
Journal of Software Engineering and Applications, 2012, 5, 119-128
http://dx.doi.org/10.4236/jsea.2012.53019 Published Online March 2012 (http://www.SciRP.org/journal/jsea)

119

Analysis of Fusion Process Model—Case Study

Rupinder Kaur, Jyotsna Sengupta

Department of Computer Science, Punjabi University, Patiala, India.
Email: rupadeo@gmail.com

Received December 11th, 2011; revised January 14th, 2012; accepted February 20th, 2012

ABSTRACT

Fusion Process Model is a software process model to enhance the software development process. Fusion process model
has five fundamental phases and one fusion process controller to control and co-ordinate the overall development proc-
ess. Fusion process model uses 3C-Model to generalize the process of solving the problem in each phase. 3C-Model,
which helps in implementing component based development approach and provides firmer control over the software
development process. Because of the component driven approach, the risk associated with cost and time is limited to
component only and ensure the overall quality of software system, reduce the development cost and time by considering
the changing requirements of customer, risk assessment, identification, evaluation and composition of relative concerns
at each phase of development process. We have implemented fusion process model to the design of a real world in-
formation system and evaluated this implementation with the initial project estimation.

Keywords: Fusion Process Model; 3C-Model; Process Model; Component Driven Approach

1. Introduction

A wide array of process models for organizing the pro-
cess of software development has emerged over the last
few decades. These process models represent patterns for
successful development under different conditions. In cu-
rrent approaches, process control is performed on overall
software process by decomposing the overall engineering
process into phases. While decomposing overall engi-
neering process into phases for effective and reliable de-
velopment of software product, it is not sufficient. To
handle cost, time, quality of software product and chang-
ing requirement of client, we need to control the internal
process of each phase.

Anton Jansen and Jan Bosch [1] explain new per-
spective on software architecture that views software ar-
chitecture as a composition of a set of explicit design de-
cisions. This makes design decisions an explicit part of
software architecture, which has become accepted con-
cept in research and industry. The reuse model follows
the component based approach, but this approach is not
guided by domain analysis. It does not provide complete
life cycle for software development because it considers
only those systems which can be built using existing
components only.

Jonathan Lee [2] describes the software engineering as
a problem solving process. Where the software process
model approaches divide the development process into
various phases/activities or according to functionality.
But these models still don’t follow the technique of te-

chnically analyzing the problem, where the technical pro-
blems are identified and divided into sub-problems that
are first independently solved and later integrated into
the overall solution. The client problems may be ill-
defined and include many vague requirements, but the
main focus is on the precise formulation of objectives,
quality criteria and the constraints for given requirement
or problem. In technical analysis part, we can easily put
this specification on each small unit of problem.

Providing a solution for a given problem is not simple,
it involves the accumulation and use of huge amount of
knowledge. The solution space analysis approach is still
not integrated into software process models. It aims to
identify the right solution domains for the given pro-
blems and extract the relevant knowledge from these
domains to come up with a feasible solution. To provide
quality software, it is necessary to identify the important
knowledge sources for a given problem. Not all the so-
lutions identified for a given problem are desirable. In
the alternative management process, different alternative
solutions are searched and evaluated against explicit
quality criteria [2,3]. The high risk in software develop-
ment led to the inclusion of managerial, financial and
psychological factors in models [4,5], and [6,7]. Shaw
and Garlan [8] identify seven levels of design specifi-
cation capability which supports the concept of compo-
nents, composition, validation, alternatives and finally
automation. In the component based development, cost,
time and reliability risk for an organization developing

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 120

software system shrink to component level that can be
managed effectively at any stage. The goal of the fusion
process model is to address all the concerns and consider
each phase of software development as the software de-
velopment process and provide an effective model for
software development phases, which will reduce risk
associated with cost and time.

