedures of neural network. 

Theorem 1. The learning procedure of a neural net- 
work can be given by the following equation: 
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The learning procedure is to adjust the coefficients of 
the neural networks considered by minimizing the crite-
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According to reference [34], the difference in error due 
to learning can be calculated by: 
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The term  e k  is then written as follows: 
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Therefore: 
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According to Equations (16) and (19), we can write: 
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 ,  ,   are chosen so that the 
neural model of the system must be stable. In our case, 
the stability analysis is based on the famous Lyapunov 
approach [35]. It is well known that the purpose of iden-
tification is to have a zero gap between the output of the 
system and that of the neural model. Three Lyapunov 
candidate functions are proposed: 

The first candidate Lyapunov function is defined by: 
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From the above equations, we obtain: 
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The proposed neural model is stable in the sense of 
Lyapunov if and only if: 
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The stability condition becomes: 
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The second candidate Lyapunov function is: 
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Given that: 
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The third and last candidate Lyapunov function is: 
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Theorem 2. The parameters of the neural network can 
be adjusted using the following equation: 
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Proof: 
Using the following Lyapunov function: 
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For Equation (45) has a unique solution requires that: 
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For a very small variation, we can write Equation (48): 
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Theorem 3. The updating of the neural network pa-
rameters can be made by the following equation: 
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The choice of initial synaptic weights and biases can 
affect the speed of convergence of the learning algorithm 
of the neural network [36-47]. According to [48], the 
weights can be initialized by a random number generator 
with a uniform distribution between   and   or a 
normal distribution  20,N  . 

For weights with uniform distribution: 
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where: 2.29s   
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2.3. Organizational of the Learning Algorithm of 
Neural Model  

The proposed Lyapunov-Based used to training dynamic 
model of the system is presented by the flowchart in Fig-
ure 2, reads as follows: 
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- the output of the neural network 
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and the desired value for output  y k . 
Step 4: 

Calculate the output of the neural network  ˆ ,y i k . 
Step 5: 
Calculate the difference between the system output 

and the model  ,e i k . 
Step 6: 
Calculate the square error  ,rJ i k . 
Step 7: 
Adjust the vector of network parameters  ,w i k  us-

ing one of the three following relations: 
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with 0 1     

Step 8: 
If the number of iterations i  or itr   0,krJ i  , 

proceed to Step 9. 
Otherwise, increment i and return to Step 4. 
Step 9: 
Save: 

- the weights of the network at time : k
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Figure 2. Flowchart of the learning algorithm of the neural 
network. 
 

   ,w k w i k                (68)  

- the output of the neural network:  

   ˆ ˆ ,y k y i k                 (69)  

- the vector of outputs of the hidden layer:  

   ,h hx k x i k               (70)  

- the vector potentials of neurons in the hidden layer:  

   ,s k s i k                 (71)  

Step 10: 

If k n , proceed to Step11. 
Otherwise, increment and return to Step 2. k
Step 11: 
Stop learning. 
The flowchart of this algorithm is given in Figure 2.  

2.4. Validation Tests of the Neuronal Model 

The neuronal model obtained from the estimation of its 
parameters is valid strictly used for the experiment. So 
check it is compatible with other forms of input in order 
to properly represent the system operation to identify. 
Most static tests of model validation are based on the 
criterion of Nash, on the auto-correlation of residuals, 
based on cross-correlation between residues and other 
inputs to the system. According to [49], the Nash crite-
rion is given by the following equation: 
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N is the number of samples.  
In [50-52], the correlation functions are: 
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- crosscorrelation function between the residuals and the 
previous entries: 
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    (74)  

Ideally, if the model is validated, the results of correla-
tion tests and the Nash criterion following results:  

 1, 0
( )

0, 0
eeR







  
R, ( ) 0ue     and 100%Q  . 

Typically, we verify that  and the func-
tions 

100%Q 
R  are null for the interval  20,20    with a 

confidence interval 95%, that is to say that: 
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1.96 1.96
R

N N
   . 

