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ABSTRACT 

Balas and Mazzola linearization (BML) is widely used in devising cutting plane algorithms for quadratic 0-1 programs. 
In this article, we improve BML by first strengthening the primal formulation of BML and then considering the dual 
formulation. Additionally, a new cutting plane algorithm is proposed. 
 
Keywords: Quadratic Program; Integer Program; Linearization; Cutting Plane Algorithm 

1. Introduction 

In this article, we consider the generalized quadratic 0-1 
program given as follows  

 
min

 . . 0,1 ,

T T

n

x Bx c x

s t x X



 

 n n
= 0b

2 =b x b x

u

P          (1.1) 

where  is an  nonnegative matrix. With- 
out loss of generality we assume ii  since  

ii i ii i . Problem (P) is a generalization of uncon- 
strained zero-one quadratic problems, zero-one quadratic 
knapsack problems, quadratic assignment problems and 
so on. It is a classical NP-hard problem [1]. 

= ijB b 

Linearization strategies are to reformulate the zero-one 
quadratic programs as equivalent mixed-integer program- 
ming problems with additional binary variables and/or 
continuous variables and continuous constraints, see [2- 
8]. Recently, Sherali and Smith [9] developed small 
linearizations for more generalized quadratic 0-1 pro- 
grams. Gueyea and Michelon [10] proposed a frame- 
work for unconstrained quadratic 0-1 programs. These 
linearizations are standard for employing exact algori- 
thms such as branch and bound. Balas and Mazzola pro- 
posed a small-size linearization [11] and then successfully 
applied it to devise exact or heuristic cutting plane al- 
gorithms. 

In this article, we focus on new small-size tight lineari- 
zations. We first propose a primal version of Balas and 
Mazzola linearization (BML). By strengthening the line- 
arization and then considering the dual model, we obtain 
a new linearization which improves BML. As a direct 
application, a new cutting plane algorithm is proposed. 

This article is organized as follows. In Section 2, we 
discuss Balas and Mazzola linearization (BML) [11] and 
the related primal linearization. In Section 3, we create a 
new approach to obtain a tighter linearization. It im- 
proves the primal linearization of BML in the sense that 
the linear programming relaxation often give tighter 
lower bound. In Section 4, we apply this dual lineariza- 
tion to devise cutting plane algorithm and compare the 
efficacy with that of BML. Concluding remarks are made 
in Section 5. 

2. The Primal Model of Balas and Mazzola  
Linearization 

In this section, we show that Balas and Mazzola Linea- 
rization has a primal model. 

Define a column vector  with components  

= max : , = 1, , ,i ij j
j i

u b x x X i n


 
 

 
      (2.1) 

where X  is any suitable relaxation of X  such that the 
problems (1) can be solved relatively easily. 

We rewrite the objective function of (P) as  

=1

.
n

i ij j i i
i j i

x b x c x
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:= ,i i ij j
j i

y x b x


 

Introducing  continuous variables  

               (2.2) 

we can obtain the following mixed 0-1 linear program  
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where the two series inequality constraints follow from 
the fact i i  and , , 
respectively. 

  j i
x b


  1 0j jx u i  ix

Theorem 2.1. Problems ( ) and ( 1 ) are equivalent 
in the sense that for each optimal solution to one prob- 
lem, there exists an optimal solution to the other problem 
having the same optimal objective value.  

The proof is found in Appendix 1. 
Remark 2.1. If we restrict (P) as the quadratic as- 

signment problem, the proposed linearization ( ) re- 
duces to Kaufman-Broeckx linearization [12,13].  

Below we apply Benders’ decomposition approach to 
Problem (P), as in [14]. Firstly, (P) can be decomposed 
in the following way  

( ) =1
min min
x X y Y x 

          (2.4) 

where  

  :=

, 0n
i ij j i i i i

j i

Y x

y y b x u x u y



      , = 1,2, .i n




 


(2.5) 

For fixed x , we dualize the first series constraints of  

the problem  using Lagrangian multi-  ( ) =1n
n

y Y x ii
y mi

pliers i  ( i ). We obtain the subproblem  = 1, 2, ,n

= 1, 2, , .

j i i i iu u x
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Note that the feasible solution region F  of SP(x) 
does not depend on the chosen vector x . Let t  be the 
incidence vectors of the extreme points of F  (which is 
unit hypercube in ). Introducing  n