2. Fusion Process Model

Fusion is component driven software process model,
where each phase implements a problem solving model.
The problem solving model includes the explicit pro-
cesses for technically analyzing the problem, solution
space analysis, alternative analysis, dynamic design and
development and scope for dynamic testing [9]. 3C-Mo-
del is problem solving model that enable generalizing the
software development process in which a problem speci-
fication is transformed to a solution by decomposing the
problem into sub-problems that are independently solved
and integrated into an overall solution [10].

2.1. 3C-Model

3C Model consists of multiple cycles; each cycle in 3C-
Model corresponds to a trans-formation from one state to
another, consisting of a problem specification state and a
design state. The problem specification state defines the
set of problems that still needs to be solved. The design
state represents the tentative design solution that has
been lastly defined. Initially, the design state is empty
and the problem specification state includes the initial re-
quirements. After each state transformation, a subproblem
is solved. In addition a new sub-problem may be added to
the problem specification state. Each transformation proc-
ess involves an evaluation step whereby it is evaluated
whether the design solutions so far (design state) are
consistent with the initial requirements and if there are
any additional requirements identified during the evalua-
tion. The 3C-Model in development process divide the
problem solving approach of each phase in three funda-
mental parts: Capture, Control, Context and Domain en-
gineering, as shown in Figure 1.

2.1.1. Capture
The real problem is captured or a real problem is defined,
which arise due to client requirements in this part. It
comprises of five concepts: Need, Problem Description,
Solution Domain Knowledge, Alternative, Solution De-
scription and Artifact.
 Need represents an unsatisfied situation existing in

the context (environment). The function Input repre-
sents the cause of a need.

 Problem Description represents the description of
the problem. The function Conceive is the process of

understanding what the need is and expressing it in
terms of the concept Problem Description.

 Solution Domain Knowledge represents the back-
ground information that is used to solve the problem.
The function Search represents the process of finding
the relevant background information that corresponds
to the problem.

 Alternative represents the possible alternative solu-
tions. The function Generate serves for the generation
of different alternatives from the solution domain
knowledge. After alternatives have been generated, the
problem description can be refined using the fun-
ction Refine.

 Solution Description represents a feasible solution for
the given problem. It uses the relevant background in-
formation to provide a solution description that con-
forms to the problem description. The function Detail
is used to detail the description of a selected alterna-
tive.

 Artifact represents the solution for the given need.
The function Implement maps the solution description
to an artifact. The function Output represents the deli-
very and impact of the concept artifact to the context.
The function Initiate represents the cause of a new
need because of the produced artifact.

2.1.2. Control
The development process in software engineering starts
with the need, while the goal is to arrive at an artifact by
applying a sequence of actions. Since this may be a com-
plex process, the concepts and functions that are applied
are usually controlled. This is represented by the Control
part in the model. The controller observes variables from
the system, evaluates this against the criteria and con-
straints, produces the difference, and performs some con-
trol actions to meet the criteria.
 (Mathematical) Model represents a description of

the concept Alternative. The function Analyze repre-
sents the process of analyzing the alternative.

 (Quality) Criteria represent the relevant criteria that
need to be met for the final artifact. The function Eva-
luate assesses the alternative with respect to (Quality)
Criteria and Constraints.

 Constraints represent the possible constraints either
from the context or as described in the problem state-
ment.

 Heuristics/Optimization Techniques represents the
information for finding the necessary actions to meet
the criteria and constraints. The function Select/Opti-
mize selects the right alternative or optimizes a given
alternative to meet the criteria and the constraints.

2.1.3. Context
Both the control and the problem-solving activities take

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study

Copyright © 2012 SciRes. JSEA

121

Figure 1. 3C-Model.

place in a particular context. Context can be expressed as
the environment in which software development takes
place including a broad set of external constraints that
influence the final solution and the approach to the solu-
tion. Constraints are the rules, requirements, relations,
conventions, and principles that define the context of
software engineering, that is, anything, which limits the
final solution. Since constraints rule out alternative de-
sign solutions directing engineers into taking action on
what is doable and feasible.

ponents, a domain-specific programming language, or
application generators that can be used to build new sys-
tems in the domain. A key idea in systematic software
reuse is the domain, a software area that contains systems
sharing commonalities.

