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Abstract 
 
Internet routers generally see packets from a fast flow more often than a slow flow. This suggests that 
network fairness may be improved without per-flow information. In this paper, we propose a scheme using 
Most Recently Used List (MRUL)-a list storing statistics of limited active flows that sorted in most recently 
seen first mode-to improve the fairness of RED. Based on the list, our proposed scheme jointly considers the 
identification and punish of the fast and unresponsive fast flows, and the protection of slow flows. Its 
performance improvements are demonstrated with extensive simulations. Different from the previous 
proposals, the complexity of our proposed scheme is proportional to the size of the MRUL list but not coupled 
with the queue buffer size or the number of active flows, so it is scalable and suitable for various routers. In 
addition, another issue we address in this paper is queue management in RED. Specifically, we replace the 
linear packet dropping function in RED by a judicially designed nonlinear quadratic function, while original 
RED remains unchanged. We call this new scheme Nonlinear RED, or NLRED. The underlying idea is that, 
with the proposed nonlinear packet dropping function, packet dropping becomes gentler than RED at light 
traffic load but more aggressive at heavy load. As a result, at light traffic load, NLRED encourages the router 
to operate in a range of average queue sizes rather than a fixed one. When the load is heavy and the average 
queue size approaches the pre-determined maximum threshold (i.e. the queue size may soon get out of 
control), NLRED allows more aggressive packet dropping to back off from it. Simulations demonstrate that 
NLRED achieves a higher and more stable throughput than RED and REM. Since NLRED is fully compatible 
with RED, we can easily upgrade/replace the existing RED implementations by NLRED. 
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1.  Introduction 
 
With the increasing popularity of stream media appli- 
cations, the fairness of networks has attracted much 
research attention [1-11]. With these research efforts, a 
number of schemes [4-12] were proposed to improve the 
fairness in networks with modifications to the queue 
management schemes implemented in Internet routers. 

Known as Active Queue Management (AQM), Random 
Early Detection (RED) [13] is recommended by IETF for 
queue management in routers. However, past work 
shows that unfairness of RED may occur with RED 

under two conditions. Firstly, when two or more TCP 
flow with different RTT competing for the bottleneck 
bandwidth, RED tends to let the flow with shorter RTT 
use more bandwidth [9]. Secondly, when responsive TCP 
flows shares a RED router with unresponsive UDP flows, 
unresponsive UDP flows may has unreasonable high 
throughput than TCP flows [8]. 

Although per-flow queue (i.e. Fair Queuing [4,12]) is 
the most direct solution to the unfair problems, with the 
large number of flows possibly sharing a link, it is not 
scalable for an Internet router. Notice that a router sees 
packets from a fast flow more often than a slow flow; we 
propose in this paper the Scalable Fair Random Early 
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Detection (SFRED) to improve the fairness of RED. A 
Most Recent Used List (MRUL) storing up to N most 
active connections’ traffic statistics is maintained by 
SFRED. Based on the list, SFRED has jointly considered 
the punishment of fast flows, unresponsive fast flows, 
and the protection of short life slow flows (e.g. WEB 
applications). Simulations demonstrate that SFRED has 
significantly improved the fairness of RED. The 
complexity of SFRED is proportional to the size of the 
MRUL but not coupled with the queue buffer size or the 
number of active flows, so it is scalable and suitable for 
various routers. 

Another issue we address in the paper is efficient 
queue management in RED. Among various AQM 
schemes, RED is probably the most extensively studied. 
RED is shown to effectively tackle both the global 
synchronization problem and the problem of bias against 
bursty sources. Due to its popularity, RED (or its variants) 
has been implemented by many router vendors in their 
products (e.g. Cisco implemented WRED). On the other 
hand, there is still a hot on-going debate on the 
performance of RED. Some researchers claimed that 
RED appears to provide no clear advantage over drop- 
tail mechanism. But more researchers acknowledged that 
RED shows some advantages over drop-tail routers but it 
is not perfect, mainly due to one or more of the following 
problems. 
� RED performance is highly sensitive to its parameter 

settings. In RED, at least 4 parameters, namely, 
maximum threshold ( thmax ), minimum threshold 

( thmin ), maximum packet dropping probability ( pmax ), 

and weighting factor (ωq ), have to be properly set. 

