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ABSTRACT 

In this work we presented a study of the obtaining of the spectral line emissions of the hydrogen atom using equations 
that are originated from the foundations of the Paraquantum Logic (PQL). Based on a class of logics called Paraconsis-
tent Logics with annotation of two values (PAL2v), PQL performs a logical treatment on signals obtained by measure-
ments on physical quantities which are considered Observable Variables in the physical world. In the process of appli-
cation of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Vertices 
where special equations transform these degrees into Paraquantum logical states ψ which propagate. This allows creat-
ing Paraquantum logical models of physical systems of the real world. Using the Paraquantum equations, we investi-
gated the hydrogen atom spectrum and his main series known. We performed a numerical comparative study that ap-
plies the Paraquantum Logical Model to calculate the wavelengths values. The values of wavelengths obtained by the 
Paraquantum Equations are compared by the results found by the Rydberg formula and are verified that the series of the 
spectral line emissions of the hydrogen atom can be identified with the representative Lattices of the Paraquantum 
Logic. Through the application of the Paraquantum equations it was found a numeric value relates the layers of Paraq-
uantum model of the Hydrogen atom. This value represents a constant that relates the Lattices that compose the Paraq-
uantum universe, and it was denominated Paraquantum Structure Constant, whose symbol is αψ. The obtained results of 
the comparison demonstrate that the Paraquantum Logic comes with good possibilities of being the ideal logic to model 
our physical reality. 
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1. Introduction 

A Paraconsistent Logic is a non-classical logic which re- 
vokes the principle of non-Contradiction and admits the 
treatment of contradictory information in its theoretical 
structure [1,2].  

The real applications of the Paraconsistent Logic (PL) 
in programming of computation systems began with an 
interpretative form that it used annotations, and, for that 
reason, the PL passed to be denominated of Paraconsis-
tent Annotated Logic (PAL). The foundational principles 
of the Paraconsistent Annotated Logic can be seen with 
details in [1] and [3,4]. 

1.1. Paraconsistent Annotated Logic with 
Annotation of Two Values (PAL2v) 

The Paraconsistent Annotated Logics with annotation of 
two values (PAL2v) is a class of Paraconsistent Logics 
particularly represented through a Lattice of four vertices 
and from its foundations the Paraquantum Logics PQL  

was created. According to [4,5] we can obtain through 
the PAL2v a representation of how the annotations or 
evidences express the knowledge about a certain propo- 
sition P. This is done through a lattice on the real plane 
with pairs (, λ) which are the annotations. In this repre- 
sentation an operator is fixed: ~:||  || where  = {(, λ) 

|, λ  [0, 1]  }. The extreme logical Paraconsistent 
states which are the four vertices of the lattice with Fa-
vorable Degree of evidence μ and Unfavorable Degree of 
evidence λ as seen in Figure 1. With P(μ, λ) we read them 
in the following way: 

PT = P(1, 1) → The annotation (, ) = (1, 1) assigns 
intuitive reading that P is inconsistent.  

Pt = P(1, 0) → The annotation (, ) = (1, 0) assigns in-
tuitive reading that P is true.  

PF = P(0, 1) → The annotation (, ) = (0, 1) assigns in-
tuitive reading that P is false.  

P= P(0, 0) → The annotation (, ) = (0, 0) assigns in-
tuitive reading that P is Indeterminate.  

In the internal point of the lattice which is equidistant  
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Figure 1. Lattice of four vertexes and representation of the 
extreme logical Paraconsistent states. 
 
from all four vertices, we have the following interpreta-
tion: PI = P(0.5, 0.5) → The annotation (, ) = (0.5, 0.5) 
assigns intuitive reading that P is undefined.  

As it can be seen in the study of the PAL presented in 
[5] with the values of x and y that vary between 0 and 1 
and being considered in an Unitary Square on the Carte-
sian Plane (USCP), we can get linear transformations for 
a Lattice k of analogous values to the associated Lattice τ 
of the PAL2v. We obtain the following final transforma-
tion: 

 T X,Y   , 1x y x y 

CD

         (1) 

According to the language of the PAL2v [5] we have: 
x =  → is the Favorable evidence Degree; 
y = λ → is the Unfavorable evidence Degree. 
The first coordinate of the transformation (1) is called 

Certainty Degree DC. So, the Certainty Degree is ob-
tained by: 

  

ct  + 1

              (2) 

The second coordinate of the transformation (1) is 
called Contradiction Degree Dct. So, the Contradiction 
Degree is obtained by: 

D   

   C ctD , D

Dct is the Contradiction Degree obtained from (3). 

e in 
th

             (3) 

The second coordinate is a real number in the closed 
interval [–1,+1]. The y-axis is called “axis of the contra-
diction degrees”. From (2), (3) and (1) we can represent 
a Paraconsistent logical state τ into Lattice τ of the 
PAL2v [5], such that: 

,                  (5) 

where τ is the Paraconsistent logical state. 
DC is the Certainty Degree obtained from (2);  

The Paraconsistent logical state τ can be anywher
e lattice τ, and a real Certainty Degree DCR can be ob-

tained as follows. For CD 0  we compute:  

 2 2
CR C ctD 1 1 D D            (6) 

For CD 0  we compute: 

 2 2
CR C ctD 1 D D 1           (7) 

where  CD ,f    and  ctD ,f    
C = 0 we co the undefined aconsistent 

lo

1.2. The Paraquantum Logic PQL 

e [6,7]) there was 

1.3. The Paraquantum Function ψ(PQ) and the 

For ysical world of 

C( , ) ct ( , )

m logical state ψ

     

For D nsider  Par
gical state with: DCR = 0. 

In recent applications of the PAL2v (se
the need of including restrictions in its algorithms. The 
restrictions were necessary because under certain condi- 
tions the results obtained from the model changed through 
leaps or unexpected variations. Later, it was seen in re- 
search based on PAL2v models that the application of its 
foundations offered results strongly connected to the 
ones found in modeling of phenomena studied in quan- 
tum mechanics [7,8]. Following this idea, the special fea- 
tures of the PAL2v are applied in the form of variations 
of values from the concepts of the Paraquantum Logics 
PQL (see [9,10]). 

Paraquantum Logical State ψ 

each measurement performed in the ph
μ and λ, we obtain a unique duple  D , D     
which represents a unique Paraquantu  
which is a point of the lattice of the PQL. Therefore, a 
Paraquantum function (P) is defined as the Paraquantum 
logical state  (see [11,12]): 

 C ct, ,  D
PQ              (8) 

where , λ  [0,1]  . 
 contradictory degrees, the two 

ex

w

T

D ,= 

On the vertical axis of
treme real Paraquantum logical states are (see [10]): 
1) The contradictory extreme Paraquantum logical state 

hich represents Inconsistency T: 

ψ  D , D=  C(1,1) ct (1,1)  = 0,1  

2) The contradictory extreme Paraquantum logical state 
which represents Undetermination : 

  D , D=  = C(0,0) ct (0,0) 0, 1   

On the horizontal axis of certainty degrees, the two ex- 
tre

al state which 
re

me real Paraquantum logical states are: 
1) The real extreme Paraquantum logic
presents Veracity t:  
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 C(1,D= t   ct (1,0) D  = 1,0  

2) The real extreme Paraquantum logical state which 
re

  0,1)  = 1,0 . 

1.4. The Vector of State P(ψ) 

rigin in one of the two 

If the Certainty Degree is negative (D  0), then the 
V

0) ,

presents Falsity F:  

 C(D= F 0,1) ct (, D

A Vector of State P(ψ) will have o
vertexes that compose the horizontal axis of the certainty 
degrees and its extremity will be in the point formed for 
the pair indicated by the Paraquantum function [11,12]: 

 C( , ) ct ( , )( ) D , D= PQ      

C <
ector of State P(ψ) will be on the lattice vertex which is 

the extreme Paraquantum logical state False: ψF = (–1, 0). 
If the Certainty Degree is positive (DC > 0), then the 

Vector of State P(ψ) will be on the lattice vertex which is 
the extreme Paraquantum logical state True: ψt = (1, 0). 
If the certainty degree is nil (DC = 0), then there is an 
undefined Paraquantum logical state ψI = (0.5, 0.5).  