2.2. Five Fundamental Phases

Fusion process model consist of five fundamental phases
and one fusion process controller to control and co-or-
dinate the overall development process, as shown in Fig-
ure 2.

The context also defines the need, which is illustrated
by a directed arrow from the context to the need concept.
Apparently, the context may be very wide and include
different aspects like the engineer’s experience and pro-
fession, culture, history, and environment.

2.2.1. Project Preparation
The project preparation phase provides the initial plan-
ning and preparation for software development project.
Extracting the requirements of a desired software product
is the first task in creating it. This process is called re-
quirements elicitation. After requirements elicitation, cli-
ent requirements are mapped to technical problems in the
technical problem analysis process. The problem analysis
process consists of the following steps: Generalize the

2.1.4. Domain Engineering
The phased model use domain analysis to identify do-
mains, bounding them and discovering commonalities
and variability’s among the systems. This information is
captured in models that are used in the domain imple-
mentation phase to create artifacts such as reusable com-

Analysis of Fusion Process Model—Case Study 122

Figure 2. Fusion process model.

Requirements, Identify the Sub-Problems, Specify the
Sub-Problems and Prioritize the Sub-Problems.

2.2.2. Software Blueprint
Architecture is established during the design phase. This
phase starts with the inputs delivered by the initial phase
and maps the requirements into architecture. The archi-
tecture defines the components, their interfaces and be-
haviors. The Solution Domain Analysis process applied
in software design phase aims to provide a solution do-
main model that will be utilized to extract the architec-
ture design solution. It consists of the following activi-
ties:

1) Identify and prioritize the solution domains for each
sub-problem;

2) Identify and prioritize knowledge sources for each
solution domain;

3) Extract solution domain concepts from solution do-
main knowledge;

4) Structure the solution domain concepts;
5) Refine the solution domain concepts;
6) Alternative design space analysis.

 Define the alternatives for each concept.
 Describe the constraints.

2.2.3. Realization
The purpose of realization phase is to develop a software
system for requirements based on the software design.
The team builds the components either from scratch or
by composition. Given the architecture document from
the design phase and the requirement document from the
analysis phase, the team builds exactly what has been
requested, though there is still room for innovation and
flexibility.

2.2.4. Testing
Quality of software product is very important while de-
veloping it. In many software engineering methodologies,
the testing phase is a separate phase which is performed
by a different team after the implementation is complete.
There is merit in this approach, it is hard to see one’s
own mistakes, and a fresh eye can discover obvious errors
much faster than the person who has read and re-read the

material many times. Unfortunately, delegating testing to
another team leads to a slack attitude regarding the qua-
lity of the implementation team.

Alternatively, another approach is to delegate testing
in the whole organization. If the teams are to be known
as craftsmen, then the teams should be responsible for
establishing high quality across all phases.

2.2.5. Go Live and Support
The purpose of the Go Live and Support phase is to cut
over to live productive operation and to continually sup-
port and improve live operations. There are two distinct
periods of this phase: Project End and Continuous Im-
provement.

2.2.6. Fusion Process Controller
The controller part is not a phase in the process model,
but it is an integral part of fusion process model. The
controller part helps to achieve the component driven
approach by listing the details of components which are
added due to requirement changes or because of new re-
quirements. By implementing Fusion Process Controller
the current software development process will not be
affected by changes required due to new requirements or
modifications. The affected components can be taken
care separately till these components matches with the
current development process.

The remainder of the paper is structured as follows:
Section 3 present a case study to aim at investigating the
practical aspect of fusion process model. Section 4 pre-
sents the evaluation of the fusion process model with the
initial project estimation. Section 5 discusses the results
of fusion process model and lesson learned from these
results. Finally, we conclude in Section 6.

3. Case Study of Fusion Process Model

The case study aimed at investigating the practical aspect
of fusion process model and implementation in commer-
cial Software Company. Clerisy Solutions is an Indian
software company in Mohali. It specializes in software
outsourcing and providing application system solution.
Software project involved project manager, team leader
and four developers and scheduled for over six months.