� RED performance is sensitive to the number of 
competing sources/flows. 

� RED performance is sensitive to the packet size. 
� With RED, wild queue oscillation is observed when the 

traffic load changes. 
As a result, RED has been extended and enhanced in 

many different ways. It can be found that a common 
underlying technique adopted in most studies is to steer a 
router to operate around a fixed target queue size (which 
can either be an average queue size or an instantaneous 
queue size). There are some concerns on the suitability 
of this approach, since the schemes thus designed are 
usually more complicated than the original RED. This 
renders them unsuitable for backbone routers where 
efficient implementation is of primary concern. In some 
schemes, additional parameters are also introduced. This 
adds extra complexity to the task of parameter setting. 
Unlike the existing RED enhancement schemes, we 
propose to simply replace the linear packet dropping 
function in RED by a judiciously designed nonlinear 
quadratic function. The rest of the original RED remains 
unchanged. We call this new scheme Nonlinear RED, or 
NLRED. The underlying idea is that, with the proposed 
nonlinear packet dropping function, packet dropping is 
gentler than RED at light traffic load but more aggressive 
at heavy load. Therefore, at light traffic load NLRED 

encourages the router to operate in a range of average 
queue sizes rather than a fixed one. When the load is 
heavy and the average queue size approaches the 
maximum threshold maxth-an indicator that the queue 
size may soon get out of control, NLRED allows more 
aggressive packet dropping to quickly back off from it. 
Simulations demonstrate that NLRED achieves a higher 
and more stable throughput than RED and REM, an 
efficient variant of RED. Since NLRED is fully 
compatible with RED, we can easily upgrade/replace the 
existing RED implementations by NLRED. 

The rest of this paper is organized as following. In 
Section 2, we introduce the background and the related 
work of RED, together with the proposed SFRED 
algorithm. In Section 3, we give the simulation results of 
SFRED. In Section 4, we present Nonlinear RED. This is 
followed by extensive simulations in Section 5. Finally, 
we give the concluding remarks in Section 6. 
 
2.  Scalable Fair RED 
 
RED [13] provides high throughput while keeping short 
queue length (i.e. queuing delay) at the routers. However, 
[8,9] have shown that RED has fairness problems. When 
two or more TCP flow with different RTT competing for 
the bottleneck bandwidth, RED tends to let the flow with 
shorter RTT use more bandwidth [9]. Similarly, when 
responsive TCP flows shares a RED router with 
unresponsive UDP flows, unresponsive UDP flows may 
has unreasonable high throughput than TCP flows [8]. 

LRU-RED [4] was developed based on a LRU list to 
identify high bandwidth flows. This scheme derived 
from the fact that a router should see a packet form a fast 
flow more often than a slow flow, so that the number of 
states to be kept for maintaining the fairness can be 
bounded. However, we find the design of LRU-RED in 
[5] is too rough to fully utilize the potential of LRU table. 
For example, it cannot identify an unresponsive flow so 
that the second unfairness condition mentioned in 
Section 1 cannot be solved. Motivated by this, in this 
paper, we will propose a new scalable fair AQM scheme, 
the SFRED. SFRED is developed based on a list similar 
to the LRU but the list (MRUL) keeps more information. 
SFRED has combined many novel ideas in previous work 
in its design, such as the punishment of unresponsive 
flows [8,10] and the protection of slow flows [2]. 

The fairness of Scalable Fair RED (SFRED) is 
enforced in three steps, namely, identifying and limiting 
fast flows, identifying and punishing unresponsive fast 
flows, and protecting slow flows. In this paper, we 
consider that the SFRED working in “packet mode.” 
That is, all the computations of throughput and 
bandwidth allocation are in packets. However, the 
proposed mechanisms can be easily extended to work 
with all the throughputs and bandwidth allocations 
computed in bits (i.e. “bit mode”). 
 
2.1.  MRUL 
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From the viewpoint of fairness, the flows in networks 
can be a fast or a slow flow. A fast flow transmits faster 
than the fair rate and may interfere with the transmission 
of other flows; a slow flow utilizes no more than the fair 
bandwidth. 