3. Adaptive Control of Complex Dynamic 
Systems 

In this section, we propose a structure of neural adaptive 
control of a complex dynamic system and three learning 
algorithms of a neuronal controller. 

3.1. Structure of the Proposed Adaptive Control 

In this work, the architecture of the proposed adaptive 
control is given in Figure 3. 

The considered neural network is first trained off-line 
to learn the inverse dynamics of the considered system 
from the input-output data. The model following adap- 
tive control approach is performed after the training pro- 
cess is achieved. The proposed Lyapunov-Base training 
algorithm is used to adjust the considered neural network 
weights so that the neural model output follows the de- 
sired one.  

3.2. Learning Algorithms of Neural Controller 

Three learning algorithms of the neural controller are 
proposed.  

Theorem 4. Learning the neuronal controller may be 
effected by the following equation: 
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with:  
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r  is the reference signal. 
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Figure 3. Structure of the proposed adaptive control. 
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are the weight of the neuronal controller. 
Proof: 
The control system consists of using an optimization 

digital non-linear algorithm to minimize the following 
criterion:  
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     1 , ,
h

Th h h
nxc k xc k xc k                (82)  

   1
h
j jxc k f sc k               (83)  

     1 , ,
h

T

c ns k sc k sc k             (84) 
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The minimum of criterion c J k  is reached when:  
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The solution of Equation (88) calculates the weight of 
the neuronal controller as follows:  
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The term  defined by:   ce k
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therefore:  
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Using the above equations, the relationship giving the 
vector  1wc k   minimizing the criterion  cJ k  can 
be written as follows: 
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(92) 
It is necessary to check the stability of this procedure to 

adjust the weight of the correction before applying. In this 

Copyright © 2012 SciRes.                                                                                 JSEA 



Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems 

Copyright © 2012 SciRes.                                                                                 JSEA 

235

According to Equation (32), the term  is writ- 
ten as follows:  

 V kcase, the candidate Lyapunov function may be as follows:  
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For the procedure to adjust the parameters of the con-

troller is stable, it must:  
 

 
 

2 2

1 1 1

1 1

1
1 ce k u k

wc k wc k

  
 

 
 

 


      (96)  

 
 

 
 

 
 

2

1

1

2 2

1 1

1 1

1
1

1

c

c

e k

wc k

e k u k

wc k wc k




 
 





  

 
 

0     (95) 
The second condition for stability is obtained by the 

following Lyapunov function:  
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then:  From the Equation (35), we can write: 
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The learning algorithm parameters of the controller are 

stable if: 
Using the following Lyapunov function:  
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The adjustment procedure is stable if the parameters: 
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The third stability condition is:  
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Therefore:  
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The fourth condition for stability is obtained by the 

following Lyapunov function: 
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The term  is as follows: V k 
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For the learning algorithm is stable, it must:  
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therefore: 
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According to Equations (96), (105) and (109), we can 
write: 
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The term 
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ations: 
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Theorem 5. The procedure for adjusting the parame-
ters of neuronal controller can be described by the fol-
lowing equation: 
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Proof:  
From the following Lyapunov function: 
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The procedure for adjusting the parameters of the neu-

ronal controller is stable if: 
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If the above equation has a unique solution, the term 
 is as follows: 1r

     
 

 
 

The equation for adjusting the parameters of the neu-
ronal controller can be written:  
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Theorem 6. The procedure for adjusting controller 

parameters can be made by the following equation: 
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Proof: 
Using the Equation (121), we may write: 
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Flowchart of the learning algorithm of the neural con-
troller 

Once the modeling phase is completed, the calculation 
of parameters of neuronal controller is carried through 
the following steps: 

Step 1: 
We fix the desired square error 0 , the parameters 

, the number of samples N, the maximum 
number of iterations , the number of neurons in the 
hidden layer . 

