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ABSTRACT 

By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat 
space-time for description, the revised Newtonian formula of gravity is obtained. The formula can also describe the mo-
tion of object with mass in gravity field such as the perihelion precession of the Mercury. The space-time singularity in 
the Einstein’s theory of gravity becomes the original point r = 0 in the Newtonian formula of gravity. The singularity 
problem of gravity in curved space-time is eliminated thoroughly. When the formula is used to describe the expansive 
universe, the revised Friedmann equation of cosmology is obtained. Based on it, the high red-shift of Ia supernova can 
be explained well. We do not need the hypotheses of the universe accelerating expansion and dark energy again. It is 
also unnecessary for us to assume that non-baryon dark material is 5 - 6 times more than normal baryon material in the 
universe if they really exist. The problem of the universal age can also be solved well. The theory of gravity returns to 
the traditional form of dynamic description and becomes normal one. The revised equation can be taken as the founda-
tion of more rational cosmology. 
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1. Introduction 

Established on the foundation of curved space-time, Ein-
stein’s theory of gravity is the dominate theory at present. 
However, Einstein’s theory has some difficulties hard to be 
overcome such as the problems of normalization, singu- 
larity and uniqueness of gravity field’s energy and so on. 
In addition, it is difficulty to solve the non-linear Einstein’s 
equation of gravity field. It is always attractive to reestablish 
the theory of gravity in flat space-time without these trou-
bles. Since the 1940’s, many people has tried and many 
theories had been proposed [1,2]. These theories are con-
sistent with Einstein’s one under the condition of weak 
fields, but are different in strong fields. Meanwhile, these 
theories also have some problems hard to be overcome. 

The standard theory of cosmology faces many princi-
ple difficulties at present. As is proved below, the prob-
lems originate from the Friedmann equation which is un-
suitable to describe the high speed expansion of the uni-
verse. The reason is that two simplified and improper condi-
tions were used in the deduction of the Friedmann equa-
tion. They are the R-W metric and static energy momen-
tum tensor. At present, the R-W metric is considered with 

constant spatial curvature. However, the author had 
proved that strictly based on the curvature formula of the 
Riemannian geometry, when the scalar factor R(t) 
changes with time, the R-W metric has no constant cur-
vature [3]. The common understanding about the spatial 
curvature of the R-W metric is wrong. This idea would 
impose great influence on cosmology. Due to this result, 
many conclusions in the cosmology such as the densities 
of dark material and dark energy should be re-estimated. 

It is proved further in this paper that the R-W metric 
leads to the Galileo’s transformation of light’s velocity, 
instead of the Einstein’s transformation. So the R-W metric 
is not relativity metric and unsuitable to be taken as the 
basic space-time framework of modern cosmology. 

Meanwhile, because relative velocities exist between 
materials and observers in the expansive universe, the equa-
tion of cosmology should use dynamic energy momentum 
tensor, rather than static one as commonly used in the cur-
rent cosmology. 

In fact, E. A. Milne pointed out in 1943 that the Fried-
mann equation of cosmology could be deduced based on 
the Newtonian formula of gravity [4]. It means that the 
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Friedmann equation is equivalent to the Newtonian the-
ory actually. It is only suitable for describing the process 
of low speed expansion of the universe, but not for the 
process of high speed expansion. 

However, it is proved in this paper that if dynamic en-
ergy momentum tensor is used, the equation of cosmology 
would become very complex, so that it can not be solved 
actually. The pioneer of cosmology must have considered 
this problem and had to use static energy momentum 
tensor. In the early stage of cosmology, the Friedmann 
equation seemed to be appreciable because the expansive 
speed observed was low. When cosmology develops to 
present level, we observe the high speed expansion. In 
this case, the Friedmann equation becomes unsuitable for 
the problems such as the high red-shift of supernova. We 
have to find more precise method to describe them.  

It is proved in this paper that by transforming the geo-
desic equation of the Schwarzschild solution of the Ein-
stein’s equation of gravity field to flat space-time, the re- 
vised Newtonian formula of gravity can be obtained. The 
formula can well describe the perihelion precession of the 
Mercury. The space-time singularities in the Einstein’s the-
ory of gravity become the point r = 0 in the revised New- 
tonian formula of gravity. We have no the trouble of singu-
larities again. 