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 123

The project objective was to build a complex rights ma-
nagement system that can be used to provide services to
all industry types. This was highly generic system that
should allow an administrator to configure a system that
is tailored for any rights marketplace. The rights mana-
gement market was highly complex, with convoluted va-
lue chains with a wide range of variables affecting each
potential assignment of rights or transaction e.g. a movie
might have rights for cinema, DVD and online release in
one hundred territories in seventeen languages, each at a
different date and price, and each with a different liabi-
lity in terms of the sums payable to distributors, produ-
cers, musicians, actors and producers. Often rights are lo-
cked out and a key feature of the system will be in find-
ing what rights are available for what media in what ter-
ritories so as to maximize the revenue potential for the
right. The Figure 3 describes the relationship between
various entities.

3.1. First Phase (Project Preparation) of Fusion
Process Model

It is essential to first understand the requirements of the
client. The two senior company employees were in-
volved with client. Meetings were conducted with the
client by the project manager and team leader to identify
the requirements. Later these requirements were dis-
cussed with developers of the team. Based on the client
inputs, the team prepared a “understanding document”.
As a part of fusion process model developers were asked
to raise questions based on the control part of the deve-
lopment process and a few important points come into
light i.e. single/multiple client handling, online access,
internationalization, separate logging mechanism. These
queries were further discussed with client for refinement
of the requirements and then again discussed with deve-
lopers of the team. While pursuing phase model, team
searched the solution domain knowledge to find out if
any similar kind of project handled by the company pre-
viously based on the client inputs. Subsequently, found
that the concept of this project is similar to the ERP pro-
ject handled by the company, which has functionality
already implemented for rights management.

The problem was generalized by dividing it into sub-
problems for further discussion like various important
entities used in project development like user the owners
and counterparts in the system, object is something that
carries a right and rules can be applied to objects to make
a right. Specified sub-problems were conversed with
client to get more clarity of the problem. After that all the
sub-problems/requirements were mapped with technical
problems/requirements like: single/multiple client han-
dling, online access, internationalization, separate log-
ging mechanism, reporting structure, download formats
(doc, xls, csv, pdf), create/delete/modify design for user,
objects and rules, design for mapping users/object/rules,
design for creation of various different type of reports,
design for administrator rights, UI design as required by
customer, database design, logs framework. This docu-
ment was shared with the client and updated many times,
to get an understanding of varied industry need, as de-
velopment team need to make the software system highly
generic to support all industry types.

Then team defined priority for various components
like database design, complete UI design as required by
customer, logs framework, internationalization support,
user functionality, reporting functionality, application
sign-in/sign-out, administration functionality design, ob-
ject functionality, rules functionality, user/object/rules
mapping, reporting functionality for other entities like
rules/objects. Further decomposition was done on the
above mentioned components and assigned to team
members, depending upon the level of coupling team can
parallel start working on different components. The pro-
blem analysis process mainly consists of the following
steps:

1) Generalize the Requirements: whereby the require-
ments are abstracted and generalized;

2) Identify the Sub-Problems: whereby technical pro-
blems are identified from the generalized requirements;

3) Specify the Sub-Problems: whereby the overall te-
chnical problem is decomposed into sub-problems;

4) Prioritize the Sub-Problems: whereby the identified
technical problems are prioritized before they are pro-
cessed.

Figure 3. Software entity relationship diagram.