The Vector of State P(ψ) will always be the vector ad-
dition of its two component vectors: 

XC Vector with same direction as the axis of the cer-
tainty degrees (horizontal) whose module is the comple-
ment of the intensity of the certainty degree:  

C CX 1 D   
with same direction as the axis Yct Vector of the con-

tra

n cur  

of State P(ψ)

diction degrees (vertical) whose module is the contra-
diction degree: ct ctY D  

Given a current Paraqua tum logical state ψ  defined
by the duple  C( , ) ct ( , )D , D     then we compute the 
module of a Vec  as follows: 

 

tor 

 2 21 D DMP         C ct        (9) 

where  
ertainty Degree computed by (2); 

3).  
le of a 

V

DC = C
Dct = Contradiction Degree computed by (
Using (9) which is for computing the modu

ector of State P(ψ), we have: 
1) For DC > 0 the real Certainty Degree is computed 

by: 

 2 2
C C ct1 D D          (10) 

where:  
real Certainty Degree; 

d by (2); 
3).  

mputed 
by

D 1R  

DCψR = 
DC = Certainty Degree compute
Dct = Contradiction Degree computed by (
2) For DC < 0, the real Certainty Degree is co
: 

 2 2
C C ctD D 1          (11) 

where:  
DCψR = real Certainty Degree; 

ertainty Degree computed by (2); 
puted by (3).  

ree is nil. 
 which 

is the 
x-

D 1R  

DC = C
Dct = Contradiction Degree com
3) For DC = 0, then the real Certainty Deg
The inclination angle  of the Vector of State

 the angle formed by the Vector of State P() and 
axis of the certainty degrees is computed by:  

 
ctD

arctg
C1 D

 
  

  
 (12) 

1.5. Uncertainty Paraquantum Region 

tum logical 
pens due to 

          

The propagation of the superposed Paraquan
states sup through the lattice of the PQL hap
the continuous measurements performed on the observ- 
able variables in the physical world [10,11]. When the 
module of the Vector of State MP(ψ) = 1, this vector will 
represent the maximal fundamental superposed Para- 
quantum logical states ψsupfmax which has real certainty 
degrees zero. The maximum Contradiction Degree for 
this condition is when the Vector of State P(ψ) forms an 
angle of 45˚ with the horizontal axis of certainty degrees. 
Therefore, given that the inclination angle of the Vector 
of State is  = 45˚ then the maximum Contradiction 
Degree for this condition is computed by: 

t max

1
D  1 .cos 45   0.70

2
c

     7106781 

We observe that this same condition is found when the 
Vector of State has inclination angle 45   , or still, 
w

e. In tha
ith origin in the extreme Vertex representative of the 

extreme False Paraquantum logical stat t extreme 
contradictory situation the module of the Vector of State 
MP(ψ) will have his maximum value of:  = 2MP  .  

The unbalanced contradictory Paraquantum logical state 
ψctru is the one located on the lattice of s QL tates of the P
where there is a condition of opposite signs between the 
Certainty Degree (DC) and the real Certainty Degree 
(DCψR). The Paraquantum logical states into limits of the 
Region of Uncertainty are identified with Factors of ma- 
ximum limitation of transition [11]. With Paraquantum Lo- 
gic state  ( ) C( , ) ct ( , )= D , DPQ      these factors are:  

1. The factor of Paraquantum limitation False/inconsis- 
tent—hQFT. 

( )
11 ; 1; 1
22

1 1
,

2 2
PQ

  
     

      
 

  hQFT 

2. The factor of Paraquantum limitation True/incon- 
sistent—hQtT. 

= 1
 
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( )
1

1; 
2

1
1; 

2

1 1
1 , 

2 2   
     

      
 

  hQtT 

3. The factor of Paraquantum limitation False/undeter- 
mined—h  . 

= PQ
 



Q F

( )
0; 1

1 1
1 1

0; 1
2 2

, 
2 2

PQ
             

      

           
 

 hQF 

4. The factor of Paraquantum limitation True/undeter- 
mined—hQt

= 1
 

 

. 

( )
1 ;0

1 1
ψ = 1 ,PQ

  
  
  

1 1
 1 ; 0

2 2
2 2   

   
  

           
 

  hQt 

All the Superposed Paraquantum logical states sup to 
these and that they will have variation of the inclination 
an

um Factor of Quantization hψ 

 
 

gle until null degree delimit the Region of Uncertainty 
of the Lattice of PQL. 

1.6. The Paraquant

When the superposed Paraquantum logical state sup 
propagates on the lattice of the PQL a value of quantiza-
tion for each equilibrium point is established. This point 
is the value of the contradiction degree of the Paraquan-
tum logical state of quantization h [11] such that:  

2 1h                  (13)  

where h is the Paraquantum Fact
The factor h quantifies the levels

ical 
st

f Quantization 
and Paraquantum Leap  

te 
, w uperposed Paraquan- 

t

 

or of quantization. 
 of energy through 

the equilibrium points where the Paraquantum log
ate of quantization h, defined by the limits of propa-

gation throughout the uncertainty of the PQL, is located. 
Figure 2 shows the interconnections between the factors 
and its characteristics, in which they delimit the Region 
of Uncertainty in the Lattice of PQL. 

1.7. The Paraquantum Factor o

In a process of propagation of Paraquantum logical sta
e have in the instant that the s

tum logical state sup reaches the representative points of 
he limiting factors of the uncertainty region of the PQL, 

the Certainty Degree (DC) remains zero but the real Cer-
tainty Degree (DCR) will be increased or decreased from 
zero and this difference corresponds to the effect called 
of the Paraquantum Leap [11]. Concerning the action of 
the Paraquantum Factor of quantization hψ on the PQL 
Fundamental Lattice, we must also consider the effect of 
the Paraquantum Leap that produces quantities that will 
be either added or subtracted. So, the Paraquantum Fac- 

tor of quantization in its complete or total form which 
acts on the quantities is: 

leapth h h                (14) 

 21 1th h h     

Figure 3 shows the effect of the Par
the quantization of values when the Superposed Paraqu- 
an

           (15) 

aquantum Leap in 

tum Logical states sup reach the point where the Para- 
quantum Logical state of Quantization ψhψ on the PQL 
Lattice. 

Being:  21 1h h ht       the total Paraquantum  

Fa quantization at the tim
per raquantum Logical state 

ctor of e of arrival of the Su-
posed Pa ψ  at the point sup

where the Paraquantum Logical state of Quantization ψhψ 
is located. 

 21 1th h h       is the total Paraquantum Fac- 

tor of quantization at th
Paraquantum Logical state 

e departure of the Superposed 
ψ  at the point where the Pa- sup

raquantum Logical state of Quantization ψhψ is located. 
Around the Paraquantum logical state of pure Indefini- 
tion IP, the variation of values inside the limits can be 
expressed by [11,12]: 

 2 1
d


 

1

2 2
              (16) 

These logical states establish con
where the logical Paraquantum state of quantization 
is

quantum logical state of quanti- 
za

nection in the point 
h 

 situated.  
At the instant that the superposed Paraquantum logical 

states sup visit the Para
tion h, the real Certainty Degree will have variations 

of the form: 

2 
C CD D 1 1  Rt R h      

 
     (17) 

When the Paraquantum logical states su

Paraquantum state of quantization   established by the 
Pa

tice of the PQL 

e points out 
itely con- 

sical quantity, which 
ca

p visit the 
h

raquantum Factor of quantization h, the Paraquantum 
Leap happens (see [11,12]).  

1.8. The Fundamental Lat

The contraction of the Fundamental Lattic
that the Paraquantum Logical state ψ is an infin
tracted Fundamental Lattice and has, through the Paraqu- 
antum Factor of quantization hψ, all features of the PQL 
Fundamental Lattice (see [11,12]). 

The quantitative analysis on the PQL Lattice defines a 
quantitative value QValor of any phy

n be represented on the horizontal axis of the certainty  
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Figure 2. The Paraquantum factor of quantization h related to the evidence degrees obtained in the measurements of the 
observable variables in the physical world. 
 