 , , ,a b c kn n n n

n


itr

h

wcThe weights are initialized by a random number 
generator with a normal distribution between 1  and 

1 .  
where:  

   1 22
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1r e
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with: 
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Step 2: 

Initialize:  

  0, 1wc k wc k               (126) 

   0, 1u k u k                 (127) 
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  0, 1c cs k s k               (129) 

Step 3: 
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and the reference signal . )
Step 4: 
Calculate the output of the neuronal controller 
 , 1ku i  . 
Step 5: 
Calculate the output of the neural model  ˆ ,y i k . 
Step 6: 
Calculating the difference between the reference signal 

and the output of neural model .  ,ce i k
Step 7: 
Calculate the square error  ,cJ i k . 
Step 8: 
Adjust the vector of network parameters  ,wc i k  

using one of the three following relations: 
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Step 9: 

If the number of iterations i  or itr   0, kcJ i  , 
proceed to Step 10. 

Otherwise, increment i and return to Step 4. 
Step 10: 
Save: 

- the weights of the network at time :  k

   ,wc k wc i k              (133)  

- the output of the neuronal controller: 

  1 ,u k u i k   1             (134)  

- the vector of outputs of the hidden layer: 

   ,h hxc k xc i k              (135) 

- the vector potentials of neurons in the hidden layer:  

   ,c cs k s i k                (136)  

Step 11: 
If , proceed to Step 12. k N
Otherwise, increment  and return to Step 2. k
Step 12: 
Stop Learning. 
These steps are represented by the following flowchart, 

Figure 4. 

4. Numerical Results and Discussion 

Let consider the nonlinear system described by the fol-
lowing equation of state: 
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1i   

Application of the input vector  k  and the 

reference signal  r k  

Calculation of the release of neuronal controller 

 1u i,k   

Initialization:  0wc ,k ,  0 1u ,k  ,  0hxc ,k ,  0cs ,k . 

Calculation of the output of neural model 

 ŷ i,k  

Calculation  cJ i,k  

Adjusting the parameters of the neural network 
 w c i , k  

 

End 

 

No 

No 

Calculating the difference between the reference 
signal and the output of neural model  ce i,k  

Yes 

Yes 

 

Figure 4. Flowchart of the proposed Lyapunov-Base learn-
ing algorithm of the controller neural network. 
 
with: 

u  and  are respectively the input and output sys-
tem. 

y

  is a noise such as 0.1  . 
The Figure 5 shows the evolution of system parameters 

( ,  and  ). 
The sequences of input and output those used to cal-

culate the parameters of the neural model are shown in 
Figure 6. These sequences show the system response to  
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Figure 5. Evolution of the system parameters: (a) Parameter η; (b) Parameter τ; (c) Parameter μ. 
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Figure 6. Training data-pattern: (a) Input sequences; (b) Output sequences. 
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Figure 7. Validation tests of the model: (a) Auto-correlation of residuals; (b) Cross correlation function between input and 
output residues. 
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Figure 8. Results of adaptive control system in the case of a reference signal amplitude random uniform distribution: (a) 
Control signal applied to the system; (b) Response of the system; (c) Evolution of the difference between the reference signal 
and the system output; (d) Sensitivity of the process. 
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Figure 9. Results of adaptive control system in the case of a sinusoidal reference signal: (a) Control signal applied to the sys-
tem; (b) Response of the system; (c) Evolution of the difference between the reference signal and the system output; (d) Sensi-
tivity of the process. 
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Figure 10. Results of adaptive control system in the case of a triangular reference signal: (a) Control signal applied to the 
system; (b) Response of the system; (c) Evolution of the difference between the reference signal and the system output; (d) 
Sensitivity of the process. 
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Table 2. Values of the Nash criterion of candidate neural models using Theorem 2. 
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Table 3. Values of the Nash criterion of candidate neural models using Theorem 3 (α = 0.7). 
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a random signal of zero mean and variance 1.  

The evolution of the Nash criterion of different candi-
date models of the system (Tables 1-3) can be concluded 
that , , , , 2an  2bn  1cn  0kn  0.7  , 8 neu- 
rons in the hidden layer use of Theorem 3 for the learn- 
ing phase, is necessary and sufficient for a neuronal mo- 
del of a satisfactory precision. 

