
I. J. Communications, Network and System Sciences, 2009, 1, 1-89
Published Online February 2009 in SciRes (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

On the Scalable Fairness and Efficient Active Queue
Management of RED

Hui WANG1, Xiao-Hui LIN*1, Kai-Yu ZHOU2, Nin XIE1, 4, Hui LI3
1Department of Communication Engineering, Shenzhen University, Shenzhen, China

2China Telecom Beijing Research Institute, Beijing, China
3Shenzhen Graduate School, Peking University, Shenzhen, China

4National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Email: *xhlin@szu.edu.cn

Received October 22, 2008; revised December 2, 2008; accepted December 31, 2008

Abstract

Internet routers generally see packets from a fast flow more often than a slow flow. This suggests that
network fairness may be improved without per-flow information. In this paper, we propose a scheme using
Most Recently Used List (MRUL)-a list storing statistics of limited active flows that sorted in most recently
seen first mode-to improve the fairness of RED. Based on the list, our proposed scheme jointly considers the
identification and punish of the fast and unresponsive fast flows, and the protection of slow flows. Its
performance improvements are demonstrated with extensive simulations. Different from the previous
proposals, the complexity of our proposed scheme is proportional to the size of the MRUL list but not coupled
with the queue buffer size or the number of active flows, so it is scalable and suitable for various routers. In
addition, another issue we address in this paper is queue management in RED. Specifically, we replace the
linear packet dropping function in RED by a judicially designed nonlinear quadratic function, while original
RED remains unchanged. We call this new scheme Nonlinear RED, or NLRED. The underlying idea is that,
with the proposed nonlinear packet dropping function, packet dropping becomes gentler than RED at light
traffic load but more aggressive at heavy load. As a result, at light traffic load, NLRED encourages the router
to operate in a range of average queue sizes rather than a fixed one. When the load is heavy and the average
queue size approaches the pre-determined maximum threshold (i.e. the queue size may soon get out of
control), NLRED allows more aggressive packet dropping to back off from it. Simulations demonstrate that
NLRED achieves a higher and more stable throughput than RED and REM. Since NLRED is fully compatible
with RED, we can easily upgrade/replace the existing RED implementations by NLRED.

Keywords: Random Early Detection, TCP, Unresponsive Flows, Fairness, Queue Management

1. Introduction

With the increasing popularity of stream media appli-
cations, the fairness of networks has attracted much
research attention [1-11]. With these research efforts, a
number of schemes [4-12] were proposed to improve the
fairness in networks with modifications to the queue
management schemes implemented in Internet routers.

Known as Active Queue Management (AQM), Random
Early Detection (RED) [13] is recommended by IETF for
queue management in routers. However, past work
shows that unfairness of RED may occur with RED

under two conditions. Firstly, when two or more TCP
flow with different RTT competing for the bottleneck
bandwidth, RED tends to let the flow with shorter RTT
use more bandwidth [9]. Secondly, when responsive TCP
flows shares a RED router with unresponsive UDP flows,
unresponsive UDP flows may has unreasonable high
throughput than TCP flows [8].

Although per-flow queue (i.e. Fair Queuing [4,12]) is
the most direct solution to the unfair problems, with the
large number of flows possibly sharing a link, it is not
scalable for an Internet router. Notice that a router sees
packets from a fast flow more often than a slow flow; we
propose in this paper the Scalable Fair Random Early

74 H. WANG ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Detection (SFRED) to improve the fairness of RED. A
Most Recent Used List (MRUL) storing up to N most
active connections’ traffic statistics is maintained by
SFRED. Based on the list, SFRED has jointly considered
the punishment of fast flows, unresponsive fast flows,
and the protection of short life slow flows (e.g. WEB
applications). Simulations demonstrate that SFRED has
significantly improved the fairness of RED. The
complexity of SFRED is proportional to the size of the
MRUL but not coupled with the queue buffer size or the
number of active flows, so it is scalable and suitable for
various routers.

Another issue we address in the paper is efficient
queue management in RED. Among various AQM
schemes, RED is probably the most extensively studied.
RED is shown to effectively tackle both the global
synchronization problem and the problem of bias against
bursty sources. Due to its popularity, RED (or its variants)
has been implemented by many router vendors in their
products (e.g. Cisco implemented WRED). On the other
hand, there is still a hot on-going debate on the
performance of RED. Some researchers claimed that
RED appears to provide no clear advantage over drop-
tail mechanism. But more researchers acknowledged that
RED shows some advantages over drop-tail routers but it
is not perfect, mainly due to one or more of the following
problems.
� RED performance is highly sensitive to its parameter

settings. In RED, at least 4 parameters, namely,
maximum threshold (thmax), minimum threshold

(thmin), maximum packet dropping probability (pmax),

and weighting factor (ωq), have to be properly set.

� RED performance is sensitive to the number of
competing sources/flows.