 



  2 21 ctMP D  

2 21 1C RD h   

2 21 1ieaph h   

1

2 2

h
1

2 2

h

1

2
1

2
1

1
2


1

1
2



Paraquantum world 
Paraquantum world 

 

Figure 3. The Paraquantum factor of quantization on the Paraquantum logical state of quantization h due to Paraquantum 
leap. 
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Degrees and on the vertical axis of the contradiction de-
rees of g the PQL Lattice. Since the maximum value is 

value of t
valent to a Paraquantum quantiza
Pa

normalized on the PQL Fundamental Lattice, considering 
the Paraquantum factor of quantization only, we can 
write:  

 1 1h h                   (18) 

Doing so, the unitary he quantization is equi- 
tion represented in the 

raquantum Logical state ψhψ added to the value of its 
complement. We have:  

 Val max Val max Val max1F F FQ h Q h Q         (19) 

where Valmax FQ  is the value of the total amount r
sented on the unitary axis of the PQL Fundam

 

epre- 
ental Lat- 

tice.  
Equation (19) shows that the maximum amount of any 

quantity in the physical environment is composed by two 
quantized fractions where: one is determined on the Para- 
quantum Logical state of Quantization ψhψ by the Paraqu- 
antum Factor of quantization hψ and the other is deter-
mined by its complement (1 – hψ).  

Since it is a value related to the Paraquantum Logical 
Model, this radius of the horizontal propagation is deter-
mined through a Paraquantum quantity computed by: 

 1 Value max 1pn NR Q h            (20) 

So, for the Energy, the equation is:  

  max Fundh E      (21) 

 the energy levels s
that:  

Total max Fund  1E h E 

We can define the equation of uch 

 Total Transf max max1N NE h E h E         (22) 

where Total Transf which can 
ed through propagation.  

E  is the total Energy be trans- 
form

max NE aximum Energy on level N of the tran- 
sition frequency 

N is th

 is the m

 

 the Bohr Model  

 
Pa ted in both the physical and 

 1

e transition frequency or number of times of ap- 
plication of the Paraquantum Factor of quantization.  

We verify that, in the same way for quantities, the en- 
ergy is quantized through the equilibrium point estab- 
lished by the Paraquantum Logical state of Quantization 
ψPψ. 

2. Paraquantum Logic and Levels of Energy 
in

A Paraquantum Logical model where the Superposed
raquantum Lattices are rela

Paraquantum environments and produce levels of energy 
which will be used to analyze the Hydrogen atom. 

Based on Equation (22) the equation of the quantities 
of Energy, for the Bohr’s model on the Hydrogen atom, 

Total Propag max max

can be written as follows: 

N N E h E h E          (23)  

where: hψ is the Paraquantum Factor of quantization 
2 1h   . 

Total PropagE  is the total Energy that can be transformed 
through propagation, therefore through the
electron in the Hydrogen atom.  

 orbit of the 

max NE  is the maximum energy on the level N of tran- 
sition fre ency or in the current state of excitation of the qu
electron.  

N is the transition frequency or number of times of ap- 
plication of the Paraquantum Factor of quantization. 

The value of the quantity of Energy of Propagation 
quantized, when considered in its static form, therefore, 
without considering the effect of the Paraquantum Leap, 
is computed by: 

Propag maxN NE h E             (24) 

 point wher
Logical state of Quantization ψhψ is lo

where hψ is the Paraquantum Factor of quantization.. 

PropagE  is the Energy transformed in the propagation 
of the Paraquantum Logical state of the extreme Vertex 
False until it reaches the e the Paraquantum 

cated. 

max NE  is the maximum Energy on the level N of 
tra ition

the 
ns  frequency or on the current state of excitation 

of the electron.  
Since the process of transformation of energy is dy-

namical, we must consider the effects of Paraquantum 
Leaps on the Paraquantum Logical Model. So, the Iner-
tial or Irradiating Energy is expressed by:  

  2
irr max 1 1N NE E h              (25) 

If Bohr’s Model [13,14] is used in the paraquantum 
analysis, the electron will be considered a Paraquantum 
Logical state ψ–e that propagates orbiting the logical state 
proton ψ+Z located on the Paraquantu
Undefined ψI. So, the positive or negative sign 
eq

m Logical state 
of the 

uation (25) indicates if the analysis is at the arrival or 
at the departure of the electron at the equilibrium point 
where the Paraquantum Logical state of Quantization ψhψ 
is located. Since the electron, in the Model of Hydrogen 
Atom, reaches the excitation level at the arrival at the 
equilibrium point, then the sign will positive at the in-
stant of the analysis, only. So, the total energy trans-
formed at the equilibrium point of the Lattice of the PQL 
is computed by:  

transf Total Propag irr N N NE E E           (26) 

So, Equation (23) is rewritten as follows:  

 Total Propag transf Total max1N N NE E h E       (27)  

or as follows: 
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Total Propag Propag irr  1  maxN N NE E E  NE   (28) h 

Or, in a more complete way, as follows:  

 
 

2
Total Propag max max 

max

1

 1

N N N

N

E h E E h

h E

 



   

 
 (29) 

plemented 
va m energy, 
therefore, it is that amount of energy capable of still be- 
ing transformed in order to increase the excitation
of the electron. So, for each new excitation level of the 
electron, the remaining energy E  is the one which 
ou

1

The second term of Equation (29) is the com
lue which represents the remaining maximu

 level 

Restmax

tcomes the value which will be represented on the ver- 
tical and horizontal axis of the Lattice of the PQL.  

For a static analysis, we have:  

 Rest max 1 max1N NE h E            (30) 

or 

Rest max 1 max maxN N NE E h E           (31) 

From (31) the energy variation value is expressed by: 

1 maxmax Rest maxN N h E 

remaining maximum Energy in the atom 
model depends on the excitation level of th

When the analysis process is consider
w  
account and determine the Remaining max
adding the Inertial or Irradiating Energy. So, E
(3

N         (32) E E

Therefore, the 
e electron. 
ed dynamical, 

e must take the effect of the Paraquantum Leap into
imum Energy 

quation 
1) in its complete form is:  

  
Rest max 1 max

2
max max  1 1

N N

N Nh E E h 



   
   (33) 

And the energy transformed value between the Fun-
damental level n = 1 and the level 

E E

N = n is: 

transf Total transf Total 1 transf Total 1N N n NE E     NE    (34) 

For variation of Energy between two levels: 

model where 
the physical and Paraquantum environments produ
els of energy for analyze of the Hydrogen atom. 

Analyses of the Hydrogen Atom in Lat
PQL 

e pos- 

ounding Factors of the Uncertainty Region of the 
p

 Logical states ψsup which propa- 
gate on the Fundamental Lattice of the P  provide us 

 of 
the [14,15]. This 

n

transf Total 1 maxni nf N n N nE E E            (35) 

Figure 4 shows a Paraquantum Logical 
ce lev- 

tice of the 

Following the application methods of the PQL [11,12] we 
will make a study that represents the Hydrogen atom on 
the Lattice of the PQL considering the results of th
tulates of Bohr with the correlation features of the effects 
of propagation of the Paraquantum Logical states ψ and 

the b
PQL. So, the electron is considered a Super osed Paraq-
uantum Logical state ψsup represented by ψ–el that propa-
gates through the Fundamental Lattice of the PQL from 
the Vertex which represents the extreme Paraquantum 
Logical State False. The propagation will be expressed 
through energy quantization determined by the Paraquan 
tum Factor of quantization hψ considering the Paraquan- 
tum Leaps through the variations on the value of the Real 
Certainty Degree that identifies the appearing of inertial 
or irradiating energy. 

In the physical world, the insertion of energy into the 
atom causes disequilibrium and, if this disequilibrium is 
enough, it causes the electron to leave its fundamental 
state n = 1 and it makes the electron to reach another 
state of excitation. On the Fundamental Lattice of the PQL 
that represents the Hydrogen Atom, the Paraquantum 
logical state ψ–erel of the electron when propagating will 
transform the energy represented on the axis of the Cer- 
tainty and Contradiction degrees and, for this, moves 
diagonally to one of the extreme Vertices of contradic- 
tion. When the Electron receives energy enough to reach 
another exciting state for n = 2, it means that the poten- 
tial energy represented on the horizontal axis of the cer- 
tainty degrees (EnDC) of the initial conditions is trans- 
formed in kinetic energy represented on the horizontal 
axis of the certainty degrees (EnDct) and reached enough 
to take it up, through two transitions to the excited level 
at the point where the Paraquantum Logical state of 
Quantization ψhψ is located. Figure 5 shows the propaga- 
tion of the electron around the proton on the fundamental 
state n = 1. 