A fast flow has packets arrives at the router more 
often than a slow flow. In other words, given the set of 
fast flows in a router, with packets in the queue sorted 
with their arrival time, we should able to find at least one 
packet from each of the fast flow before reaching the 
head of the queue (searching the queue from the end, i.e. 
most recently received packet, to the head i.e. lest 
recently received packet). This suggests that it is possible 
to build a scalable fair queue management algorithm 
with limited complexity. Notice that a fair queue 
management scheme concerns only the aggregated traffic 
characteristics and the characteristics of the fast flows. 
The aggregated traffic characteristics are needed for 
determining the fair rate. The characteristics of fast flow 
are needed for determining the per flow punishment. 
Motivated by this, we develop the Scalable Fair RED 
(SFRED) based on the Most Recent Used List (MRUL). 

In SFRED, a router maintains a linked list (MRUL) 
for up to N most recently seen active flows (flows that 
has packet routed through the router recently). This 
linked list keeps simple traffic statistics for each of the 
active flows in list, such as the number of packet 
received ( riH , i =1,2,…,N) and dropped ( diH , i = 
1,2,…,N). Besides, SFRED also keeps the number of 
packet received ( rH ), dropped ( dH ) for the aggregated 

traffic, and the total number of activate flows (n ). 
The MRUL is maintained as follows. Upon receiving 

a packet, SFRED searches the list for a node matching 
the address of the arrived packet. If it is not found, 
SFRED creates a new item for the flow as the list header, 
and the new item is initialized with rH =1 and dH =0. 
Otherwise, if a node matching the address is located, 
SFRED increases the number of packet received (rH ) 
by one and moves this item to the list header. SFRED 
then processes and checks if the packet should be 
dropped, and changes the number of packet dropped 
( dH ) accordingly. When there are already N nodes in 
the list (i.e. the list is full), SFRED deletes the tail node 
before creates the new one. 

Based on the data stored in MRUL, SFRED performs 
the identification of slow, fast, and unresponsive fast 
flows, as well as determines the particular punishment to 
the fast and unresponsive fast flows. 
 
2.2.  Identify Fast Flow 
 
To be fair, a queue management scheme should first be 
able to identify the fast flow. In SFRED, the fair rate fT  
is computed as: 

−
= r d

f

H H
T

n
 

With the MRUL, the throughput of an active flow can 

be shown with the number of packet received (riH ) as 

=i riT H  

So a flow is a fast flow, if 

(1 )α> +i fT T                 (1) 

where α  is a constant set to 0.1 in this paper. 
Once a fast flow is identified, packets from this flow 

are processed by normal RED with the loss probability 
increase by /f iT T  times, as 

( ) /pd f p imax T max T=  

where pmax  is the original maximum dropping 

probability of RED, and pdmax  is the maximum 

dropping probability for the fast flow. 
Generally, such increases in loss probability is 

sufficient for a responsive TCP flow, since the TCP 
analytical models [14] indicates that TCP throughput is 
inversely proportional to the packet loss rate. Considering 
the bursty nature of TCP transmission, this is also 
necessary as applying a strict bandwidth limitation (e.g. 
dropping all packets received from a flow except the first 
five in each 0.5s interval) results in lower than fair rate 
throughput for a TCP flow. 
 
2.3.  Punish Unresponsive Fast Flows 
 
However, simply increasing the dropping probability has 
been proved to be not effective for the unresponsive 
flows [8], such as consistent bit rate user datagram 
protocol flows (CBR-UDP). An unresponsive flow does 
not dynamically change its throughput with network state 
(e.g. the packet loss rate). In other words, it does not 
adopt the similar congestion control mechanisms as TCP. 
Thus, to maintain the fairness of networks, when there 
are unresponsive fast flows, the queue management 
scheme should take a more actively part in punishing them. 

In SFRED, the identification of unresponsive fast 
flows is based on analyzing the drop history of each fast 
flow that performs similar with the method adopted to 
identify fast flows in [10]. Notice that an unresponsive 
fast flow does not changes its transmission rate with the 
packet loss rate. When it shares a SFRED queue with 
some responsive flows, comparing with the responsive 
flows, it has a higher packet loss rate as well as a higher 
transmission rate. On the contrary, a TCP flow cannot 
maintain high throughput under a high loss rate. Thus an 
unresponsive fast flow is identified by comparing the 
per-flow/average loss rate and the per-flow/average 
throughput. From sub-section 2.1, the packet loss rate for 
a flow is 

/=i di riL H H  

The average packet loss rate is /= d rL H H . 