� RED performance is sensitive to the packet size.
� With RED, wild queue oscillation is observed when the

traffic load changes.
As a result, RED has been extended and enhanced in

many different ways. It can be found that a common
underlying technique adopted in most studies is to steer a
router to operate around a fixed target queue size (which
can either be an average queue size or an instantaneous
queue size). There are some concerns on the suitability
of this approach, since the schemes thus designed are
usually more complicated than the original RED. This
renders them unsuitable for backbone routers where
efficient implementation is of primary concern. In some
schemes, additional parameters are also introduced. This
adds extra complexity to the task of parameter setting.
Unlike the existing RED enhancement schemes, we
propose to simply replace the linear packet dropping
function in RED by a judiciously designed nonlinear
quadratic function. The rest of the original RED remains
unchanged. We call this new scheme Nonlinear RED, or
NLRED. The underlying idea is that, with the proposed
nonlinear packet dropping function, packet dropping is
gentler than RED at light traffic load but more aggressive
at heavy load. Therefore, at light traffic load NLRED

encourages the router to operate in a range of average
queue sizes rather than a fixed one. When the load is
heavy and the average queue size approaches the
maximum threshold maxth-an indicator that the queue
size may soon get out of control, NLRED allows more
aggressive packet dropping to quickly back off from it.
Simulations demonstrate that NLRED achieves a higher
and more stable throughput than RED and REM, an
efficient variant of RED. Since NLRED is fully
compatible with RED, we can easily upgrade/replace the
existing RED implementations by NLRED.

The rest of this paper is organized as following. In
Section 2, we introduce the background and the related
work of RED, together with the proposed SFRED
algorithm. In Section 3, we give the simulation results of
SFRED. In Section 4, we present Nonlinear RED. This is
followed by extensive simulations in Section 5. Finally,
we give the concluding remarks in Section 6.

2. Scalable Fair RED

RED [13] provides high throughput while keeping short
queue length (i.e. queuing delay) at the routers. However,
[8,9] have shown that RED has fairness problems. When
two or more TCP flow with different RTT competing for
the bottleneck bandwidth, RED tends to let the flow with
shorter RTT use more bandwidth [9]. Similarly, when
responsive TCP flows shares a RED router with
unresponsive UDP flows, unresponsive UDP flows may
has unreasonable high throughput than TCP flows [8].

LRU-RED [4] was developed based on a LRU list to
identify high bandwidth flows. This scheme derived
from the fact that a router should see a packet form a fast
flow more often than a slow flow, so that the number of
states to be kept for maintaining the fairness can be
bounded. However, we find the design of LRU-RED in
[5] is too rough to fully utilize the potential of LRU table.
For example, it cannot identify an unresponsive flow so
that the second unfairness condition mentioned in
Section 1 cannot be solved. Motivated by this, in this
paper, we will propose a new scalable fair AQM scheme,
the SFRED. SFRED is developed based on a list similar
to the LRU but the list (MRUL) keeps more information.
SFRED has combined many novel ideas in previous work
in its design, such as the punishment of unresponsive
flows [8,10] and the protection of slow flows [2].

The fairness of Scalable Fair RED (SFRED) is
enforced in three steps, namely, identifying and limiting
fast flows, identifying and punishing unresponsive fast
flows, and protecting slow flows. In this paper, we
consider that the SFRED working in “packet mode.”
That is, all the computations of throughput and
bandwidth allocation are in packets. However, the
proposed mechanisms can be easily extended to work
with all the throughputs and bandwidth allocations
computed in bits (i.e. “bit mode”).

2.1. MRUL

 ON THE SCALABLE FAIRNESS AND EFFICIENT ACTIVE QUEUE MANAGEMENT OF RED 75

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

From the viewpoint of fairness, the flows in networks
can be a fast or a slow flow. A fast flow transmits faster
than the fair rate and may interfere with the transmission
of other flows; a slow flow utilizes no more than the fair
bandwidth.

A fast flow has packets arrives at the router more
often than a slow flow. In other words, given the set of
fast flows in a router, with packets in the queue sorted
with their arrival time, we should able to find at least one
packet from each of the fast flow before reaching the
head of the queue (searching the queue from the end, i.e.
most recently received packet, to the head i.e. lest
recently received packet). This suggests that it is possible
to build a scalable fair queue management algorithm
with limited complexity. Notice that a fair queue
management scheme concerns only the aggregated traffic
characteristics and the characteristics of the fast flows.
The aggregated traffic characteristics are needed for
determining the fair rate. The characteristics of fast flow
are needed for determining the per flow punishment.
Motivated by this, we develop the Scalable Fair RED
(SFRED) based on the Most Recent Used List (MRUL).