This change of the electron from a state to another is 
done on the Paraquantum Logical model through the char- 
acteristics of the correlation that implies in considering 
the effects in the physical environment reflected on the 
paraquantum world.  

3. Application of the Paraquantum Logic 
(PQL) in the Atom of Hydrogen 

The correlation characteristics of the Relativistic Para- 
quantum Lattice and the transience property of the Su- 
perposed Paraquantum

QL

with several conditions to make a comparative study
 Hydrogen atom using Bohr’s model 

study can be made directly with the energy levels of the 
Paraquantum correlation states through the equation that 
deals with quantities. So, each time that there is an in- 
crease of Energy defined by the Paraquantum Factor of 
quantization hψ, there will be two transitions of the elec- 
tron that will make it perform an orbit of a level of ex- 
cited state in the Hydrogen atom. At the end of these two 
transitions of the electron, represented by the Paraquan- 
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Figure 4. Model of the superposed local fundamental lattices where we can represent systems of energizing levels through the 
fundamental lattice. 
 

 

Figure 5. First propagation of the Paraquantum logical state ψ–el which represents the electron at the fundamental state n = 1 
passes by the Paraquantum logical state of quantization ψhψ with the energy being quantized by the Paraquantum factor of 
quantization hψ. 
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tum Logical state ψ–el, it will be on the equilibrium point 
of the Paraquantum Logical state of Quantization ψhψ. 
The energy on this point is determined by the addition of 
the energy transformed in the propagation Etporp with the 
Inertial of Irradiant Eirr which appears due to the Paraq-
uantum Leaps [11,12]. In 1913, Niels Bohr proposed a 
model for the Hydrogen atom. According to the Bohr’s 
Postulate [15], the angular momentum of the electron is  

quantized and it is an integer (n):  number 
2π

h
n  . Com- 

paring to its correspondin in the classical mechanics 
( L mrv ), we can find and define the value of r in func-
tion of n. So, we have: 

g 

2
0

( )n

n a
r

Z
                (36) 

where a0 nt called radius of Bohr. Because of 
that we have that the radius of the stationary states are 
quantized with a value defined by the previous equation 
in function of a0 with value of n > 0. By determining the 
expression of rn, we can find the expression of total En-
ergy (En of the electron) which is also quantized, that is, 

 

 is the consta

the stationary states correspond to specific values of cer-
tain amount of energy [15]. The equation of total Energy 
is expressed by: 

2

( ) 02n

Z
E E

n
              (37) 

with 
2 4

e
0 2

e

2

m K
E 


. 

We verify in this equation that En appears with a mul- 
tiple of E0, whose value can be found and corresponds to 
2.18 × 10–18 J or 13.6 eV.  

According to Bohr’s postulate, the energy for an elec- 
owed etronic transition, according to the set of all nergies 

Em from position ni to position nf, is defined by: 

2
( )

1 1
i fm n n

hc
E E E 0 2 2

i f

E Z
n n 

 
       

 
    (38) 

This value is the inverse of the

 can compute the values foun
Bohr’s model for the Hydrogen atom.  
 For the fundamental state n = 1 

Initially, we have, on the fundamental state, the value 

that generates the Fundamental Lattice of the PQL for the 
Paraquantum Logical Model as being the value of En- 
ergy obtained by the Bohr’s equations such that the Total 
Energy of the electron is: max 1 13.6 eVNE    . 

Using the value of the Energy obtained by the Bohr’s 
equations we can compute the Propagation Energy of the 
electron when it propagates through the Fundamental 
state by Equation (24). 

Propag 1 max 1N NE h E →

 wavelength and Bohr 
compared it with the Rydberg-Ritz Formula, obtaining 
the theoretical value of the Rydberg’s constant.  

3.1. Values of Energy Quantities on Levels of 
Energy through the Paraquantum Equations 

Through the Paraquantum equations and the interpreta-
tion on the Lattice of the PQL, from where we obtain the 
energy levels with consecutive applications of the corre-
lation factors, we d on 

    Propag 2 1 13.6 eVE     

→ Propag 1 5.633304448 eVNE     

According to the Paraquantum Logical Model, the pro- 
pagation of the electron is done on the edges of the Un- 
certainty Region of the Lattice of the PQL, so when it 
crosses the Vertical axis of the contradiction degrees on 
the point where the Paraquantum Logical state of Quan-
tization ψhψ is located, we have the Inertial or Irradiant 
Energy caused by the Paraquantum Leap. The Inertial or 
Irradiant Energy for the Fundamental level is computed 
by Equation (25) such that: 

 2

irr 1N

  
irr 1 13.6 1 2 1 1

1.120533924 eV

NE

E

       
  

  

 

With Equation (26), the total transformed Energy for 
ndamental le mputed by:  the Fu vel is co

transf Total 1 Propag 1 irr 1N N NE E E     

 transf Total 1 5.633304448 eVNE   

 1.120533924 eV 

transf Total 1 6.753838372 eVNE 

 

   

Through Equation (33) for the second level of excita-
tion n = 2, we have the Remaining Energy to 
formed and it is computed by: 

be trans-

  
Rest max 2 max 1

2
max 1 max 1 1 1

N N

N N

E E

h E E h 

 

 



   
 

   Rest max 2

Rest max 2

13.6 eV 6.753838372 eV

6.846161628 eV
N

N

E

E




   

  
 

The Remaining Energy will be the Total Energy of the 
electron that will constitute the second Lattice of the PQL 
for the representation of the propagation of the electron 
at the excitation level n = 2. 
 For the excited state n = 2 

→ max 2 6.846161NE  628 eV   

By Equation (24) we have the Propagation Energy at 
the second excitation state of the electron n = 2 computed 
by: 
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  Propag 2 max 2 2 1 6.846161628N NE h E    

Propag 2 2.835772996 eVNE   

With Equation (25) the Inertial or Irradiant Energy for 
the level of the second excitement state of the electron n  

 

= 2 computed by: irr max 2N NE E   21 1h    2

 2
 irr 2 6.846161628 1 2 1 1NE 

  
    

843316 eV  

 the level o  the sec-
ond Excitement state of the electron n = 2 with respect to 
the Fundamental state is computed by Equation (34):  

 
 

8372 eV

9843316 eV
 

368169 eV

 excitation evel n = 2, 
we have the Remaining Energy to be transformed which 
is

irr 2 0.56407032 eVNE 

  
  

 

By Equation (26) the total transformed Energy to the 
level of the second excitement state of the electron n = 2 
is computed by:  

transf Total 2 Propag 2 irr 2N N NE E E     

   transf Total 2 2.835772996 eV 0.56407032 eVNE       

→ transf Total 2 3.399NE   

The Total transformed energy to f

transf Total 1 2 transf Total 1 transf Total 2N N N NE E E        

transf Total 1 2

 3.39

N N  

 

transf Total 1 2 10.15N NE     

6.75383E  

 

By Equation (33) to the second  l

 computed by:  

 2h  
 

 3.399843316 eV  

 the variation Energy between two 
 


Rest max 3 max 2N NE E 

max 2 max 2 1 1N Nh E E  

 Rest max 3 6.846161628 eVNE      
→ Rest max 3 3.446318312 eVNE     

By Equation (35)
consecutive levels is: 

transf Total 2 max 1i fn n N NE E E      

   2 1 3.399843316 eV 13.6 eV
i fn nE         

2 1 0.2ni nfE    1  eV  

.446318312 eV  

of the Paraquantum model of hydrogen atom. 
The values obtained through the Paraquantum Equa- 

tions (26), (34) and (35) for the Hydrogen atom model in 

seven energy levels: 
 For Level n = 2:  

3.399843316 eVE 

0015668

and Rest max 3 max 3 3N NE E  
With the Paraquantum equations we can calculate the 

variations of energy in infinites levels of the Lattice, there- 
fore 

transf Total 2N   

transf Total 1 2 10.15368169 eVN NE       

2 1 10.20015668 eV
fn inE     

 For Level n = 3:  

transf Total 3 1.711461534 eVNE     

transf Total 1 3 11.86514322 eVN NE      

3 2 1.688381782 eVn nE      

 For Level n = 4:  

Etransf Total 4 0.861539873 eVN  

transf Total 1 4 12.72668309 eVN NE   

 

   

4 3 0.849921661 eVn nE      

 For Level n = 5:  

transf Total 5 0.433694207 eVNE     

transf Total 1 5 13.1603773 eVN NE       

5 4 0.427845666 eVn nE      

 For Level n = 6:  

transf Total 6 0.218319164 eVNE     

transf Total 1 6 13.37869646 eVN NE      

6 5 0.215375043 eVn nE      

 For Level n = 7:  

transf Total 7 0.109900608 eVNE     

transf Total 1 7 13.48859707 eVN NE       

7 6 0.108418556 eVn nE      

Figure 6 shows a Paraquantum Logical model with t
rgy values calculated by Paraquantum Equations (26) 

and

f Radiation 

Atomic spectra—which is the characteristic radiation 
emitted by the atoms of elements when they are heated, 
or submitted to electrical discharges—were studied at the 
end of the XIX century [13-15].  