Thus, when (1) and (1 )iL Lβ> + , 

where β  is a constant set to 0.1 in this paper, a 

unresponsive fast flow is identified. The identified flow 
is then applied with a deterministic packet loss 
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probability of 1. In other words, if a flow has a packet 
income rate higher than fair bandwidth and at the same 
time its packet drop rate is higher than the average loss 
rate, the flow is identified as an unresponsive fast flow 
and all the subsequent packets from the flow are dropped. 
 
2.4.  Protect Slow Flows 
 
The requirement of protecting slow TCP flows, i.e. 
protecting TCP flows from a packet loss at the slow-start 
phase, arises from the fact that most short life TCP flows 
are low slow flows. With limited data to be transmitted, a 
single short life flow generally cannot reach its full 
transmission rate before the connection is terminated. 
However, the performance of short life connection is 
important for the overall Internet performance. 

In SFRED, a new flow seen by the router is protected 
from experiencing packet loss by modifying the 
threshold of RED. That is, when a packet is received and 
the MRUL shows that the flow is with riH η<  and 

zero diH , where η  is a constant, the flow is treated as 

a slow flow. To determine whether the packet should be 
dropped, SFRED calls RED with both the minimum 
threshold and maximum thresholds increased by k  
packets. This equals allocating k  packets buffer in the 
queue to protect slow flow. Because this buffer is still a 
part of the queue, when congestion becomes severe, slow 
flows will experience packet loss so that their 
throughputs are controlled by SFRED. Because the 
congestion window of a TCP connection reaches a level 
that able to generate duplicate ACK after send out about 
10 packets, the constant η  is set to 10. 

 
3.  Simulation Validation of SFRED 
 
We evaluate the performance of SFRED by simulating 
the network in Figure 1 with NS2 [15] simulator. The 
senders (noted iS , i=1, …, n) are linked to router G0 

with 10Mbps links, with variable propagation delay τ i  

ms. A common receiver R is linked to router G1 with a 
10Mbps link with delay rτ  ms. From Figure 1, the link 

between routers G0 and G1 is the bottleneck of the 
network, with a bandwidth of 1.5Mbps and a delay τ c  

ms. Note that all the delays, namely, iτ , rτ , and cτ , 

are variable. For the RED parameters [13], unless 
otherwise stated, we use minimum threshold minth=5, 
maximum threshold maxth=15, weighting factor qw = 

0.002, and maximum dropping probability pmax =0.1, 

with a fixed buffer size of 50 packets. 
The traffic simulated in the network includes long life 

FTP, CBR-UDP, and short life Web-like flows. In all the 
simulations, packet size of 1KB is used for TCP flows 
(FTP and Web-like). The receiver’s advertised window 
is set to two times of the bandwidth delay products, so 

that it does not limit the throughput of a flow. For a 
CBR-UDP flow, it transmits a UDP packet with size X  
bytes every dt s, where X  is fixed for a flow but may 

differ between flows. The path from iS  to R (forward 

path) always carries the data packets, while the reverse 
path from R to Si carries the ACK packets. 

The Web-like flows are implemented to acquire enough 
simulation results with short life TCP connections, and 
avoid collapsing the simulator with too many resource 
allocation requests for new connections. A Web-like flow 
is designed to get a small amount of data (wD  packets) 

each time. Upon finishing the current transmission, it resets 
the connection state (so that its transmission restarts with 
slow start) and transmits another wD  packets. 

 
3.1.  Fairness among TCP Flows 
 
Figures 2 and 3 show the bandwidth usage of two FTP 
flows under RED and SFRED queues, with τ1=10ms and 
τ2=100ms, τc=10ms, and τr=5ms. Each marker on the 
curves represents a 10s average of the TCP throughput 
traced at router G0. With much less margin between the 
two curves, Figures 2 and 3 show that SFRED achieved 
fairer bandwidth allocation than RED. Figures 4-6 show 
the simulation results with 30 Web-like flows and 2 Ftp 
flows, over 2000s of simulation duration. The simulation 
parameters are τ1=τ2=…=τ30=τc=10ms, τ31=10ms, τ32 
=100ms, τr=3ms, and Dw=10 packets. Figure 4 shows the 
bandwidth usage of the two Ftp flows under the RED 
queue and Figure 5 shows similar results under the 
SFRED queue. The dash dotted curve presents the 
theoretical fair rate-the bottleneck bandwidth over the 
total number of flows. Again we see SFRED enables 
much efficient fair bandwidth allocation than RED. 