When the revised formula is used to describe the ex-
pansive universe, we obtain the revised Friedmann equa-
tion. Based on it, the high red-shift of supernova can be 
explained well without the hypotheses of the universal ac-
celerating expansion and dark energy. Many problems in- 
cluding the universe age to be too small can also be resolved 
well. In this way, we can get rid of the current puzzle situa-
tion of cosmology completely. 

2. Revised Newtonian Formula of Gravity 
Based on the Schwarzschild 

2.1. Revised Newtonian Formula of Gravity 

According to general relativity, the Schwarzschild metric 
(external solution) is 

 
1

2 2 2 2 2 2 2 2d 1 d 1 d sin d ds c t r r
r r

    


           
   

 (1) 

Here 2
02GM c  . Let 2    and substitute (1) 

into the equation of geodetic line, we have the integrals 

2d d
1      

d d

t L
c r

r s s c

     
 

       (2) 

Here   and L  are constants. By cancelling ds  from 
the formulas, we can obtain 

1
2 d

1
d

L
r

r t

 



   
 

               (3) 

We define 

d 1 dt
r

    
 

             (4) 

In which   is eigen time, t  is coordinate time. Then, 
let 1  , we have from (2) 

d dc s                    (5) 
Then, (3) becomes 

2 d

d
r L



                  (6) 

Here L  is the angular momentum of unit mass. (6) is 
just the conservation formula of angel momentum. 

We only discuss the motion of particles with mass in 
gravitational field. By considering (6), we write (1) as 

2 1 2 2
2d d d

1 1 1
d d d

t r
r

r r c c

  
  


                    
        

 (7) 

By considering (4) and (6), the formula above can be 
written as 

2 2 2 2

2 2 2

d
1

d

r c L L

r c r c r


 

       
   

      (8) 

Taking the differential of (8) about d , we get 
2 2 2 2

2 3 2 2 2

d 3
1

d 2

r L c L

r r c r




 
    

 
        (9) 

Note that all quantities in (9) are defined in curved 
space-time. According to the theory of the non-Euclidean 
geometry, although we can not transform whole metric of 
curved space-time into that of flat space-time in general, 
we can always transform the geodetic line described in 
curved space-time into that in flat space. Let 0r , 0  and 

0t  represent the space-time coordinates of flat space- 
time, due to the invariability of 2ds , we have 

2 2 2 2 2 2
0 0 0 0

1
2 2 2 2 2

   d d d d

1 d 1 d d

s c t r r

c t r r
r r



  


  

          
   

   (10) 

We see that the forms of third items on the two sides 
of the second equal sign of the formula above are com-
pletely the same. So we can take 0r r , 0   and 
get the relation between times 0t  and t  

1
2 2 2 2 2

0d 1 d 1 1 dc t c t r
r r

              
     

 (11) 

by considering (4), we get and from (8) 

2 2

2 3 2 2
d 1 1 d

L L
r c t

r r c r c r

 


       
   

  (12) 

Substituting it into (11), we get 
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2 2 2 2

0 2 2 3 2 4
d 1 1 d

L L
t t

r r c r c r

           
  

  (13) 

Comparing with (4), we have 
11

2 2 2 2 22

02 2 3 2 4
d 1 1 d

L L
t

r r c r c r

   


        
   

 (14) 

Because we have taken 0r r , all quantities on the 
right side of (14) have been defined in flat space-time. 
Note that in the classical Newtonian theory of gravity, at 
the directions of re  and e  in plane polar coordinates 
system, the partial motion equations of unit mass are 
individually 

22 2

2 2

d d

dd 2

r c
r

tt r

     
 

          (15) 

2 21 d d d
0   or   

d d d
r r L

r r t t

     
 

  (16) 

Substitute (16) into (15), we get 

2 2 2

2 3 2

d

d 2

r L c

t r r


                  (17) 