When observed with a spectroscopy, the radiation 
s as a series of lines with different wave l ngths, not 

al

mpute 
th

he 
ene

 (34) in each levels of energy of the Hydrogen atom. 

3.2. The Spectrum o

show e
ways on a visible spectrum. Among many scientists 

that studied the atomic spectra, J. R. Rydberg and W. Ritz 
determined an empirical expression capable of co

e sequence of these lines. This expression is known as 
the Rydberg-Ritz formula and is given by:  
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1 7 13.48859707 transfTotalN NE eV    

1 6 13.37869646 transfTotalN NE eV    

1 5 13.1603773 transfTotalN NE eV    

1 4 12.72668309 transfTotalN NE eV    

1 2 10.15368169 transfTotalN NE V     e

n=5  

1 6.753838372 transfTotalNE eV    

 
irrE

 
irrE

7 0.109900608 transfTotalNE eV         

6 0.218319164 transfTotalN

Contradiction
      Degree
          Dct E eV  

94207 

2 3.399843316 transfTotalNE eV    

 n=2 

n=1  

5 0.4336transfTotalNE eV    

4 539873 transfTotalN V 0.861E e   

Variation of the Energy of Propagation 
 Total in each level of excitement of the Electron 

max 1 13.6 NE eV 

        1
μ

2


        1
λ

2
  

+Z 

-1

Certainty 
  Degree  
D

 F 

 

 t 

λ 

+1 

T

μ Physical world 
M surements   

servable 
Variable B

ea
Ob

Physical world 
Measurements   

Observable 
Variable A

Paraquantum worldParaquantum world 

3 1.711461534 transfTotalNE eV    

13.6 eV
n=7  

n=6  

n=4 
n=3  

-el 

1 3 11.86514322 talN NE eV    

Figure 6. Paraquantum logical model with

transfTo

 

en rgy values of the hydrogen atom.  e
 

2 2
 for

mn

1 1 1
R n

m n
    
 

    (38) 

where m and n are integers and R is the Rydberg constant, 
with result expressed in meters. 

This constant is the same for all lines of the spectrum 
of the same elements, varying slightly and regularly ac- 
cording to the elements. For Hydrogen, the value of R 
is 1.096776 × 107 m–1 approaching a limit value of 
1.097373 × 107 m–1 for heavy elements [14].  

This empirical expression can preview lines that are 
out of the range of the visible spectrum and have not 
been observed yet.  

3.3. The Hydrogen Spectral Series 

As it can be seen in [13,14] the emission spectrum of ato- 
mic hydrogen is divided into a number of spectral series, 
with wavelengths given by the Rydberg formula. These 
observed spectral lines are due to electrons moving be-
tween energy levels in the atom. When an electron jumps 
from a higher energy to a lower, a photon of a specific 
wavelength is emitted. Calculating the wavelength using 
the equation (38) the spectral lines are grouped into se-
ries according to n', such that:  

1) Lyman series (n′ = 1)  
    n     2      3      4     5      6     7 
λ(nm)  121.6  10

   n     8     9     10     11    12      ∞  
λ(nm)  92.6  92.3   92.1   91.9  91.11   91.15  
2) Balmer series (n′ = 2) 

    n      3      4      5     6     7       
   λ(nm)  656.3  486.1  434.1  410.2  397.0  
    n       8      9     ∞ 
   λ(nm)   388.9  383.5  364.2  

3) Paschen series (n′ = 3) 
    n       4      5      6      7       8 
  λ(nm)  1875.1  1281.8  1093.8  1004.9  922.9  
    n    9      10    11     12     13     ∞ 
 λ(nm)  954.6  901.5  886.3   875.0  866.5  820.4 

4) Brackett series (n′ = 4) 
    n      5     6     7     8     9     ∞ 
   λ(nm)  4050  2630  2170  1940  1820  1460 

5) Pfund series (n′ = 5) 
    n     6     7     8     9     10    ∞ 
  λ(nm)  7460  4650  3740  3300  3040  2280 

6) Humphreys series (n′ = 6) 
    n      7     8     9     10    11    ∞ 
  λ(nm)  12400  7500  5910  5130  4670  3280 

3.4. Calculations of the Wavelength Values of 
Each One of the Six Series with 
Paraquantum Equations 

For each series of the spectrum of the atom f Hydrogen 
rough the Paraquan- 

m

 o
2.5   97.2   94.9   93.7   93.0 the wavelengths can be calculated th
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tum equations. The energy variation between levels of 
th ( ) i fm n nE E E   can be com
Para n (34), therefore: 

E

 
e Equation (38) 

quantum Equatio
puted by 

( ) i fm n nE E E

E E

 

  
 

transf Total 1 transf Total i fn n N n N n   

And considering the Equation (38) the Paraquantum 
wavelengths can be calculated by: 

transf Total transf Total N n m N n  

where c is the constant of the light speed in the vacuum 
299,792,458 m/s and

h c

E E








       (39) 

 n ≥ 1. 
As seen in [10,11], the value of the Paraquantum Fac-

the International tor of quantization hψ when expressed in 
System (SI) is:  2 1 10 eV sh     . This way, the 
unit of measure of the wavelength can be presented in 
10–9 m (nm). 

1) For the Lyman series (n′ = 1). 

transf Total 2 3.399843316 eVNE     

and           max 1 13.6 eVNE     

Then from Equation (39) the maximum wavelength 
value is:  

14

     
   

 121.7413672 nm 

142 1 10 eV 
Lymax 3.399843316 eV 13.6 eV     

Lymax

ariation between levels com-

s 299792458 m s  


 


Considering the energy v
puted by Equation (35) for N   , then for Equation (39

V
) 
 m   : transf Total 0 eVNE    and max 1 13.6 eNE   

     
  

 91.307427 nm 

142 1 10 eV  
Lymin 0 eN 

Lymin N 

s

V 13





 

299792458 m s

.6 eV  

s For the PQL Lattice the total maximum wavelength
values is identified with:  

Ly Totalmax 2 1N Lymax Lymin       

 Ly Totalmax 2 1 121.7413672 91.307427   (nm)N      

Ly Totalmax 2 1 30.4339402   (nm)N     

The wavelength value in the level 2 is compared with 
variation energy Equation (26): 

 2

or N = 2: 

1 Ly 2 = Nh 

Ly Total 2 Ly Totalmax 2 1N N h      
 

Ly Totalmax 2 1 1 1N h      

e variation of wavelength value pure f

Ly 2 Ly Totalmax 2N N 

Th

    

Ly 2 30.4339402 2 1  (nm)N     

Ly 2 12.60615079 (nm)N    

The variation of m Leap effect in the 
wavelength, for N = 2: 

 the Paraquantu

 2

Ly Leap 2 30.4339402 1 2 1 1 nm)N 
 

     
 

  (

Ly Leap 2 2.507519297 (nm)N    

The variation of wavelength value total, which is, con-
sidering the Paraquantum Leap effect, for N = 2: 

Ly Total 2 Ly 2 LyLeap N N  

   

2N         

 Ly Total 2 12.60615079 2.507519297  (nm)N     

Ly Total 2 15.11367009 (nm)N    

Subtracting the value of the variation for the total 
value is obtained vel 3: 

Ly Totalmax 3 Lymax Ly Total 2N N  

 the wavelength of the le

       

 
Ly Totalmax 3

.11367009  (nm)