Figure 6 shows the cumulative distribution function of 
the data transfer delay of the 30 Web-like flows. From 
this figure, the transfer delay of Web-like flows under 
SFRED is more stable than RED, in that most of the 
transmissions finish in 2s. The improvement to transfer 
delay performance is further presented statistically with 
the variance and mean in Table 1. It shows that SFRED 
performs better in the both metrics. 

 
Table 1. Statistic of data transfer delay, 30 web and 2 FTP flows. 

 RED SFRED 
mean(s) 2.057 1.825 

Var 18.1812 3.977 

 

 
Figure 1. The network simulated. 
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Figure 2. Bandwidth usage of two FTP flows, with τ1=10ms 
and τ2=100ms, under RED queues. 
 

 

Figure 3. Bandwidth usage of two FTP flows, with τ1=10ms 
and τ2=100ms, under SFRED queues. 
 

 

Figure 4. Bandwidth usage of two FTP flows, with τ1=10ms 
and τ2=100ms, under RED queues, with 30 web-like flows. 
 
3.2.  With CBR-UDP Flows 
 
Figures 7 and 8 show the bandwidth of 4 flows. Two of 
them are CBR-UDP flows, with τ1=10ms, 1X =1KB, 1dt  

=10ms, 2t =100ms, 2X =500B, and 2dt =5ms. The other 

  
 

Figure 5. Bandwidth usage of two FTP flows, with τ1=10ms 
and τ2=100ms, under SFRED queues, with 30 web-like flows. 
 

 

Figure 6. Cumulative distribution function of the trans- 
mission delay, 30 web and 2 FTP flows. 
 

 

Figure 7. Instantaneous bandwidth usage of two FTP flows 
and two CBR-UDP flows, under RED queues. 
 
two flows are Ftp flows, with τ3=10ms and τ4=100ms. 

cτ =10ms and rt =5ms. From the figures, it is clear that 

the implementation of SFRED protected TCP flows by 
punishing the unresponsive UDP flows, although 
rigorous fairness is still not attained. 
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Figure 8. Instantaneous bandwidth usage of two FTP flows 
and two CBR-UDP flows, under SFRED queues. 
 
4.  Nonlinear Random Early Detection 
 
4.1.  NLRED Algorithm 
 
RED was mainly designed to overcome the two 
problems associated with drop-tail routers, namely, 
global synchronization and bias against bursty sources. 
Unlike the drop-tail mechanism, RED measures 
congestion by the average queue size and drops packets 
randomly before the router queue overflows. When a 
packet arrives at a router, the average queue size, 
denoted avg , is updated using the following 

exponentially weighted moving average (EWMA) 
function, 

(1 ) 'q qavg avg qω ω= − +  

where gav ′  is the calculated average queue size when 

the last packet arrived, q is the instantaneous queue size, 
and qω  is the pre-determined weighting factor with a 

value between 0 and 1. 
As avg  varies from a minimum threshold minth to a 

maximum threshold maxth, the packet dropping 
probability pd increases linearly from 0 to a maximum 
packet dropping probability maxp, or 

0
min

min
min max

max min
max

1


≤ −= ≤ ≤ − ≤



th

th
d p th th

th th
th

avg
avg

p max avg

avg

   (2) 

The throughput performance of RED is not stable. For 
example, when the traffic load is very light and RED 
parameters are aggressively set or when the traffic load is 
very heavy and the parameters are tenderly set, the 
throughput is low. It has been shown that no single set of 
parameters for RED could get a stable performance 
under different traffic loads. We believe such instability 
is due, at least in part, to the linear packet dropping 
function adopted by RED, which tends to be too 

aggressive at light load, and not aggressive enough when 
the average queue size approaches the maximum 
threshold maxth. We also believe that the performance 
improvement of some previous work is at least partly due 
to the employment of nonlinear dropping function, either 
intentionally or unintentionally. (More reasons to be 
provided later.) However, we notice that these 
improvements may not be suitable for core routers, as 
their corresponding nonlinear dropping functions greatly 
complicate the basic mechanism of RED. In this paper, 
we propose to replace the linear packet dropping 
probability function by a judicially designed quadratic 
function. The resulting scheme is called non-linear RED 
or NLRED. The pseudocode of NLRED is summarized 
in Figure 9. 