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 124

3.2. Second Phase (Software Blueprint)

Depending upon the inputs from the phase one, various
design decision was taken after considering various alter-
natives based on the evaluation of control part in phase
model. Team performed software design documentation,
including Architecture design, Database design doc and
Sequence diagram to understand initial flow.
Software design divided into various layers:

1) UI Layer;
2) Business Logic Layer;
3) Database access.
Further decomposing the three layers and prepared the

documents for each low-level design requirement. The
low-level requirements of each component were docu-
mented describing the technical implementation details
including time frame and constraints (if any). Architec-
ture document, which was the detail design document for
each different component of project, was prepared. Then
the priority for each component was defined and five re-
usable components were identified, as part of domain en-
gineering in phase model. Identified re-usable compo-
nents were:

1) Database access design;
2) Report download functionality (doc, pdf, xls, csv),

once designed can be used for all the entities in the pro-
ject;

3) Template design for various entities (User, Rules,
Objects and Mapping), with little modification it can be
used for all the entities;

4) Logs Framework;
5) Authorization mechanism (Sign-in/Sign-out).
Team found the three out of five components was al-

ready available with the company, which were:
6) Database access;
7) Log framework;
8) Authorization framework.
The design requirements were evaluated based on va-

rious mathematical models, quality techniques and opti-
mization techniques defined by the development team
based on company policies. Depending upon the techni-
cal complexities and other constraints, project manager
and team leader specified time frame for each low-level
component to keep track of cost/quality/time.

The software design process consists of the following
steps.

3.2.1. Identify and Prioritize the Solution Domains
For the overall problem and each sub-problem, the search
was executed for the solution domains that provided the
solution abstractions to solve the technical problem.

3.2.2. Identify and Prioritize Knowledge Sources
Each identified solution domain covered a wide range of
solution domain knowledge sources. These knowledge

sources were not all suitable and vary in quality. For dis-
tinguishing and validating the solution domain know-
ledge sources team basically consider the quality factors
of objectivity and relevancy. The objectivity quality fac-
tor referred to the solution domain knowledge sources
itself and defines the general acceptance of the know-
ledge source. The relevancy factor referred to the rele-
vancy of the solution domain knowledge for solving the
identified technical problem.

3.2.3. Extract Solution Domain Concepts from
Solution Domain Knowledge

Once the solution domains was identified and prioritized,
the knowledge acquisition from the solution domain
sources was initiated. Due to the large size of the solution
domain knowledge, the knowledge acquisition process
was a labor-intensive activity, so a systematic approach
for knowledge acquisition was practiced.

3.2.4. Structure the Solution Domain Concept
The identified solution domains concepts were structured
using parent-child relationship. Here all the attributes and
operations associated with the concept were defined.

3.2.5. Refinement of Solution Domain Concepts
After identifying the top-level conceptual architecture,
the focus was on each sub-problem and followed the
same process. The refinement was necessary as the ar-
chitectural concepts had a complex structure themselves
and this structure was of importance for the eventual
system. The ordering of the refinement process was de-
termined by the ordering of the problems with respect to
their previously determined priorities. Architectural con-
cepts that represented problems with higher priorities
were handled first and in the similar manner the refine-
ment of the architectural concepts was done.

3.2.6. Alternative Design Space Analysis
After refinement of the solution domain, alternative
space is defined as a set of possible design solutions. The
alternative design space analysis aims to depict this space
and consists of the two sub-processes: define the alterna-
tives for each concept and describe the constraints.

3.2.6.1. Define the Alternatives for Each Concept
In this approach the various architecture design alterna-
tives were derived from well-established concepts in the
solution domain that have been leveraged to the identi-
fied technical problems. The team identified various al-
ternatives like report download API available with com-
pany or development of new reusable download API or
third party paid tools, data access API or development of
new component for data access, log framework. For
translation (internationalization) team identified various

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 125

alternatives like free online tool, paid translation tools,
outsource to other translation professionals.

3.2.6.2. Describe the Constraints
The total set of alternatives per concept was too large
and/or not relevant for solving the identified problems.
Therefore, to define the boundaries of the architecture it
was necessary to identify the relevant alternatives and
omit the irrelevant ones. Based on various constraints
finally team selected report download API, data access
API, log framework. All these components were already
available with the company. After cost and time com-
parison the team decided that they can utilize the time of
one resource for translation and finally free online tool
was used for translation.

If any new requirement was raised by a client, inde-
pendent of any other component, then the new compo-
nent development process starts from the first phase. Fi-
nally after various reviews, time, cost and development
details shared and finalized with the client to start the
development process.