106.6276971  (nm)N  
 

 for next level n =  

 Lymax 3 106.6276971 nmN    

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

Ly Totalmax 3 2 Lymax 3 LyminN N  

Ly Totalmax 3 121.7413672 15N   

In the same way 3:

Consider:  Ly min 91.307427 nmN    

       

 Ly Totalmax 3 2 106.6276971 91.307427  (nm)N      

5.3202Ly Totalmax 3 2 1 7011  (nm)N     

The wavelength value in the level 3 is compared with 
variation energy Equation (26): 

 2
Ly Totalmax 3 2                    1 1N h   

Ly Total 3 Ly Totalmax 3 2N N h      

   

The variation of wavelengt

 

h value pure for N = 3: 

Ly 3 2 Ly Totalmax 3 2 Ly 3 = N N Nh            

 Ly 3 15.32027011 2 1  (nm)N     

Ly 3 6.345863659 (nm)N  

ntum Leap effect in the 
wavelength, for N = 3: 

 

The variation of the Paraqua

 2

Ly Leap 3 15.32027011 1 2 1 1  ( )N 
 

     
 

 nm
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  Ly Leap 3 1.262270763 (nm)N    

The variation of wavelength value total, which is, con-
sidering the Paraquantum Leap effect, for N = 3

LyLea 3

: 

Ly Total 3 Ly 3N N  p N      

nm)

   

 Ly Total 3 6.345863659 1.262270763  (nm)N     

Ly Total 3N 7.608134422 (    

e variation for the total 
value is obtained the wavelength of the level 4: 

Ly To 3N


 

Ly Totalmax 5

Ly Totalmax 5

99.01956268 3.82989102   nm

95.18967166  nm

N

N












 

 

Using the same mathematical procedures with the Pa- 
ra

 Ly Totalmax 6 93.26172659  nmN  

Subtracting the value of th

Ly Totalmax 4 Ly Totalmax 3N N  tal       

Consider:  

 91.307427 nm   

aximum wavelengths 

Ly Totalmax 4 3 Lymax 4 LyminN N  

 

 Ly Totalmax 4

Ly Totalmax 4

106.6276971 7.608134422   (nm)

99.01956268  (nm)

N

N












 

 
 

In the same way for next level n = 4: 

Lymin N 

 Lymax 4 99.01956268 nmN    

For the PQL Lattice the total m
values is identified with:  

        

  91.307427   nm  

 nm

level 4 is compared with 

Ly Totalmax 4 3 99.01956268N   

Ly Totalm  ax 4 3 7.712135678   N  

The wavelength value in the 
variation energy Equation (26): 

 21 1h  
 

ure for N = 4: 

Ly 4 3 Ly Totalmax 4 3  = N N Ly Nh   

Ly Total 4 Ly Totalmax 4 3N N h   



   

  Ly Totalmax 4 3                    N 

The variation of wavelength value p

4         

   

 3 nm  

value total, which is, con-
ffect, for N = 4: 

Ly 4 7.712135678  2 1  nmN     

 Ly 4 3.19447119N 

The variation of wavelength 
sidering the Paraquantum Leap e

Ly Total 4 Ly 4 LyLeap 4N N N            

   3.194471193 0.635419827  nm    

 LyTotal 4 02 nmN   

e variation for the total 
va

x 4 Ly Total 4N N

LyTotal 4N 

3.829891 

Subtracting the value of th
lue is obtained the wavelength of the level 5: 

Ly Totalmax 5N Ly Totalma

 

quantum equations was obtained the following wave- 
length values: 

 

 Ly Totalmax 7 92.29121015   nmN    

 Ly Totalmax 8 91.80265777  nmN    

Ly Totalmax 10 91.43292133  nmN   

 Ly Totalmax 11 91.37060013  nmN    

 Ly Totalmax 12 91.33922799  nmN    

elength values of 
th odel of the Hy-
dr ′ = 1).  

2) Using the same mathematical proced res with the 
Paraquantum equations for Balmer series (n′ = 2): 

transf Total 3 1.711461534 eVNE 

 Ly Totalmax 9 91.55672332  nmN    

  

Figure 7 shows the Paraquantum wav
ies in the Paraquantum Me Lyman ser

ogen atom (n
u

   

and       transf Total 2 3.399843316 eVNE     

Then from Equation (39) the maximum wavelength 
value is: 

     
   

 Balmax 735.4859819 nm 

Considering the energy variat

14

Balmax

2 1 10 eV s 299,792,458 m s  

1.711461534 3.39984331 eVeV
   


    

ion between levels com-
puted by Equation (35) for N   : 

6 

      

     

 

Balmin

14

Balmin

2 1 10 eV s 299,792,458 m s  

365.2465436 nm

N

N















   

 

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

Bal Totalmax 3 2 Balmax Ba inN  

3.399843316 eV
  

lm       

   Bal Totalmax 3 2 735.4859819 365.2465436  nmN      

  



Bal Totalmax 3 2 370.2395459  nmN    

The wavelength value in the level 3 is compared with 
variation energy Equation (26): 

 
Bal Total 3 Bal Totalmax 3 2

2
Bal Totalmax 3 2                    1 1

N N

N

h

h

  

 

 



  

 

 

  
 


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 max 91.307427 ( )LyTotal N nm    

max 4 3 7.712135678   ( )LyTotal N nm   

1/21/2

 max 121.7413672Ly nm 

max 2 1 30.4339402 ( )tal N nm    

2 12.60615079 ( )Ly N nm    

LyTo

Contradiction Degree
Dct 

 h  

            2
CψR 1hD 1    

max 1NE           transfTotalNE  n m   

 

 

                                    

ni nfE 

maE

  

x N n

P() 

 

 h 

  2 2MP 1 Dct  

-1 

Certainty

   



T

 t

-1 

+1 

+1

 

  1 

21 1leaph h   

 min 91.307427 Ly N nm    

 max 121.7413672 Ly nm   

max 3 106.6276971 ( )LyTotal N nm    

 h 

max 3 2 15.32027011  ( )LyTotal N nm     

3 7.608134422 ( )LyTotal N nm    
max 4 9901956268  ( )LyTotal N nm   .

 h 
max 5Total N 95.18967166 ( )Ly nm 
max 6 93.26172659 ( )LyTotal N nm  
max 7 92.29121015 ( )LyTotal N nm  
max 8 91.80265777 ( )LyTotal N nm  
max 9 91.55672332 ( )LyTotal N nm  
max 10 91.43292133  ( )LyTotal N nm  
max 11 91.37060013 ( )LyTotal N nm  
max 12 91.33922799 ( )LyTotal N nm  

1 1

2N
 
                     1 1

2N
 
   

2 2.507519297 ( )Ly LeapN nm  

3 1.262270763 ( )Ly LeapN nm    

Lyma n   

The Paraquantum 
wavelength values 

  1   0

 

araquantum wavelength values for lyman series. 

Bal 3 = Nh 

Figure 7. Representation in the lattice of the P
 

The variation of wavelength value pure for N = 3: 

Bal 3 Bal Totalmax 3 2N N         

   370.2395459 2 1  nm    

 2 nm  

antum Leap effect in the 

Bal 3N 

Bal 3 153.358241N  

The variation of the Paraqu
wavelength, for N = 3: 

   
2

370.2395459 1 2 1 1  nm
 

     
 

 

   

alue total, which is, con-
ffect, for N = 3: 

Bal Total 3 Bal 3 Bal Leap 3+ N N N  

Bal Leap 3N 

Bal Leap 3 30.50485082 nmN  

The variation of wavelength v
sidering the Paraquantum Leap e

         

 092 nm  

l 4 is: 

Bal Totalmax 4 Balmax Bal Total 3N N

Bal Total 3 183.863N  

The wavelength of the leve

        

   
 

183.863092  nm

  nm
 

 Balmin 365.2465436 nm   

 Balmax 551.6228899  nm   

Using the same mathematical procedures with the Pa- 
raquantum equations was obtained the following wave- 
length values: 

 Bal Totalmax 5 459.06773223  nmN    

 Bal Totalmax 6 412.4757928  nmN    

 Bal Totalmax 7 389.0214755   nmN    

 Bal Totalmax 8 377.2147073    nmN    

 Bal Totalmax 9 371.2712482  nmN    

Figure 8 shows the Paraquantum wavelength values of 
the Balmer series (n′ = 2).  