In SFRED, a router maintains a linked list (MRUL)
for up to N most recently seen active flows (flows that
has packet routed through the router recently). This
linked list keeps simple traffic statistics for each of the
active flows in list, such as the number of packet
received (riH , i =1,2,…,N) and dropped (diH , i =
1,2,…,N). Besides, SFRED also keeps the number of
packet received (rH), dropped (dH) for the aggregated

traffic, and the total number of activate flows (n).
The MRUL is maintained as follows. Upon receiving

a packet, SFRED searches the list for a node matching
the address of the arrived packet. If it is not found,
SFRED creates a new item for the flow as the list header,
and the new item is initialized with rH =1 and dH =0.
Otherwise, if a node matching the address is located,
SFRED increases the number of packet received (rH)
by one and moves this item to the list header. SFRED
then processes and checks if the packet should be
dropped, and changes the number of packet dropped
(dH) accordingly. When there are already N nodes in
the list (i.e. the list is full), SFRED deletes the tail node
before creates the new one.

Based on the data stored in MRUL, SFRED performs
the identification of slow, fast, and unresponsive fast
flows, as well as determines the particular punishment to
the fast and unresponsive fast flows.

2.2. Identify Fast Flow

To be fair, a queue management scheme should first be
able to identify the fast flow. In SFRED, the fair rate fT
is computed as:

−
= r d

f

H H
T

n

With the MRUL, the throughput of an active flow can

be shown with the number of packet received (riH) as

=i riT H

So a flow is a fast flow, if

(1)α> +i fT T (1)

where α is a constant set to 0.1 in this paper.
Once a fast flow is identified, packets from this flow

are processed by normal RED with the loss probability
increase by /f iT T times, as

() /pd f p imax T max T=

where pmax is the original maximum dropping

probability of RED, and pdmax is the maximum

dropping probability for the fast flow.
Generally, such increases in loss probability is

sufficient for a responsive TCP flow, since the TCP
analytical models [14] indicates that TCP throughput is
inversely proportional to the packet loss rate. Considering
the bursty nature of TCP transmission, this is also
necessary as applying a strict bandwidth limitation (e.g.
dropping all packets received from a flow except the first
five in each 0.5s interval) results in lower than fair rate
throughput for a TCP flow.

2.3. Punish Unresponsive Fast Flows

However, simply increasing the dropping probability has
been proved to be not effective for the unresponsive
flows [8], such as consistent bit rate user datagram
protocol flows (CBR-UDP). An unresponsive flow does
not dynamically change its throughput with network state
(e.g. the packet loss rate). In other words, it does not
adopt the similar congestion control mechanisms as TCP.
Thus, to maintain the fairness of networks, when there
are unresponsive fast flows, the queue management
scheme should take a more actively part in punishing them.

In SFRED, the identification of unresponsive fast
flows is based on analyzing the drop history of each fast
flow that performs similar with the method adopted to
identify fast flows in [10]. Notice that an unresponsive
fast flow does not changes its transmission rate with the
packet loss rate. When it shares a SFRED queue with
some responsive flows, comparing with the responsive
flows, it has a higher packet loss rate as well as a higher
transmission rate. On the contrary, a TCP flow cannot
maintain high throughput under a high loss rate. Thus an
unresponsive fast flow is identified by comparing the
per-flow/average loss rate and the per-flow/average
throughput. From sub-section 2.1, the packet loss rate for
a flow is

/=i di riL H H

The average packet loss rate is /= d rL H H .

Thus, when (1) and (1)iL Lβ> + ,

where β is a constant set to 0.1 in this paper, a

unresponsive fast flow is identified. The identified flow
is then applied with a deterministic packet loss

76 H. WANG ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

probability of 1. In other words, if a flow has a packet
income rate higher than fair bandwidth and at the same
time its packet drop rate is higher than the average loss
rate, the flow is identified as an unresponsive fast flow
and all the subsequent packets from the flow are dropped.

2.4. Protect Slow Flows

The requirement of protecting slow TCP flows, i.e.
protecting TCP flows from a packet loss at the slow-start
phase, arises from the fact that most short life TCP flows
are low slow flows. With limited data to be transmitted, a
single short life flow generally cannot reach its full
transmission rate before the connection is terminated.
However, the performance of short life connection is
important for the overall Internet performance.

In SFRED, a new flow seen by the router is protected
from experiencing packet loss by modifying the
threshold of RED. That is, when a packet is received and
the MRUL shows that the flow is with riH η< and

zero diH , where η is a constant, the flow is treated as

a slow flow. To determine whether the packet should be
dropped, SFRED calls RED with both the minimum
threshold and maximum thresholds increased by k
packets. This equals allocating k packets buffer in the
queue to protect slow flow. Because this buffer is still a
part of the queue, when congestion becomes severe, slow
flows will experience packet loss so that their
throughputs are controlled by SFRED. Because the
congestion window of a TCP connection reaches a level
that able to generate duplicate ACK after send out about
10 packets, the constant η is set to 10.