3.3. Third Phase (Software Realization)

Development started once client approved the design do-
cuments and development of components started based
on the priority of component. Initially teams started
working on two independent components UI design and
database creation. As the client was extensively involved
during the design phase, each small level detail was in-
corporated in UI design and database design after lot of
modification before approval. Now, the team had clear
vision for development. These components were imme-
diately approved by client after completion. Now the
base was ready to build a complete software system on it.
The team started work on User entity and authorization
part. The client was involved in the development also
and a few minor modifications suggested by the client,
which were immediately applied. After the development
team evaluated these components and found that if they
would have implement log framework and internation-
alization during development rather than considering it as
an extra activity, they could have saved a lot of time in
development and testing. All the customer suggestion
and evaluation results were noted down for predecessor
components. The team moved the component immedi-
ately to testing phase after completion of development.
The testing results of each component were used as
guidelines for the development and evaluation of other
components.

Now we will summarize the software realization phase
technically, the development team has a development
project divided into various components, the develop-
ment of components start based on the priority of com-
ponent. Each component follows a different line of deve-

lopment and shared with the client to get the client feed-
back (requirement change/new requirement), before each
cycle completes the development process. Each compo-
nent is monitored using various control techniques de-
fined by the development team to keep track of quality,
cost and time. Once the development of any component
complete, it immediately moves to testing phase.

3.4. Fourth Phase (Testing)

The complete software system design was based on com-
ponent driven development approach. Each component
directly moved to testing phase after the completion of
development phase. There were various similar kinds of
components in application; the test case used for one
component was used with little or no modification for
other components, which saved a lot of time required to
build test cases. The test cases for reusable components
were already available with the company, which were
used to test various scenarios of application. Finally the
integration testing was completed to deliver the complete
software solution. Figure 4 shows the high level testing
analysis.

The testing phase in the development process was to
test the system to ensure that the developed product is
error free. Quality of software product was very impor-
tant while developing it. Many companies have not learned
that quality is important and deliver more claimed func-
tionality but at a lower quality level. It is much easier to
explain to a customer why there is a missing feature than
to explain to a customer why the product lacks quality. A
customer satisfied with the quality of a product will re-
main loyal and waits for new functionality in the next
version. Quality is a distinguishing attribute of a system
indicating the degree of excellence.

The testing technique is from the perspective of the
system provider. Because it is nearly impossible to du-
plicate every possible customer’s environment and be-
cause systems are released with yet-to-be-discovered er-
rors, the customer plays an important, though reluctant,
role in testing.

3.5. Go Live and Support

The purpose of the Go Live and Support phase was to cut
over to live productive operation and to continuously
support and improve live operations based on project
agreements finalized with client. Finally the software de-
ployed on customer landscape within projected cost and
time. Due to component driven approach and customer
involvement in each component, the software solution
had all the required functionality.

3.5.1. Project End
During the time when the system was first live, all issues

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 126

Figure 4. High level testing analysis.

and problems were resolved, transition to the production
support team was finalized, knowledge transfer was com-
pleted and the project was signed off.

3.5.2. Continuous Improvement
Now that the project was over, the production support
team monitors the system and resolves live business pro-
cess issues. Proper change management procedures were
established, and ongoing end-user training was conducted.
Plans were made to continuously review and improve
business processes.

4. Comparison of Fusion Process Model with
Initial Project Estimation

Evaluation is performed with initial project estimation,
initial estimation done by project management and de-
velopment team using combination of various cost esti-
mation model available and with the help of historical
data, similar type of projects, customer requirements,
complexity of the project, tools, languages, methodology,
quality assurance procedures and standards etc.

The efficiency of any software development process
model is based on how effectively it controls the deve-
lopment cost, quality and time. The principal components
of project costs are hardware costs, travel and training
costs, effort costs (the costs of paying software engi-
neers). The dominant cost is the effort cost. This is the
most difficult to estimate and control, and has the most
significant effect on overall costs. Software costing
should be carried out objectively with the aim of accu-
rately predicting the cost to the contractor of developing
the software.