( ) ( ) ,t t t
i j ji i ib u

2, , 2 := ,n T

( )

=1

,
n n

t t
i i

i i

( ) :=
j i

 

             (2.7) 

( ) ( )

=1

:= , = 1,
n

t t
i i

i

u t     (2.8) 

we can see that Problem (4) is equivalent to  

( )

1 =1
maxmin i i

x X t T
x c x

 
 

 
  


       (2.9) 

by the fact that for any fixed x , the second-stage  

problem  of (4) is a linear program-  

one of the optimal solutions to the linear programming 
problem (6) is attained at an extreme point of F . Prob- 
lem (9) yields now the following mixed 0-1 linear pro- 
gram  
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In some sense, linearization ( 1DL ) can be regarded as 
th

d ( quiva- 
le

n see 
( D

1DL
ML

3. New Tight Primal and Dual  

In se a new approach to establish 

e dual formulation of (PL1). Above we also obtained 
the equivalence between (PL1) and ( 1DL ):  

Theorem 2.2. Problems (PL1) an 1DL ) are e
nt in the sense that for each optimal solution to one 

problem, there exists an optimal solution to the other 
problem having the same optimal objective value.  

Combining Theorem 2.1 with Theorem 2.2, we ca

1L ) is equivalent to (P). In literature, linearization 
( ) is known as Balas and Mazzola linearization 
(B ) [11]. 

Linearizations 

 this section, we propo
new tight linearizations. 

Define  

= max : , = 0 , = 1, , ,i ij j i
j i

v b x x X x i n


 
 

 
     (3.1) 

= min : , = 1 , = 1, , .i ij j i
j i

l b x x X x i n


 
 

 
      (3.2) 

Let v  and l  be the vectors with components iv  
an  r

t ,1
n

x X  . For all  
i

= max , .i ij j ij j i i i i i
j i j i

d il espectively, = 1, ,i n .  
Lemma 3.1. [15] Le 0

= 1, , n ,  

( ) =1n
n

y Y x ii
y 

ming whose dual formulation is just (6) and the fact that 

mi

x b x b x v x v l x
 

 
  

 
      (3.3) 

Therefore, the new linearization reads  
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Under the linear transformations  

it := , = 1, , ,i i iy l x i n   the above linearization becomes  
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As a corollary of Lemma 3.1, we have  

2 )) and (P) 
ar o ptim

i



Theorem 3.1. Problems ( 2PL ) (or ( PL
e equivalent in the sense tha r each o al solution 

to one problem, there exists an optimal solution to the 
other problem having the same optimal objective value.  

Continuously relaxing linearizations ( 1PL ) and ( 2PL ), 

t f

.e., replacing X  with X , we obtain linear program- 
ming lower bou s for (P enoted by  1v R PL  and 
 2v R PL  respectively. ( 2PL ) is n than 

following sense. 
eorem 3.2.  1 2v R PL 

nd
 weaker 
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Proof. It is suf ble ficient to sh

2L ) is also feasible in ( 1PL ), which follows from the 
fact that i iv u , [0,1]ix  nd 0il   since  = ijB b  
is nonneg  

Next, we consid
ative. □

er the odel of ( 2PL ). As the 
fo f (

 the ). 

dual m
rmulation of ( 2PL ) is similar to that o 1PL ), we 

immediately have  dual model based on ( 2DL  
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where  

n

 ( ) ,t t
i i ib v l      (3.7) 

( ) ( ):=
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i j ji
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i i
i
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Similarly to Theorem 2.2, we have  

2 ) and ( 2DL ) 
ar  f utio

4. Cutting Plane Algorithms Based on Dual  

W tting plane algorithm based on 

obl
bset 

Theorem 3.3. Problems ( 2PL ) (or ( PL
 opte equivalent in the sense th or each imal sol n 

to one problem, there exists an optimal solution to the 
other problem having the same optimal objective value.  

at

Linearizations 

e first establish cu
( 1DL ). As in any decomposition approach the master 
pr em ( 1DL ) is not solved for all restrictions  

 ( )
=1

, 1
n tz x t T     , but only for a su( )t

i ii

 1t t r   of indices. We de
lem by

 soluti  

note the restricted master 
  1
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Getting a on

prob

  for the restricted master pro- 
blem, the subproblem  P x  is solved, which yields  

( 1) := = 1,2, , .r

S

, ,i ix i j ) 
( 1)r

n            (4.1
  is an optimal solution of the subproblem 

 SP x  
and the

because of the definition of the constants iu  
 constraints 0 1i  . 