The autocorrelation functions of residuals and cross- 
correlation between input and residuals (Figure 7) are 

within the confidence intervals, thus validating the use of 
the network chosen as a model of the system studied. 

After the learning phase of the neuronal model com- 
pleted, the structure proposed of neural adaptive control 
is applied to the system. In this case, the learning algo- 
rithm of the neural controller uses Theorem 6. The re- 
sults are presented in Figures 8, 9 and 10. It appears 
from these figures that this control strategy provides sat-
isfactory results. Indeed, the system follows the reference 
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signal appropriately by responding to the objectives: re-
jection of disturbances, the control performance, robust-
ness and system stability.  

5. Conclusion 

In this paper, we have proposed adaptive control struc- 
ture for a complex dynamic system using a recurrent 
neural network. Before, the application of the proposed 
adaptive neuro control, the recurrent neural has been 
trained off-line to implement the inverse dynamic of the 
considered system using a proposed Lyapunov-Base sys- 
tem training algorithm. The simulation results obtained 
show the effectiveness of the recurrent neural network 
structure and its adaptation algorithm to simulate the in- 
verse dynamics of the system, and to control it in closed 
loop with good tracking performance. 
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Appendixs 

The calculation of the term 
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 is performed by the 

following equations: 
for the neuron in the output layer: 

     

   
 

   

7
117 7

11 11

5
1 7

1 11

n
3
1 7

j=1 11

ˆ ˆ( ) ( 1)
ˆ( 1)

ˆ
                               

( )
+

r

a b

h

n
a b

i
i n n

h
j

j

y k y k
y k w k

w k w k

y k n n i
w k

w k

x k
w k

w k

  

  
  

 

   













 

(138) 

 
        

 

   
 

1
17 7

111 11

6
7

1 11

ˆ

1
                                     

r

a b

h

h n
j a b

j ji
i n n

hn
i

ji
i

x k y k n n i
f s k w k

w k w k

x k
w k

w k

  



       
 

  




 

(139) 

 
       

   
 

   
 

3
13 3

1 1

7
11 3

1

5
1 3

1 1

ˆ

ˆ 1

ˆ
                             

r

a b

h
jh

j j
j j

j

n
a b

i
i n n j

x ky k
x k w k

w k w

y k
w k

w k

y k n n i
w k

w k  


 

 

 




   




 

(140) 

 
    

   
 

   
 

13
1

1
3

1 1

6
3

1 1

ˆ

1
            

r

a b

h

h
j

j
j

n
a b

ji
i n n j

hn
m

jm
m j

x k
f s k

w k

y k n n i
w k

w k

x k
w k

w k

  



 


    
 

 
  





 (141) 

 
   

   
 

   

   
 

5
1

5
1 5

1 1

3
1 5

1 1

7
11 5

1

ˆ

ˆ

ˆ 1

r

a b

h

m
m

n
a b

i
i n n m

hn
j

j
j m

m

y k
k

w k

y k n n i
w k

w k

x k
w k

w

y k
w k

w k



  








   









 







   (142) 

 
        

 

   
 

1
15 5

ˆr
h n
j a b

j ji

x k y k n n i
f s k w k

       
11 1a bi n nj jw k w k   

6
5

1 1

1
            

h
hn
m

jm
m j

x k
w k

w k

 
  


 

(143) 

 
     

 

   
 

   
 

7
114 4

11 11

5
1 4

1 11

3
1 4

1 11

ˆ ˆ 1
1

ˆ

                  

r

a b

h

n
a b

i
i n n

hn
j

j
j

y k y k
w k

w k w k

y k n n i
w k

w k

x k
w k

w k

  



  
 

 

   













 (144) 

        
 

   
 

1
14 4

111 11

6
4

1 11

ˆ

1
                                     

r

a b

h

h n
j a b

j ji
i n n

hn
m

jm
m

x k y k n n i
f s k w k

w w

x k
w k

w k

  



     
  

 
  





k
 

(145) 

for a neuron in the hidden layer: 
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From the above equations, we can write: 
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It was therefore: 
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