Software cost estimation is a continuing activity which
starts at the proposal stage and continues throughout the
lifetime of a project. Projects normally have a budget and
continual cost estimation is necessary to ensure that
spending is in line with the budget. There are number of
software cost estimation models are available, but no one
method is necessarily better or worse than the other, in
fact, their strengths and weaknesses are often compli-
mentary to each other. According to the experience, it is
recommended that a combination of models and analogy

or expert judgment estimation methods is useful to get
reliable, accurate cost estimation for software develop-
ment.

The factors affecting the estimation for various dif-
ferent types of models based on the following criteria:

1) The component based development approach which
helps to control overall development cost, quality and
time;

2) The development and use of reusable software com-
ponents;

3) How the software process model handles new and
changed requirements of customer;

4) Time take for initial bug/issue identification and
corrective measures;

5) Customer involvement at various stages of software
development, to make the development process more
stable;

6) Progress indicators provide information on how
well the project is performing with respect to planned
task completions and keeping schedule commitments;

7) Requirements Stability in software process model,
which provides an indication of the completeness, stabi-
lity, and understanding of the requirements.

When the team compare the final results with the es-
timation, they found 28% reduction in the actual cost of
project, with the further analysis of results the team no-
tice the difference in each phase of development process
after implementing fusion process model, they were able
to track, monitor and control the each component during
the development process which helped them to control
the overall cost, time and quality. Although team notice
increase of effort in analysis and design phase due to
implementation of 3C-model during these phase, but the
extra effort during these phases result in overall require-
ment stability, control on rework, component reuse, com-
ponent validation etc, which effect overall development
process. Implementation of 3C-model result in the effort
reduction of coding phase due less rework, requirement
stability, reusable components and proper track of each
development component. The Table 1 shows the Initial
Project Estimation.

5. Results

Based on the judgments of the project manager and team
leader on their individual experience, results where con-
cluded. A lot of time spent on planning and design, as
shown in Figure 5. But the time spent during first two
phases help the development team to fully understand the
requirements—problems/sub-problems till final level of
decomposition. This decomposition helps in the final
delivery of the product functionality and monitors the
development process of each component separately at
unit level to keep track of cost, quality and time sche-
dule.

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study 127

Table 1. Initial project estimation.

Development Phases Overall Development Estimate

Anslysis 10%

Design 20% (12 actual + 8 rework)

Coding 50% (35 + 15 requirement change)

Testing 20%

Figure 5. Effort estimation in each phase.

Most of the requirement changes and new requirements
were clear during the first two phases, which were im-
mediately incorporated in software design. As shown in
Figure 6 effort estimation chart of design phase, more
than 40% of design time spent on design change due new
requirements or change in customer requirements.

If a flaw is found in the plan, major changes will need
to be made during or after coding. This could result in a
waste of productive time. As described earlier, majority
of the rework happened in design phase only. Due to
which the development team got the clear development
vision. The rework done in coding phase estimate only
2% of entire development time or 6% - 7% of coding
phase time, as shown in Figure 7.

The development process followed component driven
approach, all the requirement changes or new require-
ment easily accommodated in development process. As
development team was able to monitor the development
at unit level, the problems identified at earlier stages and
modified within scheduled time and cost. The Figure 8
describes the project stability based on changing require-
ment in each phase on monthly basis. The design phase
starts in the second month and got 50% stability at end,
because no major design changes happened after that.
Major work in the coding phase starts in fourth month,
got 85% stability in the end and so on.

Finally the testing team was able to work parallel to
the development team on delivered component, bugs/
issue raised by testing team fixed during development
and again delivered for testing phase. This insures the
delivery of quality product within given time frame.

Lessons Learnt

The major lesson learned was:

Figure 6. Effort estimation-design phase.

Figure 7. Effort estimation-coding phase.

Figure 8. Requirement stability monthly-design/coding/test-
ing.