Comparing with (9) and let t  , except the revised 
item in the bracket of (9), we see that the forms of (9) 
and (17) are completely similar. So we can write (9) as 
the following vector equation 

2 2

0 02 2 2 3

d 3
1

d

L
m GMm

c r r
 

   
 

r r
       (18) 

Let 1u r  and consider (6), the formula above can 
be transformed to 

2 2 2

2 2 2

d 3
1

d

u GM L u
u

L c
 

   
 

        (19) 

This formula is the one used to describe the perihelion 
precession of the Mercury in general relativity. In the 
deduction process above, we use the equation of geodetic 
line (2). It means that we transform the equation of geo-
detic line into the revised formula of the Newtonian grav-
ity, in stead of transforming whole curved space-time to flat 
space-time. But it is enough for us to describe an object’s 
motion in gravity field. 

Now let’s prove that the effect of special relativity has 
been taken into account in (18). From (8), (12) and (14), 
we can obtain 

2 2 2
2

0 0

12 2 2 2 2 2

2 2 2 2 2 3 2 4

d d d
1

d d d

        1 1

r

r r c
V

t t r r

L L L L

c r c r r c r c r

  


  




             
    

  
       
  

 (20) 

2 2

2

0 0
12 2 2 2 2

2 2 2 3 2 4

d d d

d d d

1 1

V r r
t t

L L L

rr r c r c r


  



   


   
    
   

        
  

        (21) 

2
2 2 2

12 2 2 2 2

2 2 2 2 3 2 4

1

1 1

r

c
V V V

r r

L L L

c r r c r c r


 

  


     
 

  
      
  

       (22) 

12 2 2 2 2

2 2 2 3 2 41 1 1
V L L

rc r c r c r

   


         
  

        (23) 

Comparing with (14), we get 

2

02d 1 d
V

t
c

                (24) 

This is just the formula of time delay in special relativ-
ity. The result verifies the rationality of (18). Let 0t t  
at last, we write (18) as 

2 2

0 2 2 2 3

d 3
1 1

d

V L
GMm

t c c r r

 
     

 

p r
F    (25) 

It is the revised Newtonian formula of gravity based 
on general relativity. In the formula, 0m  is the static 
mass of moving particle and the center static mass 0M  
has spherical symmetry. Angle momentum makes gravity 
larger but speed makes it smaller. The result is equivalent 
to replace particle’s static mass with following effective 
mass in the Newtonian theory 

2 2

0 2 2 2

3
1 1

V L
m m

c c r

 
   

 
         (26) 

We can call m as the motion mass of gravity which is 
related to object’s speed and angle momentum. 

2.2. The Motion of Particle in Gravitational 
Field with Spherical Symmetry 

For simplicity, we only discuss the motion of a particle 
moves along the radius vector direction with 0L  . In 
this case, by considering (23), (25) becomes 

0
3

d

d 1

GMm

t rr
  


p r

F            (27) 

by multiplying dr  on both sides of (27), the potential 
energy of the particle in gravitational field is 

 
2

0
3

2
0 1

d d
2 1

1

m c
U r

rr

m c A
r






    


   

 
r

F r F

   (28) 
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The dynamic energy of particle is 

2 2
20

0 222 2

d d d
d d d

d d d

      d 1
1

T t
t t t

m V V
m c A

cV c

       

     


  



p p r
r V p V p

p V
 (29) 

when r  , we have 0V   and 2
2 0A m c  . So the 

law of energy conservation of a particle in the gravita-
tional field can be written as 

2 2
20

0 22 2

2
0

1 1
1

             1 1 0

m V V
T U m c

cV c

m c
r



 
     
   

 
     

 

     (30) 

when 1r   and V c , we get the classic law of 
energy conservation in the Newtonian theory of gravity 

2
0 0 0
2

m V GMm

r
               (31) 

In the situation of 0L  , we calculate the problem in 
the weak field with 1r  . By keeping items with the 
orders up to 2r , we have 

 
2 2

0
2 2 3

2
2

0 2 2

2 1 2

1

3
d 1 d

2 1

3
        1 1

1 2
            1 1 1

6 3

m c L
U r

c r rr

L
m c

r rc

A
r r




 