A new cut  

( 1) ( 1)
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n
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i i
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is added to the current  1
rDL . Thus we get  1

1
rDL  . 

n valuThe objection functio e z  of SP x  u  is an p- 
per bound for (P), whereas the objective function value 
z  of the master problem  1

rDL  is a lower bound. If 
= z , stop and return an op solution. 

s is the flow of cutting plane algorith
z timal 

Thi m. Below we 
sh

 4.1. Assume that 

ow the finite convergence. The proof is found in Ap- 
pendix 2. 

Lemma x  is an optimal solution of 
 1

rL  and ( 1) :=r
i iD x   . For any >s r , x  cannot be 

timal soan op lution of  1
sDL  unle t i the optimal 

solution of (P).  
From the abov

ss i s 

e lemma, we have the convergence re- 
su

utting plane algorithm stops 
in

rithm based on ( 2DL ) can be 
si ) con

q

 

lt proved in Appendix 3.  
Theorem 4.1. The above c
 a finite number of steps and returns the optimal 

solution of (P).  
Cutting plane algo

milarly devised. To compare with ( 1DL veniently, 
instead of ( 2DL ), we use the following e uivalent model  
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Theorem 4.2. Assume > 0il  for all = 1, 2, ,i n . 
Th gram 

1
rDL

5. Conclusion 

focus on the generalized quadratic 0-1 

rm

an 
nuo

n

e restricted master pro ( 2
rDL  ) gives a lower 

bound strictly better than that of ( ) until the cutting 
plane algorithm stops.  

In this article, we 
program, denoted by (P). We propose a linearization 
( 1PL ) for (P) and show that it can be regarded as a dual 
fo ulation of Balas and Mazzola linearization (BML), 
denoted ( 1DL ). By applying a new approach, we 
establish a tight linearization ( 2PL ) of the same size. We 
proved ( 2PL ) is not weaker th ( 1PL ) in the sense that 
the conti us linear programming relaxation of ( 2PL ) 
gives tighter lower bound than that of ( 1PL ). The dual 
linearizations of ( 1PL ) and ( 2PL ), ( 1DL ) and ( 2DL ) are 
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Appendix 

1) Proof of Theorem 2.1 
Let x  be any feasible solution to (P). It is easy to 

verify that  ,x y 1PL
=i i ij jj i

y x b x


PL

 * *,

 is feasible in ( ) with the same  
objective value, where . As a conse-  

quence, the optimal objective value of ( 1 ) gives a 
lower bound for (P). It is sufficient to show that if 

x y PL is an optimal solution to ( 1 ), x

 i iu = 1ix

 is optimal 
in (P) with the same objective value. We notice that  

= maxi ij i
y b


=i ij jj i

,0j j ix u x   . If , we have 

y b x 


=i iy x  

, otherwise, , . As a con- 

clusion,  which implies  

= 0 = 0iy

 j i

 i i j
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n n

i i
y x  ijj i

b x . That is, x  is a feasible  

solution to (P) whose objective value equals a lower 
bound. Therefore, x

 

 is optimal in (P) and both the 
optimal objective values are equal. □ 

2) Proof of Lemma 4.1 
Denote the optimal objective function value of any 

master problem 
1

sDL  by sz , which is a lower bound 
for (P). If x  1 is also an optimal solution of sDL  for 
some >s r

( 1) ( 1) ,r r
ix  

 

, it follows that  
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 contains the constraint (2). The left-hand 
side of (4) is a lower bound for (P) while the right-hand 
side of (4) corresponds to a feasible objective function 
value of (P), which can be shown as follows:  
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xTherefore (4) holds as equality and 

DL

 must be the 
optimal solution of (P). □ 

3) Proof of Theorem 4.2 
If the cutting plane algorithm based on ( 2 ) has not 

stopped at step r , the optimal solution x
( )t

 must be 
different from   for any , i.e., there exist 
index t  such that 

1 t r 
i  ( )1 > 0t

t
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2
rDL

i it
. Then the right- 

hand side of (  ) satisfies  
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for any  

2
rDL

. Therefore the objective function value 
of (  ) is strictly larger than that of . □  1

rDL
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