When avg  exceeds the minimum threshold, NLRED 

uses the nonlinear quadratic function shown in (3) to 
drop packets, where pmax′  represents the maximum 

packet dropping probability of NLRED. Figure 10 
compares the packet dropping functions for RED and 
NLRED. (The choice of a quadratic function is further 
explained in the next subsection.) 

2

0

= ( )

<
1

th

th
d p th th

th th
th

avg min
avg - min

p max min < avg max
max - min

max avg


≤

′ ′ ≤



 (3) 

Comparing (3) to the dropping function of original 
RED in (2), if the same value of pmax  is used, NLRED 

will be gentler than RED for all traffic load. This is 
because the packet dropping probability of NLRED will 
always be smaller than that of RED. In order to make the 
two schemes to have a comparable total packet dropping 
probabilities, we set 1.5p pmax max′ = , such that the 

areas covered by both dropping functions from thmin  to 

thmax  are the same, or 

( ) ( )th th

th th

max max
d dmin min

p d avg p d avg′=∫ ∫  

 
4.2.  Why Use a Quadratic Function? 
 
Given that N  TCP flows equally share a link with 

 
Figure 9. Pseudocode of NLRED. 

NLRED  
for each packet arrival: 

calculate the average queue size avg  

if thavg min≤  

no packet drop 
else if th thmin avg max≤ ≤  

calculate the packet drop probability using (2) 
drop the packet with the calculated probability 

else 
drop the packet 
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Figure 10. Dropping functions for NLRED and RED. 
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Figure 11. Average queue size vs. number of flows, with 

drop-tail router. 
 
bandwidth L , and experience a random packet loss/drop 
probability p . It was shown that p  and N  has the 

following relationship. 
2

N MSS * a
p

L RTT
 <  
 

 

where α  is a constant. This equation indicates that to 
effectively manage the flows (so as to fully utilize the 
available network bandwidth) the packet dropping 
probability should vary quadratically with the number of 
flows. However, finding the number of active flows N  
needs 1) per flow information, 2) extra storage space for 
storing extra state information, and 3) extra router 
processing overhead. Besides, the resulting flow number 
is nothing more than an estimation [13,16]. 

In (3), we have proposed to vary the packet dropping 
probability based on a quadratic function of average 
queue size. In [17], it is shown that the average queue 
size at a router is roughly directly proportional to the 
number of active TCP flows passing through it. This is 
further verified by the simulations results shown in 
Figure 11. The average queue size versus the number of 
flows is obtained by simulating the network in Figure 12 
with drop-tail router mechanisms. (Other simulations 
using RED with different traffic load also show similar 
results.) 

In fact, choosing a quadratic function is also intuitively 

 

Figure 12. The network simulated. 
 

appealing. From Figure 10, when the average queue size 
is slightly larger than thmin , the packet dropping 

probability is smaller than the corresponding RED. As 
such, the average queue size will not be forced to work 
around thmin  as strongly as that in RED. Or, one can 

interpret this as follows. Under current traffic load, the 
signal for congestion is not strong enough to justify any 
severe measures to cut back queue size; so a gentler than 
RED packet dropping probability is desirable. While 
doing this, we naturally encourage the routers to operate 
over a range of queue sizes closer to thmin  (instead of 

at a fixed target queue size). When avg  approaches 

thmax , the congestion becomes more pronounced. The 

routers can thus take decisive actions to drop packets at a 
rate higher than RED. When avg  is bigger than thmax , 

the routers drop any packets received. Although GRED 
shows superior performance than RED with an additional 
linear dropping function when avg  is between thmax  

and 2 thmax , the design of NLRED does not adopt 

similar approach. Besides simplifying the algorithm, 
determined drop is more reasonable for NLRED than 
another slow changed dropping function (such as used in 
GRED), because higher than RED dropping probability has 
already been proven to be too gentle. 
 