3. Simulation Validation of SFRED

We evaluate the performance of SFRED by simulating
the network in Figure 1 with NS2 [15] simulator. The
senders (noted iS , i=1, …, n) are linked to router G0

with 10Mbps links, with variable propagation delay τ i

ms. A common receiver R is linked to router G1 with a
10Mbps link with delay rτ ms. From Figure 1, the link

between routers G0 and G1 is the bottleneck of the
network, with a bandwidth of 1.5Mbps and a delay τ c

ms. Note that all the delays, namely, iτ , rτ , and cτ ,

are variable. For the RED parameters [13], unless
otherwise stated, we use minimum threshold minth=5,
maximum threshold maxth=15, weighting factor qw =

0.002, and maximum dropping probability pmax =0.1,

with a fixed buffer size of 50 packets.
The traffic simulated in the network includes long life

FTP, CBR-UDP, and short life Web-like flows. In all the
simulations, packet size of 1KB is used for TCP flows
(FTP and Web-like). The receiver’s advertised window
is set to two times of the bandwidth delay products, so

that it does not limit the throughput of a flow. For a
CBR-UDP flow, it transmits a UDP packet with size X
bytes every dt s, where X is fixed for a flow but may

differ between flows. The path from iS to R (forward

path) always carries the data packets, while the reverse
path from R to Si carries the ACK packets.

The Web-like flows are implemented to acquire enough
simulation results with short life TCP connections, and
avoid collapsing the simulator with too many resource
allocation requests for new connections. A Web-like flow
is designed to get a small amount of data (wD packets)

each time. Upon finishing the current transmission, it resets
the connection state (so that its transmission restarts with
slow start) and transmits another wD packets.

3.1. Fairness among TCP Flows

Figures 2 and 3 show the bandwidth usage of two FTP
flows under RED and SFRED queues, with τ1=10ms and
τ2=100ms, τc=10ms, and τr=5ms. Each marker on the
curves represents a 10s average of the TCP throughput
traced at router G0. With much less margin between the
two curves, Figures 2 and 3 show that SFRED achieved
fairer bandwidth allocation than RED. Figures 4-6 show
the simulation results with 30 Web-like flows and 2 Ftp
flows, over 2000s of simulation duration. The simulation
parameters are τ1=τ2=…=τ30=τc=10ms, τ31=10ms, τ32
=100ms, τr=3ms, and Dw=10 packets. Figure 4 shows the
bandwidth usage of the two Ftp flows under the RED
queue and Figure 5 shows similar results under the
SFRED queue. The dash dotted curve presents the
theoretical fair rate-the bottleneck bandwidth over the
total number of flows. Again we see SFRED enables
much efficient fair bandwidth allocation than RED.

Figure 6 shows the cumulative distribution function of
the data transfer delay of the 30 Web-like flows. From
this figure, the transfer delay of Web-like flows under
SFRED is more stable than RED, in that most of the
transmissions finish in 2s. The improvement to transfer
delay performance is further presented statistically with
the variance and mean in Table 1. It shows that SFRED
performs better in the both metrics.

Table 1. Statistic of data transfer delay, 30 web and 2 FTP flows.

 RED SFRED
mean(s) 2.057 1.825

Var 18.1812 3.977

Figure 1. The network simulated.

 ON THE SCALABLE FAIRNESS AND EFFICIENT ACTIVE QUEUE MANAGEMENT OF RED 77

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Figure 2. Bandwidth usage of two FTP flows, with τ1=10ms
and τ2=100ms, under RED queues.

Figure 3. Bandwidth usage of two FTP flows, with τ1=10ms
and τ2=100ms, under SFRED queues.

Figure 4. Bandwidth usage of two FTP flows, with τ1=10ms
and τ2=100ms, under RED queues, with 30 web-like flows.

3.2. With CBR-UDP Flows

Figures 7 and 8 show the bandwidth of 4 flows. Two of
them are CBR-UDP flows, with τ1=10ms, 1X =1KB, 1dt

=10ms, 2t =100ms, 2X =500B, and 2dt =5ms. The other

Figure 5. Bandwidth usage of two FTP flows, with τ1=10ms
and τ2=100ms, under SFRED queues, with 30 web-like flows.

Figure 6. Cumulative distribution function of the trans-
mission delay, 30 web and 2 FTP flows.

Figure 7. Instantaneous bandwidth usage of two FTP flows
and two CBR-UDP flows, under RED queues.

two flows are Ftp flows, with τ3=10ms and τ4=100ms.

cτ =10ms and rt =5ms. From the figures, it is clear that

the implementation of SFRED protected TCP flows by
punishing the unresponsive UDP flows, although
rigorous fairness is still not attained.

78 H. WANG ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Figure 8. Instantaneous bandwidth usage of two FTP flows
and two CBR-UDP flows, under SFRED queues.

