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ABSTRACT 

In this paper, two parameters analytical solution will be established for the stellar density in globular clusters. These 
two parameters can be obtained from star counts, and the solution could be used to fit any order of the outward decrease 
of the cluster density. 
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1. Introduction 

A globular cluster is a spherical collection of stars that 
orbits a galactic core as a satellite. They are generally 
composed of hundreds of thousands of low-metal, old stars. 
The types of stars found in a globular cluster are similar 
to those in the bulge of a spiral galaxy but confined to a 
volume of only a few cubic parsecs. Observations of glo- 
bular clusters show that these stellar formations arise pri-
marily in regions of efficient star formation, and where the 
interstellar medium is at a higher density than in normal 
star-forming regions. Globular clusters are fairly common; 
there are about 158 [1] currently known globular clusters 
in the Milky Way, with perhaps 10 - 20 more undiscov-
ered. Andromeda, for instance, may have as many as 500 
[2]. Some giant elliptical galaxies, such as M87 [3], may 
have as many as 10,000 globular clusters. These globular 
clusters orbit the galaxy out to large radii, 40 kiloparsecs 
(approximately 131 thousand light-years) or more. 

Galactic globular clusters, which are ancient building 
blocks of our Galaxy, represent a very interesting family 
of stellar systems in which some fundamental dynamical 
processes have taken place on time scale shorter than the 
age of the universe. For examples, horizontal branch (HB) 
stars in globular clusters offer a probe of the mass loss 
mechanisms taking place in red giants [4]. Moreover, it 
was propose to use the horizontal branch (HB) to infer 
which is today the relative number fraction of “normal” 
and anomalous stars in clusters [5]. In contrast with gal-

axies, it was known since the last twenty years that, 
globular clusters represent unique laboratories for learn-
ing about two-body relaxation, mass segregation from 
equipartition of energy [6], stellar collisions [7], stellar 
mergers, and core collapse 

From the photographs of a globular cluster, one can no-
tice how the stars in this projection on a plane, are clus-
tering in much closer packing near the center, while the 
outer parts are much looser. The distribution law, describing 
this clustering, is of highest interest for understanding of 
the internal dynamics of this system and of its origin. 
However, the distribution in space must be a function of 
the radius r, different from the distribution in projection 
on a plane. 

In fact those numerical methods provide very accurate 
solutions in general. But certainly if full analytical for-
mulae are utilized via symbol manipulating digital com-
puter programs, they definitely become invaluable for ob-
taining solutions of any desired accuracy. Moreover, sym-
bolic computing algorithms for scientific problems in gen-
eral represent a new branch of numerical methods that we 
may call “algorithmization” of problems. 

Copying with this line of recent researches and also 
due to the important role of the space distribution in un-
derstanding the dynamical evolution of globular clusters 
[8], the present paper is developed to: establish analytical 
solution for the space density distribution in globular clus-
ters. This solution depends on two parameters that can be 
obtained from star counts, and can be used to fit any or-
der of the outward decrease of the cluster density. *Corresponding author. 
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2. Basic Formulations 

2.1. Assumptions 

The distribution of stars in globular clusters is inferred 
from counts of stellar images on CCD Camera film. Al-
though several of the clusters appear to be somewhat ellip-
soidal in form [9] we consider only the case of spherical 
symmetry; the analytical results can then be applied to 
spherical clusters and those whose ellipticity is small. 
Through the departure from the spherical form is consid-
erable, the general problem of stellar distribution in such 
clusters, in practice, almost intractable. 

2.2. Relation between the Cluster Density and 
Plate Density Function 

Take the origin of coordinates to be the center of cluster 
and the positive direction of the Z-axis in the line of sight 
and towards the observer. Owing to the assumed symme-
try the X and Y-axes can be chosen arbitrary in the plane 
Z = 0. The positions of stellar images on the film will 
then be represented by the projections, parallel to the Z- 
axis, on XY plane. 

Consider a cylinder of small rectangular cross-section 
with axis parallel to OZ. Take the X axis through B, the 
point of intersection of the axis of the cylinder with the 
plane Z = 0. 

Let r denotes the distance from the center of an ele-
ment of volume dx dy dz at A and let  (r) be the density 
function. Then (r) dx dy dz is the number of stars in the 
volume element. On the CCD Camera film, these stars 
will to be within the area dx dy dz at B. 

Let f(x) dx dy be the number of stars observed in the 
element of the film corresponding to dx dy; f(x) is the 
plate density of the stars at a distance x (OB) from the 
center of the cluster as shown on the plate. Let R be the 
radius of the sphere, then we have 

 
2 2

2 2

R x

R x

f x dxdy  dxdy   (r)dz,


 

    (1) 

consequently 

 
 

R
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x

r (r)dr
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
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This is the integral equation, involving the plate den-
sity and the cluster density function  (See Figure 1). 