5.  Simulation of Nonlinear RED 
 
NLRED is implemented using ns-2 simulator [18]. We 
conduct the simulations based on the network in Figure 12, 
which consists of N  senders and one sink, connected 
together via two routers A and B. The link between the 
two routers is the bottleneck. By varying N , we produce 
different levels of traffic load and thus different levels of 
congestion on the bottleneck link. The active queue 
management schemes under investigation are implemented 
at router A, which has a queue buffer size of 120 packets. 
Unless otherwise stated, we assume that all packets 
generated by the senders are 1000 bytes long. Extensive 
simulations based on this network using different TCP 
implementations (Tahoe, Reno, and New Reno), RTTs, 
and AQM schemes (with different parameter sets), are 
conducted, whereas only a representative subset of the 
results based on TCP Reno is reported below. Besides, we 
choose to compare NLRED with GRED [19] instead of 
RED, due to the superior performance of GRED over 
RED. We also compare NLRED with REM [18] as it is a 
representative scheme that steers a router to operate 
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around a fixed target queue size with excellent reported 
performance. 

 
Experiment 1 
Figures 13 to 16 show the results of a set of simulations 
with the number of long-lived TCP flows increasing 
from 5 to 120 and pmax  varying from 0.02 to 0.5. The 

receiver’s advertised window of each connection is set to 
be bigger than the bandwidth delay product. Each point 
of the simulation results is obtained from a single 200 
seconds simulation while the statistics are collected in 
the second half of the simulation time (i.e. the second 
100-second interval). 

As explained earlier, in order to compare GRED and 
NLRED, the maximum packet dropping probability of 
NLRED is set as 1.5p pmax max′ = . As such, the 

simulation results/curves obtained using NLRED will be 
labelled by its equivalent pmax  instead of pmax′ . As 

an example, the line labelled with 0.1pmax =  in Figure 

16 means the actual maximum packet dropping 
probability is 0.15pmax′ = . Both GRED and NLRED 

use the same set of parameters, 0.002qω = , 10thmin = , 

and 30thmax = . 
Figures 13 and 14 show the bottleneck link throughput 

against the number of flows. Each curve in the figures 
represents the simulation results with a given pmax . 

Comparing the two figures, we can see that NLRED is 
less sensitive to the choice of pmax  under different 

traffic loads (i.e. number of flows). Although the 
throughput of NLRED still changes with the load, for 
some pmax  selections (e.g. 0.05pmax =  to 0.1, or 

pmax′ =0.075 to 0.15), NLRED is very successful in 

maintaining a high throughput regardless of the loading. 
This is mainly due to NLRED’s nonlinear quadratic 
packet dropping function, which allows more packet 
bursts to pass when the average queue size is small, and 
drops more packets when the average queue size 
becomes large. 

 

0 20 40 60 80 100 120
70

75

80

85

90

95

100

Flows

T
hr

ou
gh

pu
t/

B
an

dw
id

th
 (

%
)

maxp=0.5

maxp=0.2

maxp=0.125

maxp=0.1

maxp=0.05

maxp=0.03

maxp=0.025

maxp=0.02

 
Figure 13. Throughput vs. number of flows using GRED. 
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Figure 14. Throughput vs. number of flows using NLRED. 
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Figure 15. Average queue size vs. number of flows using GRED. 
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Figure 16. Average queue size vs. number of flows using NLRED. 
 

Figures 15 and 16 show the change of the average 
queue size with the number of flows. Unlike GRED, we 
can see that NLRED allows the average queue size to 
grow at a faster rate when the number of flows is small. 
As the number of flows increases, NLRED tends to 
control the average queue size better (i.e. the queue size 
converges to a stable value faster) than GRED. 
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Figure 17. Change in queue occupancy when NLRED is used 
with N=100 flows. 
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Figure 18. Change in queue occupancy when GRED is used 
with = 100N  flows, = 0.02pmax , = 0.002qω , thmin  

=10, = 30thmax . 