4. Nonlinear Random Early Detection

4.1. NLRED Algorithm

RED was mainly designed to overcome the two
problems associated with drop-tail routers, namely,
global synchronization and bias against bursty sources.
Unlike the drop-tail mechanism, RED measures
congestion by the average queue size and drops packets
randomly before the router queue overflows. When a
packet arrives at a router, the average queue size,
denoted avg , is updated using the following

exponentially weighted moving average (EWMA)
function,

(1) 'q qavg avg qω ω= − +

where gav ′ is the calculated average queue size when

the last packet arrived, q is the instantaneous queue size,
and qω is the pre-determined weighting factor with a

value between 0 and 1.
As avg varies from a minimum threshold minth to a

maximum threshold maxth, the packet dropping
probability pd increases linearly from 0 to a maximum
packet dropping probability maxp, or

0
min

min
min max

max min
max

1


≤ −= ≤ ≤ − ≤



th

th
d p th th

th th
th

avg
avg

p max avg

avg

 (2)

The throughput performance of RED is not stable. For
example, when the traffic load is very light and RED
parameters are aggressively set or when the traffic load is
very heavy and the parameters are tenderly set, the
throughput is low. It has been shown that no single set of
parameters for RED could get a stable performance
under different traffic loads. We believe such instability
is due, at least in part, to the linear packet dropping
function adopted by RED, which tends to be too

aggressive at light load, and not aggressive enough when
the average queue size approaches the maximum
threshold maxth. We also believe that the performance
improvement of some previous work is at least partly due
to the employment of nonlinear dropping function, either
intentionally or unintentionally. (More reasons to be
provided later.) However, we notice that these
improvements may not be suitable for core routers, as
their corresponding nonlinear dropping functions greatly
complicate the basic mechanism of RED. In this paper,
we propose to replace the linear packet dropping
probability function by a judicially designed quadratic
function. The resulting scheme is called non-linear RED
or NLRED. The pseudocode of NLRED is summarized
in Figure 9.

When avg exceeds the minimum threshold, NLRED

uses the nonlinear quadratic function shown in (3) to
drop packets, where pmax′ represents the maximum

packet dropping probability of NLRED. Figure 10
compares the packet dropping functions for RED and
NLRED. (The choice of a quadratic function is further
explained in the next subsection.)

2

0

= ()

<
1

th

th
d p th th

th th
th

avg min
avg - min

p max min < avg max
max - min

max avg


≤

′ ′ ≤



 (3)

Comparing (3) to the dropping function of original
RED in (2), if the same value of pmax is used, NLRED

will be gentler than RED for all traffic load. This is
because the packet dropping probability of NLRED will
always be smaller than that of RED. In order to make the
two schemes to have a comparable total packet dropping
probabilities, we set 1.5p pmax max′ = , such that the

areas covered by both dropping functions from thmin to

thmax are the same, or

() ()th th

th th

max max
d dmin min

p d avg p d avg′=∫ ∫

4.2. Why Use a Quadratic Function?

Given that N TCP flows equally share a link with

Figure 9. Pseudocode of NLRED.

NLRED
for each packet arrival:

calculate the average queue size avg

if thavg min≤

no packet drop
else if th thmin avg max≤ ≤

calculate the packet drop probability using (2)
drop the packet with the calculated probability

else
drop the packet

 ON THE SCALABLE FAIRNESS AND EFFICIENT ACTIVE QUEUE MANAGEMENT OF RED 79

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Figure 10. Dropping functions for NLRED and RED.

60

65

70

75

80

85

90

95

0 50 100 150
Flows

A
ve

ra
g

e
 q

u
e

u
e

 le
n

g
th

 (
p

a
ck

e
ts

)

Figure 11. Average queue size vs. number of flows, with

drop-tail router.

bandwidth L , and experience a random packet loss/drop
probability p . It was shown that p and N has the

following relationship.
2

N MSS * a
p

L RTT
 <  
 

where α is a constant. This equation indicates that to
effectively manage the flows (so as to fully utilize the
available network bandwidth) the packet dropping
probability should vary quadratically with the number of
flows. However, finding the number of active flows N
needs 1) per flow information, 2) extra storage space for
storing extra state information, and 3) extra router
processing overhead. Besides, the resulting flow number
is nothing more than an estimation [13,16].

In (3), we have proposed to vary the packet dropping
probability based on a quadratic function of average
queue size. In [17], it is shown that the average queue
size at a router is roughly directly proportional to the
number of active TCP flows passing through it. This is
further verified by the simulations results shown in
Figure 11. The average queue size versus the number of
flows is obtained by simulating the network in Figure 12
with drop-tail router mechanisms. (Other simulations
using RED with different traffic load also show similar
results.)

In fact, choosing a quadratic function is also intuitively

Figure 12. The network simulated.

appealing. From Figure 10, when the average queue size
is slightly larger than thmin , the packet dropping

probability is smaller than the corresponding RED. As
such, the average queue size will not be forced to work
around thmin as strongly as that in RED. Or, one can

interpret this as follows. Under current traffic load, the
signal for congestion is not strong enough to justify any
severe measures to cut back queue size; so a gentler than
RED packet dropping probability is desirable. While
doing this, we naturally encourage the routers to operate
over a range of queue sizes closer to thmin (instead of

at a fixed target queue size). When avg approaches

thmax , the congestion becomes more pronounced. The

routers can thus take decisive actions to drop packets at a
rate higher than RED. When avg is bigger than thmax ,

the routers drop any packets received. Although GRED
shows superior performance than RED with an additional
linear dropping function when avg is between thmax

and 2 thmax , the design of NLRED does not adopt

similar approach. Besides simplifying the algorithm,
determined drop is more reasonable for NLRED than
another slow changed dropping function (such as used in
GRED), because higher than RED dropping probability has
already been proven to be too gentle.