1) It was easy to track the time, cost and quality, due
to component base approach. The new requirements or
modifications were taken care separately till these com-
ponents match with the development process. The con-
troller part helped a lot by listing the details of compo-
nents which were added due to requirement changes or
because of new requirements;

2) Feedback and problem learnt from one component
state to another state of a cycle was very helpful in app-
lying to all other components. This saved lot of time due
to which crucial time was utilized for other vital things of
project;

3) User was involved, which helped in requirements
elicitation and delivering all functionality of the project.
One of the criteria, of the software project success de-
pends on user involved from the start of the project and
continuously throughout the development;

4) Guide line can be provided about Heuristics/Opti-

Copyright © 2012 SciRes. JSEA

Analysis of Fusion Process Model—Case Study

Copyright © 2012 SciRes. JSEA

128

mization Techniques in controller part, according to the
model it depends on the organization to choice these
techniques.

6. Conclusion

We have discussed a fusion process model for software
development process and 3C-Model for each phase of
development process model. Fusion process model in-
cludes an explicit phase for searching design alternatives
in the corresponding solution space and selecting these
alternatives based on explicit quality criteria. It has been
implementation in commercial software company. The
key results in this paper include the fusion process model,
3C Model, analysis of fusion process model and experi-
ence of project manager and team leader using fusion
process model. The experience indicates results which
demonstrate how this approach helps in controlling the
overall development process by implementing compo-
nent based approach. Fusion process model ensures the
overall quality of software system; reduce the develop-
ment cost and time by considering the changing require-
ments of customer, risk assessment, identification, evalua-
tion and composition of relative concerns at each phase of
development process.

REFERENCES
[1] A. Jansen and J. Bosch, “Software Architecture as a Set

of Architecture Design Decision,” 5th Working IEEE/IFIP
Conference on Software Architecture, Pittsburgh, 6-10
November 2005, pp. 109-120.

[2] J. Lee, “Software Engineering with Computational Intel-
ligence,” Springer Publication, 2003, pp. 183-191.

[3] X. Ferre and S. Vegas, “An Evaluation of Domain Analy-
sis Methods,” 4th CASE/IFIP8 International Workshop in
Evaluation of Modeling in System Analysis and Design,
1999, pp. 2-6.

[4] B. Boehm, “Software Engineering Economics,” IEEE Tran-
saction on Software Engineering, Vol. 10, No. 1, 1984, pp.
4-21. doi:10.1109/TSE.1984.5010193

[5] B. Boehm, “A Sprial Model of Software Development
and Enhancement,” IEEE Computer, Vol. 21, No. 5, 1988,
pp. 61-72. doi:10.1109/2.59

[6] A. Hamid and S. E. Madnick, “Lesson Learned from Mod-
eling the Dynamics of Software Development,” Commu-
nication ACM, Vol. 32, No. 12, 1989, pp. 14-26.

[7] J. Ropponen and K. Lyytinen, “Components of Software
Development Risk: How to Address Them?” A Project
Manager Survey, IEEE Transaction on Software Engi-
neering, Vol. 26, No. 2, 2000, pp. 98-112.

[8] N. Medvidovic and R. M. Taylor, “A Classification and
Comparison Framework from Software Architecture De-
scription Languages,” IEEE Transactions on Software
Engineering, Vol. 26, No. 1, 2000, pp. 70-93.
doi:10.1109/32.825767

[9] R. Kaur and J. Sengupta, “New Approach in Software
Development-Fusion Process Model,” Journal of Soft-
ware Engineering and Applications, Vol. 3, No. 10, 2010,
pp. 998-1004. doi:10.4236/jsea.2010.310117

[10] R. Kaur and J. Sengupta, “Development and Analysis of
3C-Model for Software Development Lifecycle,” IEEE
2nd International Conference on Computer Engineering
and Technology (ICCET 2010), Chengdu, 16-18 April
2010, pp. 688-691.

http://dx.doi.org/10.1109/TSE.1984.5010193
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.4236/jsea.2010.310117