 
To have a closer examination on the ability to control 

queue size, we show in Figures 17 and 18 the 
instantaneous and average queue sizes against time, with 
the number of flows 100N =  and 0.02pmax = . We 

can see that the oscillations in both instantaneous and 
average queue sizes are much more noticeable when 
GRED is used. With NLRED, the oscillations are 
effectively suppressed, again due to its nonlinear packet 
dropping function. 
 
Experiment 2 
We compare the performance of GRED, REM [20] and 
NLRED under different traffic loads. We set pmax  of 

all the three AQM schemes to 0.1, 0.002qω = , 

10thmin = , and 30thmax = . The default parameters of 

REM in ns-2 are used, they are 0.001γ = , 0.1α = , 

1.001φ = , and 20b = . 

From Figure 19, we can see that NLRED has the 
highest overall throughput, whereas GRED is the lowest. 
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Figure 19. Throughput vs. flow number: GRED, REM and NLRED. 
 
It is interesting to see a short concave phase when the 
traffic is changed from 10 flows to 40 flows. It is shown 
that the performance of NLRED is not very stable during 
this range, partly because of the sharp non-contiguous 
increase of dropping probability from pmax  to 1 when 

avq  grows over thmax . However, as soon as the 

number of flows is larger than 40, the throughput for 
NLRED quickly converges to the link bandwidth. 
Besides, during the concave range, the throughput of 
NLRED is still always higher than GRED. Figure 20 
shows the corresponding average queue size of using 
GRED, REM, and NLRED. By steering the queue 
around a target length, REM suffers the low throughput 
when traffic load is extremely light (less than 5 flows) 
and extremely high. When N＞60, the throughput of 
REM is unstable and drops as N increases. 

Since Misra, et al. [14] indicated that packet size affects 
the performance of AQM schemes, in this experiment 
(again based on Figure 12), we test and compare the 
packet size sensitivity of GRED, REM, and NLRED. REM 
is configured to work in byte mode because packet mode 
shows extremely poor performance. (We believe the error 
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Figure 20. Average queue size vs. flow number: GRED, 
REM and NLRED. 
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Figure 21. Throughput vs. packet size. 

 
in arrival rate estimation is the reason for such poor 
performance with packet mode REM.) However, the 
queue length of byte mode REM cannot be directly 
compared with the results of other schemes, because it 
uses bytes as unit whereas others use packets. To solve 
the problem, we normalize the queue length of byte mode 
REM to use packets as unit. The conversion assumes all 
the packets are with the same size as the referenced packet 
size. We simulate 50 long-lived FTPs. For each AQM 
algorithm, we conduct a set of simulations with the packet 
size ranging from 100 bytes to 2500 bytes. Figure 21 
shows the throughput against packet size. We can see that 
NLRED is least sensitive to the packet size and therefore is 
better than both GRED and REM. 
 
6.  Conclusions 
 
We have proposed a mechanism improving the fairness 
of Internet routers, which called SFRED. The mechanism 
was developed with a MRUL in which states of up to N 
most recently used flows are stored. SFRED then 
identifies and punishes the fast and unresponsive fast 
flows. To improve short TCP transaction performance, 
SFRED also protects slow flows by allocating a small 
amount of buffer. Simulations show that the SFRED 
proposed has significantly improved the fairness of RED, 
with only limited resource usage. Different from the 
previous proposals the complexity of SFRED is 
proportional to the size of the list but not coupled with 
the queue buffer size or the number of active flows, so it 
is scalable and suitable for various routers. Moreover, in 
this paper, we also proposed a new active queue 
management scheme called Nonlinear RED (NLRED). 
NLRED is the same as the original RED except that the 
linear packet dropping probability function is replaced by 
a nonlinear quadratic function. While inheriting the 
simplicity of RED, NLRED was shown to outperform 
RED as well as REM and some of its variants. In particular, 
NLRED is less sensitive to parameter settings, has a more 

predictable average queue size, and can achieve a higher 
throughput. We credit the above performance gain to the 
idea of encouraging the router to operate over a range of 
queue sizes according to traffic load instead of at a fixed 
one. This is realized in NLRED by using a gentle packet 
dropping probability at the onset of the congestion, and a 
much more aggressive dropping probability when the 
congestion becomes more pronounced. 
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