5. Simulation of Nonlinear RED

NLRED is implemented using ns-2 simulator [18]. We
conduct the simulations based on the network in Figure 12,
which consists of N senders and one sink, connected
together via two routers A and B. The link between the
two routers is the bottleneck. By varying N , we produce
different levels of traffic load and thus different levels of
congestion on the bottleneck link. The active queue
management schemes under investigation are implemented
at router A, which has a queue buffer size of 120 packets.
Unless otherwise stated, we assume that all packets
generated by the senders are 1000 bytes long. Extensive
simulations based on this network using different TCP
implementations (Tahoe, Reno, and New Reno), RTTs,
and AQM schemes (with different parameter sets), are
conducted, whereas only a representative subset of the
results based on TCP Reno is reported below. Besides, we
choose to compare NLRED with GRED [19] instead of
RED, due to the superior performance of GRED over
RED. We also compare NLRED with REM [18] as it is a
representative scheme that steers a router to operate

80 H. WANG ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

around a fixed target queue size with excellent reported
performance.

Experiment 1
Figures 13 to 16 show the results of a set of simulations
with the number of long-lived TCP flows increasing
from 5 to 120 and pmax varying from 0.02 to 0.5. The

receiver’s advertised window of each connection is set to
be bigger than the bandwidth delay product. Each point
of the simulation results is obtained from a single 200
seconds simulation while the statistics are collected in
the second half of the simulation time (i.e. the second
100-second interval).

As explained earlier, in order to compare GRED and
NLRED, the maximum packet dropping probability of
NLRED is set as 1.5p pmax max′ = . As such, the

simulation results/curves obtained using NLRED will be
labelled by its equivalent pmax instead of pmax′ . As

an example, the line labelled with 0.1pmax = in Figure

16 means the actual maximum packet dropping
probability is 0.15pmax′ = . Both GRED and NLRED

use the same set of parameters, 0.002qω = , 10thmin = ,

and 30thmax = .
Figures 13 and 14 show the bottleneck link throughput

against the number of flows. Each curve in the figures
represents the simulation results with a given pmax .

Comparing the two figures, we can see that NLRED is
less sensitive to the choice of pmax under different

traffic loads (i.e. number of flows). Although the
throughput of NLRED still changes with the load, for
some pmax selections (e.g. 0.05pmax = to 0.1, or

pmax′ =0.075 to 0.15), NLRED is very successful in

maintaining a high throughput regardless of the loading.
This is mainly due to NLRED’s nonlinear quadratic
packet dropping function, which allows more packet
bursts to pass when the average queue size is small, and
drops more packets when the average queue size
becomes large.

0 20 40 60 80 100 120
70

75

80

85

90

95

100

Flows

T
hr

ou
gh

pu
t/

B
an

dw
id

th
 (

%
)

maxp=0.5

maxp=0.2

maxp=0.125

maxp=0.1

maxp=0.05

maxp=0.03

maxp=0.025

maxp=0.02

Figure 13. Throughput vs. number of flows using GRED.

0 20 40 60 80 100 120
75

80

85

90

95

100

Flows

T
hr

ou
gh

pu
t/

B
an

dw
id

th
 (

%
)

maxp=0.5

maxp=0.2

maxp=0.125

maxp=0.1

maxp=0.05

maxp=0.03

maxp=0.025

maxp=0.02

Figure 14. Throughput vs. number of flows using NLRED.

0 20 40 60 80 100 120
5

10

15

20

25

30

35

40

Flows

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

maxp=0.5

maxp=0.2

maxp=0.125

maxp=0.1

maxp=0.05

maxp=0.03

maxp=0.025

maxp=0.02

Figure 15. Average queue size vs. number of flows using GRED.

0 20 40 60 80 100 120
5

10

15

20

25

30

Flows

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

maxp=0.5

maxp=0.2

maxp=0.125

maxp=0.1

maxp=0.05

maxp=0.03

max
p
=0.025

max
p
=0.02

Figure 16. Average queue size vs. number of flows using NLRED.

Figures 15 and 16 show the change of the average
queue size with the number of flows. Unlike GRED, we
can see that NLRED allows the average queue size to
grow at a faster rate when the number of flows is small.
As the number of flows increases, NLRED tends to
control the average queue size better (i.e. the queue size
converges to a stable value faster) than GRED.

 ON THE SCALABLE FAIRNESS AND EFFICIENT ACTIVE QUEUE MANAGEMENT OF RED 81

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

180 182 184 186 188 190 192 194 196 198 200

10

20

30

40

50

60

70

80

90

100

Time (seconds)

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

EWMA Average queue
Instantaneous queue

Figure 17. Change in queue occupancy when NLRED is used
with N=100 flows.