3) Using the same mathematical procedures with the 
Paraquantum equations for Paschen series (n′ = 3): 

transf Total 4 0.861539873 eVNE     

transf Total 3 1.711461534 eVNE     

Then from Equation (39) the maximum wavelength 
value is: 

Bal Totalmax 4 735.4859819

551.6228899

N


  

       
   

Bal Totalmax 4N 

In the same way for next level n = 5: 
Consider:  

14

Pasmax

Pasmax

2 1 10 eV s 299,792,458 m s  

0.861539873 1.711461534 eV

1,461.053636 nm

eV







   


  

 
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max 4 551.6228899 ( )BalTotal N nm    

1/21/2

 9819 nm  max 735.485Bal 

max 3 2 370.2395459 ( )BalTotal N nm     

3 153.3582412 ( )Bal N nm    

Contradiction Degree
          Dct 

 h  

                          

2
CψRD 1 1h    

max 1NE             transfTotalN n mE    

 

ni nfE 

 P() 

 

 h 
  2 2MP 1 Dct  

-1 

Certainty

   

 

T

 t

-1 

+1 

+1

 

  1 

21 1leaph h   

 min 365.2465436 Bal N nm    

 max 735.4859819 Bal nm   

max 5 459.BalTotal N   06773223  ( )nm h 

max 4 551BalTotal N .6228899 ( )nm  

 h 
max 6 412.47BalTotal N   57928 ( )nm  
max 7BalTotal N   389.0214755 ( )nm
max 8 37BalTotal N 7.2147073 ( )nm  

max 9 371.BalTotal N 2712482 ( )nm    

1 1

2N
 
                      1 1

2N
 
   

3 29.28728509 ( )BalLeap N nm  

Balmer   

   Paraquantum 
wavelength values 

  1   0

max 3BalTotal N 65.2465436 ( )nm  

 

Figure 8. Representation in the lattice of the Paraquantum wavelength values of the balmer series (n′ = 2). 
 

Considering the energy variation between levels com-
puted by Equation (35) for N

 Pas Leap 4 60.59830821 nmN    

Considering the Paraquantum Leap effect, for N = 4: 

Pas Total 4 Pas 4 Pas Leap 4N N N  

 : 

     
 
 

Pasmin

Pasmin

2 1

725.5676556 nmN






1410 eV s 299,792,458 m s  

1.711461534 eV

N

 




 

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

smax Pa in



  
 

Pas Totalmax 4 3 PaN  sm       

  Pas Totalmax 4 3 1461.053636 725.5676556 nmN      

 nm  

level 4 is compared with 

Pas Totalmax 4 3 735.4859804  N   

The wavelength value in the 
variation energy Equation (26): 

 
Pas Total 4 Pas Totalmax 4 3

2
Pas Totalmax 4 3                     1

N N

N h

  

 

  

    
 

1

h  

ure for N = 4: 

Pas 4 Pas Totalmax 4 3 P 4 = N N Nh   

The variation of wavelength value p

as         

735.4859804 2    Pas 4 1  nmN    

 68 nm  Pas 4 304.6482N  

   
2

 1 2 1 1  nm
 

   
 

 Pas Leap 4 735.4859804N  

          

 Pas Total 4N   

Pas Totalmax 5 Pasmax Bal To 4N N  

365.2465762 nm 

The wavelength of the level 5 is: 

tal      

   Pas Totalmax 5 1461.053636 365.2465 2   nmN   

 Pas Totalmax 5 1095.80706  nmN  
 

In the same way for next level n = 6: 
Consider:  

76

 Pasmin 725.5676556  nmN    

 Pasmax 1095.80706 nm   

With the Paraquantum equations was obtained the fol-
lowing wavelength values: 

 Pas Totalmax 6N   911.9440382  nm 

 Pas Totalmax 7 819.3884526  nmN    

 Pas Totalmax 8 772.7965042  nmN    

 Pas Totalmax 9 749.3423859  nmN    

 Pas Totalmax 10 737.5357179  nmN    

 Pas Totalmax 12 728.6004315 nmN    

 Pas Totalmax 11 731.5923092  nmN    
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 3375  nm  

Figure 9 shows the Paraquantum wavelength values 
the Paschen series (n′ = 3). 

4) Using the same mathematical procedures with the 
Paraquantum equations for Brackett series (n′ = 4): 

3694207 eV  

539873 eV  

  Pas Totalmax 13 727.094N  

of 

transf Total 5 0.43NE   

transf Total 4 0.861NE   

     
 


 

Bra Totalmax 6

Bra Totalmax 6

2902.404375 725.6426814   nm

2176.761694  nm

N

N












 

 
 

In the same way for next level n = 7: 
Consider:  

 Bra min 1441.1996613 nm   

 Bra max 2176.761694  nm   

was obtained the following wavelength values: 

 Bra Totalmax 7 1811.47735  nmN    

 Bra Totalmax 8 1627.595316  nmN    

 Bra Totalmax 9 1535.024844  nmN

 
 

Bra max

Bra max

2 1 10 eV s 299792

0.433694207 eV 0.861

2902.404375 nm









   


 

 

Considering the energy variation betw

14 458 m s  

539873 eV



  

een levels com-
puted by Equation (35) for N

   

5) Using the same mathematical procedures with the 
Paraquantum equations for Pfund series (n′ = 5): 

transf Total 6 0.218319164 eVNE 

 : 

     
 

 

m s  

N













   


 

 

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

Bra min

14

Bra min

2 1 10 eV s 299792458

0.861539873 eV

1441.1996613 nm

N

   

transf Total 5 0.433694207 eVNE    

     
   

14

Pfu max

2 1 10 eV s 299792458 m s  

0.218319164 eV 0.43369420  eV
   


    

Bra Total max 5 4 Bra max Bra minN         

   Bra Totalmax 5 4 2902.404375 1441.1996613   nmN      





  nm  

level 5 is compared with 
variation energy Equation (26): 

Bra Total max 5 4 1461.204714N   

The wavelength value in the 

 
BraTotal 5 Bra Totalmax 5 4

21 1

N N h

h

  

 

    

 
 

Bra 5 Bra Totalmax 5 4 Bra 5 = N N h   

Bra Totalmax 5 4                    N   

The variation of wavelength value pure for N = 5: 

N        

   2 1  nm  Bra 5 1461.204714N  

 Bra 5 605.25080N   99 nm  

   
2

Leap Bra 5 1461.204714 1 2 1 1  nmN 
 

     


 


 Leap Bra 5 120.3918715 nmN  

Considering the Paraquantum Leap effect, 

 

for N = 5: 

Bra Total 5 Bra 5 Leap Bra 5N N N            

 725.6426814 nm   

Bra Total 5N N

Bra Total 5N 

The wavelength of the level 6: 

Bra Totalmax 6 Bra max        

 Pfu max 5765.668647 nm 

7

     
 

 

14

Pfu min

Pfu min

2 1 10 eV s 299792 8 m s   

0.433694207 eV

2863.264283 nmN













   


 

 

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

45

Pfu Totalmax 6 5 Pfu max Pfu minN         

   Pfu Totalmax 6 5 5765.668647 2863.264283  nmN      

 2902.404364  n   

quation (26): 

Pfu Totalmax 6 5N  

Compared with variation energy E

m

 
Pfu Total 6 Pfu Totalmax 6 5

2
Pfu Totalmax 6 5 1 1

N N

N

h

h

  

 

 



  

 

 

   
 

e for N = 6: 

6 Pfu Totalmax 6 5 Pfu 6 = N Nh  

The variation of wavelength value pur

Pfu N         

   Pfu 6 2902.404364 2 1  nmN     

 Pfu 6 1202.215251 nmN    

   1 2 1 1  nm   
 

 

 Leap Pfu 6 239.1354817 nmN    

2

Leap Pfu 6 2902.404364N 
 

 
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max 725.PasTotal N   5676556 ( )nm  

max 5 1071.245054  ( )PasTotal N nm    

1/21/2

 461.053636 nmmax 1,Pas 

max 4 3 735.4859804 ( )PasTotal N nm      

4 304.648268 ( )Pas N nm    

Contradiction Degree
     Dct 

 h  

                          

2
CψRD 1 1h    

max 1NE             transfTotalN n mE    

 

ni nfE 

   P() 

 

 h 

  2 2MP 1 Dct 

-1 

Certainty

   



T

 t

-1 

+1 

+1

 

  1 

2
leap 1 1h h  

 min 725.5676556 Pas N nm    

 max 1,461.053636Pas nm   

max 5PasTotal N 1095.80706 (nm)  

 h 
max 6 911.9440382  ( )PasTotal N nm  

 h 
max 7 819.3884526  ( )PasTotal N nm  
max 8 772.7965042  ( )PasTotal N nm    
max 9 749.3423859  ( )PasTotal N nm    
max 10 737.5357179  (PasTotal N nm   )

max 11 731.5923092 ( )PasTotal N nm  
max 12 728.6004315  ( )PasTotal N nm  

1 1

2N
 
                       1 1  

2N
 

4 60.59830821 ( )Pas LeapN nm  

Paschen

Paraquantum 
wavelength values 

  0   1 

 

Figure 9. Representation in the lattice of the Paraquantum wavelength values of the Paschen series (n′ = 3). 
 