2.3. Determination of f(x) from Counts of Stars 

Let (x) denotes the number of images counted on the 
film within a circle of radius x, and let  (x + dx) the 
corresponding number within the circle of radius (x + dx). 
Since f is the number of images per unit area, then 

   2σ x πx f x                 (2.2) 

and 

    2
σ x dx π x dx f x .         (2.3) 

The number of images in the ring defined by the radii 
x and x + dx is equal to the difference between  (x + dx) 
and (x), then neglecting powers of (dx) greater or equal 
to two, we get 

   d x1
f x  .

2πx dx


            (2.4) 

Equation (2.4) will be used for obtaining f(x) from 
counts of stars on the film. [Note that, the negative sign 
is due to the fact that (x) is monotonic decreasing func-
tion as discussed in Section 3]. 

2.4. Solution of the Integral Equation (2.1) 

Let 

         
2 2 2 2h R x ; ξ R r  ,

d ξ
f x   θ h ;  r  ξ    ,

d

   


      

After calculations and from which the plate density 
vanishes at the periphery of the cluster corresponding to 
x = R, that is when h = 0, hence (h) = 0 for h = 0. Also 
the boundary of the cluster, the star density is small, de-
creasing to zero at the boundary; hence we can write f(x) 
= 0 at x = R, then we have 

 
R

1 22 2

r

1 d 1 df
(r) x r  dx.

π dx x dx
     
     (2.5) 

3. Empirical Formula for (x) 

Observations of globular clusters show very smooth 
spherical distribution of brightness. If we assume that the 
amount of light we measure is proportional to the number 
of stars giving rise to this light, we can determine the run 
of the star density as a function of distance from the 
cluster center. We can measure the brightness of globular 
cluster in successive rings concentric with the cluster  

 

 

Figure 1. Relation between the cluster density and plate 
density function. 
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center. This may be done by direct star counts on a film, 
or by photographic photometry in which circular aper-
tures of progressively large size are employed. The ra-
dius of the cluster image is taken as unity, then, what we 
can determine from such observations is the number of 
star images i  (xi) counted on the film within circles 
of radii xi for some i = 1, 2, , N(say) and xi  1. 

Now, since the stars are clustering in much closer 
packing near the center, while the outer parts are much 
looser, that is, (x) is monotonic decreasing function of x. 
The orders of the outward decrease differ from cluster to 
another and also differ from region to another of the 
same cluster. In order to account for these variations so 
as to suit many applications, we fit (x) to the curve 

  1
σ x

b nx



            (3.1) 

where b, and n are constants to be determined. 

Determination of b, n, and Their Error 
Estimation 

Before staring the analysis, it is convenient to summarize 
some of the basic definitions and properties of the least- 
squares solution. 

Basic Definitions and Properties 
Let y represented by the general linear expression of the 

form  where ’s are linearly independent  
m

i i
1

c φ x
i


functions of x. Let c be the vector of the exact values of 
the c’s coefficients and  the least-square estimators of 
c obtained from the solution of the normal equations of 
the form G  = h. The coefficient matrix G (m, m) is 
symmetric positive definite, that is, all its eigenvalues i, 
i = 1, 2, , m, are positive. Let E(z) denotes the expec-
tation of z and 2 the variance of the fit, defined as 

ĉ

ĉ



 2
mν q N m  ,

 ,

           (3.2) 

where 

  m
ˆ ˆq     

T
T Ty Φc y Φc   (3.3) 

N is the number of the observations y is a vector with 
elements yk and  (m, N) has elements ik = I (xk). The 
transpose of a vector or a matrix is indicated by the su-
perscript “T”. According to the least-squares criterion, it 
could be shown that [10]: 

1) The estimators  given by the least-squares method 
gives the minimum of qm. 

ĉ

2) The estimators  of the coefficients c, obtained by 
the method of least-squares, are unbiased, i.e., E ( ) = c. 

ĉ
ĉ

3) The variance-covariance matrix Var ( ) of the un-
biased estimators  is given by 

ĉ
ĉ

2 1ˆVar( ) v , Gc              (3.4) 

where G–1 is the inverse of G. 
4) The average squared distance between  and c is ĉ

 
m

2 2

i 1 i

1
E L ν .

λ

              (3.5) 

According to the above equations, the following algo-
rithm will be devoted for computing b and n from the star 
counts i ; i 1, 2, , N   . 
 Conputational Algorithm 1 
 Purpose 
To determine the constants b and n and their errors. 
 Input 
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2 2
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The probable errors of b and n 

4
b n

S N
e e ;   e e 

D D
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The average squared distance between the exact, the 
least squares values Q 

 
 2 2b n2

1
Q e

0.6745
 e          (11) 

4. Analytical Expression of (r) 

Having obtained the empirical formula for (x) as 

  1
σ x

b nx



                (12) 
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Appendix A 

Analytically Expression of the Space Density Function of Globular Clusters 
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