180 182 184 186 188 190 192 194 196 198 200
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

EWMA Average queue
Instantaneous queue

Figure 18. Change in queue occupancy when GRED is used
with = 100N flows, = 0.02pmax , = 0.002qω , thmin

=10, = 30thmax .

To have a closer examination on the ability to control

queue size, we show in Figures 17 and 18 the
instantaneous and average queue sizes against time, with
the number of flows 100N = and 0.02pmax = . We

can see that the oscillations in both instantaneous and
average queue sizes are much more noticeable when
GRED is used. With NLRED, the oscillations are
effectively suppressed, again due to its nonlinear packet
dropping function.

Experiment 2
We compare the performance of GRED, REM [20] and
NLRED under different traffic loads. We set pmax of

all the three AQM schemes to 0.1, 0.002qω = ,

10thmin = , and 30thmax = . The default parameters of

REM in ns-2 are used, they are 0.001γ = , 0.1α = ,

1.001φ = , and 20b = .

From Figure 19, we can see that NLRED has the
highest overall throughput, whereas GRED is the lowest.

0 20 40 60 80 100 120
90

91

92

93

94

95

96

97

98

99

100

Flows

T
hr

ou
gh

pu
t/

B
an

dw
id

th
 (

%
)

GRED
REM
NLRED

Figure 19. Throughput vs. flow number: GRED, REM and NLRED.

It is interesting to see a short concave phase when the
traffic is changed from 10 flows to 40 flows. It is shown
that the performance of NLRED is not very stable during
this range, partly because of the sharp non-contiguous
increase of dropping probability from pmax to 1 when

avq grows over thmax . However, as soon as the

number of flows is larger than 40, the throughput for
NLRED quickly converges to the link bandwidth.
Besides, during the concave range, the throughput of
NLRED is still always higher than GRED. Figure 20
shows the corresponding average queue size of using
GRED, REM, and NLRED. By steering the queue
around a target length, REM suffers the low throughput
when traffic load is extremely light (less than 5 flows)
and extremely high. When N＞60, the throughput of
REM is unstable and drops as N increases.

Since Misra, et al. [14] indicated that packet size affects
the performance of AQM schemes, in this experiment
(again based on Figure 12), we test and compare the
packet size sensitivity of GRED, REM, and NLRED. REM
is configured to work in byte mode because packet mode
shows extremely poor performance. (We believe the error

0 20 40 60 80 100 120
5

10

15

20

25

30

35

40

Flows

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

GRED
REM
NLRED

Figure 20. Average queue size vs. flow number: GRED,
REM and NLRED.

82 H. WANG ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

0 500 1000 1500 2000 2500
84

86

88

90

92

94

96

98

100

Packet size (bytes)

T
hr

ou
gh

pu
t/

B
an

dw
id

th
 (

%
)

GRED
REM (byte mode)
NLRED

Figure 21. Throughput vs. packet size.

in arrival rate estimation is the reason for such poor
performance with packet mode REM.) However, the
queue length of byte mode REM cannot be directly
compared with the results of other schemes, because it
uses bytes as unit whereas others use packets. To solve
the problem, we normalize the queue length of byte mode
REM to use packets as unit. The conversion assumes all
the packets are with the same size as the referenced packet
size. We simulate 50 long-lived FTPs. For each AQM
algorithm, we conduct a set of simulations with the packet
size ranging from 100 bytes to 2500 bytes. Figure 21
shows the throughput against packet size. We can see that
NLRED is least sensitive to the packet size and therefore is
better than both GRED and REM.

6. Conclusions

We have proposed a mechanism improving the fairness
of Internet routers, which called SFRED. The mechanism
was developed with a MRUL in which states of up to N
most recently used flows are stored. SFRED then
identifies and punishes the fast and unresponsive fast
flows. To improve short TCP transaction performance,
SFRED also protects slow flows by allocating a small
amount of buffer. Simulations show that the SFRED
proposed has significantly improved the fairness of RED,
with only limited resource usage. Different from the
previous proposals the complexity of SFRED is
proportional to the size of the list but not coupled with
the queue buffer size or the number of active flows, so it
is scalable and suitable for various routers. Moreover, in
this paper, we also proposed a new active queue
management scheme called Nonlinear RED (NLRED).
NLRED is the same as the original RED except that the
linear packet dropping probability function is replaced by
a nonlinear quadratic function. While inheriting the
simplicity of RED, NLRED was shown to outperform
RED as well as REM and some of its variants. In particular,
NLRED is less sensitive to parameter settings, has a more

predictable average queue size, and can achieve a higher
throughput. We credit the above performance gain to the
idea of encouraging the router to operate over a range of
queue sizes according to traffic load instead of at a fixed
one. This is realized in NLRED by using a gentle packet
dropping probability at the onset of the congestion, and a
much more aggressive dropping probability when the
congestion becomes more pronounced.