Leap Pfu 6N

   Considering the Paraquantum Leap effect, for N = 6: 

Pfu Total 6 Pfu 6N N        

 Pfu Total 6 0733 nmN   

Pfu Totalmax 7 Pfu max Pfu Total 6N N  

 

1441.35 

The wavelength of the level 7: 

       

   Pfu Totalmax 7 5765.668647 1441.350733  nmN     

→  nm

 = 8: 

 Pfu max 4324.317914 nm   

ues: 

 8.75026  nm  

Pfu Totalmax 7 4324.317914  N    

In the same way for next level n
Consider:  

 Pfu min 2863.264283 nm   

was obtained the following wavelength val

Pfu Totalmax 8 359N  

 Pfu Totalmax 9 3233.503685  nmN    

 9.640664  nm  

al procedures ith the 
phreys series (n′ = 6): 

transf Total 6 19164 eVN

transf Total 7 0.109900608 eVNE     

Pfu Totalmax 10N 

6) Using the same mathematic

304 

w
Paraquantum equations for Hum

0.2183E     

 
   

14

Hummax

2 1 10 eV s 29979245 m s  

0.109900608 eV 0.218319 4 eV
   


    

8

16

 Hummax 11453.58487 nm 

     
 
 

Hummin

14

Hummin

2 1 10 eV s 299792458 m s

0.218319164 eV

5687.91306 nm

N

N















   


 

 

For the PQL Lattice the total maximum wavelengths 
values is identified with:  

Hum Totalmax 7 6 Hummax HumminN         

  Hum Totalmax 7 6 11453.58487 5687.91306 nmN      

 Hum Totalmax 7 6 5765.67181   nmN     

26): 
The wavelength value in the level 7 is compared with 

variation energy Equation (

 
Hum Total 7 Hum Total max 7 6

2
Hum Total max 7 6                      1 1

N N

N

h

h

  

 

 



  

 

 

   
 

The variation of wavelength value pure for N = 7: 

Hum 7 Hum Totalmax 7 6 Hum 7N N N    = h         

   Hum 7 5765.67181 2 1  nmN     
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 .21946 nm  Hum 7 2388N  

   
2

1  nm
 

    

 475.0463866 nm   

 Leap effect, for  = 6: 

Leap Hum 7N

Leap Hum 7 5765.67181 1 2 1N   
 

Leap Hum 7N 

Considering the Paraquantum N

Hum Total 7 Hum 7N N          

 5847 nm  

Hum Totalmax 8 Hummax Hum Total 7N N  

 

Hum Total 7 2863.26N  

The wavelength of the level 8: 

       

   63.265847   nm
 

Consider:  

 Hummin 5687.91306 nm   

 Hum max 8590.319023 nm   

was obtained the following wavelength values

 Hum Totalmax 9 7148.967497  nmN    

 Hum Totalmax 10 6423.399444  nmN    

 Hum Totalmax 11 6058.152667  nmN    

The representations of each one of the series Brackett, 
Pfund and Humphreys are identical shown them in the 
Figures 8-10.  

3.5. The Study of the Series in the Paraquantum 
Universe  

The values of the wavelengths of the series found through 

 Hum Totalmax 8 8590.319023  nmN  

In the same way for next level n = 9: 
 

Hum Totalmax 8 11453.58487 28N   

: 

 

Figure 10. Representation of the Lyman series in a net of lattices of the Paraquantum universe. 
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the Paraquantum equations can be represented in a Pa- 
raquantum universe composed of superposed lattices. A 
first representation can be made in the series of Lyman, 
where the wavelength values are exposed in the horizon
tal axis, according to the Figure 10.  

With the values presented in the horizontal axis the 

La er series is superposed to the Lattice 
of the Lyman series. Figure 11 shows that  
of the Lattices in the net of the Paraquantum universe.  

In the same way, the representation of the ues of the 
d of the 

ion of the 
 

-

ttice of the Balm
 representation

 val
wavelength of the Paschen series begins in the en
Balmer series. Figure 12 shows that representat

 

verse. Figure 11. Representation of the Balmer series and Lyman series in the Paraquantum uni
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Figure 12. Representation of the Paschen series, Balmer series and Lyman series in the Paraquantum universe. 
 
three Lattices the Paraquantum universe. 

Calculations by Paraquantum equations present result 
where the values of the wavelength of the Brackett series 
begin in the end of the Paschen series. The same repre- 
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sentation happens for the series Pfund and Humphreys. 

3.6. The Paraquantum Structure Constant αψ 

The analysis of the spectrum of radiation of the atom 
through the Paraquantum Logic shows a constant nu- 
meric value obtained by the relationship among the va- 
lues of the layers of the Lattice. Due to being a constant 
value that appears in the structure of the Paraquantum 
Universe it will be denominated of “Paraquantum Struc-
ture Constant”, whose symbol will be αψ.  

The Paraquantum Structure Constant is calculated in 
the following way: 

Being Equation (24), that result in Energy of Propaga-
tion quantized at Propag maxeach layer: N NE h E  

And Equatio lt in the remaining energy: 

  max1

n (30), that resu

Rest max 1N NE h E   

Then: 



   
Propag max

Rest max 1 max1 1
N N

N N

E h E

E h E




 
1

2

h

h
 

 

 
 

 

The variation of wavelength value pure for N = n is: 

almax 1N n nhTotN n          

or with  2 1h   : 

 1 2 1n    TotalmaxN n N n     

where N n  ated at Energy of 
Propagation quantized at each layer. 

The variation of wavelength value related at the re-
maining energy in the Lattice is: 

 1 1N n n h

  is the variation rel

Remain TotalmaxN n          

or with  2 1h   : 

 1 2 2n n    

gth values, the Para- 
quantum Structure Constant is calculated in the following 
form: 

Remain TotalmaxN n N     

Then, when we consider wavelen

 
Totalmax

Remain Totalmax 
N n

N n

 




 


 

 
 


1

1

  

1
N n n

N n n

h

h


 

   

   
 

or with  h  2 1 : 

 
 

 
 

Totalmax 1

Totalmax 1

2 1  2

2 2  2

N n n

N n n











  

  

 
 
 

1  1 

2  2  





 

4. Conclusion 

In this paper we presented the main concepts of the PQL  

with applications on analysis of the spectral line emis-
sions of the hydrogen atom. Through the Paraquantum 
equations we investigated the effects of energy balancing, 
quantization properties and transiences on the Paraquan-
tum Logical Model in a comparative numerical study 
which deals with the PQL applied to the Bohr’s Model of 
the Hydrogen atom. With Paraquantum Equations we 
made the mathematical relationships of values of energy 
in the atom of hydrogen and the wavelength calculations 
in seven series of the radiation spectrum. The values of 
the wavelengths obtained in the first three series are very 
close of the values obtained by conventional calculations. 
The last three series showed values that didn’t approach 
the results obtained by conventional calculation; however 
this happened because in this work there were not 
mathematical rounding in the values and any simplifica-
tion of the results. In this analysis with the Paraquantum 
logic was obtained still a numeric value that it relates the 
layers of the Paraquantum Logical Model. As it presents 
the action among the structures of the Paraquantum uni-
verse it was denominated of Paraquantum Structure Con-
stant, whose symbol is αψ. The results presented in this 
work open a vast research field to find means of resolu-
tion of problems related to physical phenomena using the 
fundamental concepts of the Paraquantum Logic. 
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