7. Acknowledgement

This work is jointly supported by National Science
Foundation of China under the project number 60773203,
60602066 and 60872010, and grant from Guangdong
Natural Science Foundation under project number
5010494. The work has also got support from
Foundation of Shenzhen City under project number
QK200601, open research fund of National Mobile
Communications Research Laboratory, Southeast
University under project number W200815, and National
High Technology Research and Development Program
of China under project number 2007AA01Z218.

8. References

[1] F. Ren, C. Lin, and X. Huang, “TCC: A two-category

classifier for AQM routers supporting TCP flows,” IEEE
Communications Letters, Vol. 9, pp. 471-473, 2005.

[2] R. T. Morris, “Scalable TCP congestion control,” Ph. D
thesis, Harvard University, 1999.

[3] C. V. Hollot, V. Misra, D. Towsley, et al., “Analysis and
design of controllers for AQM routers supporting TCP
flows,” IEEE Transactions on Automatic Control, Vol. 47,
pp. 945-959, 2002.

[4] M. Nabeshima and K. Yata, “Performance improvement of
active queue management with per-flow scheduling,” IEEE
Proceedings-Communications, Vol. 152, pp. 797-803, 2005.

[5] Smitha and A. L. N. Reddy, “LRU-RED: An active queue
management scheme to contain high bandwidth flows at
congested routers,” in Proceedings of IEEE Global
Telecommunications Conference 2001 (GLOBECOM ’01),
San Antonio, TX, USA, Vol. 1, pp. 2311-2315, November
25-29, 2001.

[6] C. Brandauer, G. Iannaccone, C. Diot, et al., “Comparison
of tail drop and active queue management performance for
bulk-data and web-like Internet traffic,” in Proceedings of
Sixth IEEE Symposium on Computers and Communications
2001, (ISCC ’01), Hammamet, Tunisia, pp. 122-129, July
3-5, 2001.

[7] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED:
Stabilized RED,” in Proceedings of Eighteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM ’99), New York, USA, Vol. 3, pp.
1346-1355, March 21-25, 1999.

[8] F. M. Anjum and L. Tassiulas, “Fair bandwidth sharing
among adaptive and non-adaptive flows in the Internet,” in
Proceedings of Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM

 ON THE SCALABLE FAIRNESS AND EFFICIENT ACTIVE QUEUE MANAGEMENT OF RED 83

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

’99), New York, NY, USA, Vol. 3, pp. 1412-1420, March
21-25, 1999.

[9] D. Lin and R. Morris, “Dynamics of random early
detection,” in Proceedings of ACM SIGCOMM ’97,
Cannes, France, pp. 127-137, September 14-18, 1997.

[10] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling
high-bandwidth flows at the congested router,” in Pro-
ceedings of Ninth International Conference on Network
Protocols, pp. 192-201, 2001.

[11] M. Christiansen, K. Jeffay, D. Ott, et al., “Tuning RED for
web traffic,” in Proceedings of ACM SIGCOMM 2000,
Stockholm, Sweden, pp. 139-150, August 28-September 1,
2000.

[12] B. Suter, T. V. Lakshman, D. Stiliadis, et al., “Design
considerations for supporting TCP with per-flow queueing,”
in Proceedings of Seventeenth Annual Joint Conference of
the IEEE Computer and Communications Societies
(INFOCOM ’98), San Francisco, CA, USA, pp. 299-306,
March 31-April 2, 1998.

[13] L. Zhang, S. Shenker, and D. D. Clark, “Observations on
the dynamics of a congestion control algorithm: the effects
of two-way traffic,” in Proceedings of ACM SIGCOMM ’91,
the Conference on Communications Architecture & Protocols,
Vol. 1, pp. 133-147, Zurich, Switzerland, September 03-
06, 1991.

[14] S. Floyd, J. Mahdavi, M. Mathis, et al., “An extension to

the selective acknowledgement (SACK) option for TCP,”
in RFC 2883, 2000.

[15] K. Xu and N. Ansari, “Stability and fairness of rate
estimation based AIAD congestion control in TCP,” IEEE
Communications Letters, Vol. 9, pp. 378-380, 2005.

[16] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED:
Stabilized RED,” in Proceedings of Eighteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies, (INFOCOM’99), New York, NY, USA, Vol. 3,
pp. 1346-1355, March 21-25, 1999.

[17] B. Braden, D. Clark, J. Crowcroft, et al., “Recommendations
on queue management and congestion avoidance in the
Internet,” in RFC2309, April 1998.

[18] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED,” ACM SIGCOMM
Computer Communication Review, Vol. 30, pp. 151-160,
2000.

[19] B. Zheng and M. Atiquzzaman, “DSRED: An active queue
management scheme for next generation networks,” in
Proceedings of 25th Annual IEEE Conference on Local
Computer Networks (LCN’00), Tampa, FL, USA, Vol. 1,
pp. 242-251, November 8-10, 2000.

[20] S. Athuraliya, S. H. Low, V. H. Li, et al., “REM: Active
queue management,” IEEE Network, Vol. 15, pp. 48-53,
2001.