 

 
      

  

        
 

              
     

 
r

F r r

 (32) 

So the law of energy conservation is 

2 2
20

0 22 2

2 1 22

2 2

1 1
1

3 1 2
      1 1 1 1

6 3

m V V
E m c

rcV c

L

r r rc



  


    
 

                  
       

(33) 

Here E is a constant. 
Now let’s discuss the motion of a particle in the grav-

ity field. Suppose that a particle falls freely along the 
radium direction of gravity field, its velocity and accel-
eration are individually 

1 2
d

1
d

r
V c

t r r

  
     
 

         (34) 

22

2

1
1

2

c
a

rr

  
    
 

             (35) 

when r  , we have 0V   and 0a  . Suppose that 

the particle is at point 0r r  when 0t  , by the inte-
gral of (34), we get 

   3 2 3 2

0

2

3
ct r r 


     

    (36) 

It is obvious that every thing is normal within the re-
gion 0r  . The particle is monotonously accelerated by 
gravitation. There is no any singularity in the whole space- 
time. When particle is at the original point 0r  , we 
have 

2 2 2

2

lim
1

lim
22 ( 1)

x

x

c r
V c

r

c x c
a

x










  


   


         (37) 

 
2 2 2

lim lim
2 1 2x x

c x c x
F

x  
     


 (38) 

It indicates that the speed of particle tends to have 
light’s speed in vacuum at point 0r  . Acceleration is 
also finite. So within the region 0 r   , the motion of 
particle with static mass is continuous. Only at point 

0r  , the force acted on particles becomes infinite. But 
this kind of singularity appears in any theories in which 
particles are considered with infinite small size, and have 
nothing to do with space-time singularity. The singularity 
of the Schwarzschild solution is eliminated. 

3. The Fiedmann Equation of Cosmology 
Needs Relativity Revision 

3.1. The Fiedmann Equation is Equivalent to 
the Newtonian Theory of Gravity 

The Fiedmann equation of cosmology is based on the Ein-
stein’s equation of gravity. Because the equation is too com-
plex to solve, two simplified conditions are used. One is 
the R-W metric and another is the static energy momen-
tum tensor. Using them, we obtain from the Einstein’s 
equation of gravity 

 

 
2

2 2

4
3

3

2 2
4

R G
p

R

R R
G p

R R R



 


  

    



 
     (39) 

Here ( )R t  is scalar factor,   is curvature constant 
factor,   is the universe material density and p  is the 
intensity of pressure. By eliminating R  form (39), we 
obtain the Fiedmann equation 

2

2 2

8

3

R G

R R

 
 


             (40) 

Cosmic constant has not been considered in (39) and 
(40). We often either take it as zero, or combine it with 
effective material density for convenience. 
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However, British physicist E. A. Milne proved in 1943 
that the Fiedmann equation could be deduced simply 
based on the Newtonian theory of gravity. Though the 
Fiedmann equation is described in curved space-time and 
the Newtonian theory of gravity is described in flat 
space-time, the results are the same actually when we use 
them to calculate practical problems, especially when we 
take curvature constant 0  . However, the Newtonian 
theory of gravity is only suitable for the motions with 
low speeds. For the high speed expansion of the universe, 
it is unsuitable. The Fiedmann equation needs relativity 
revision due to this fact. 

We now repeat Milne’s deduction below. According to 
the principle of cosmology, the universe can be consid-
ered as a huge sphere with uniform and isotropic material 
distribution. According to the Newtonian theory, gravity 
acted on a body located at point r inside the sphere is 
only related to the mass contained in the sphere with ra-
dius r, having nothing to do with the mass outside the 
sphere. Suppose that the mass of uniform sphere to be 

   34 3M r t t  , in the direction of sphere radius, 
the Newtonian equation of gravity is 

2

2 2

d 4

3d

r GMm Gm
m r

t r


              (41) 

For the expansive sphere, by considering co-moving 
coordinate  r R t r  in which r  has nothing to do with 
time, (41) becomes 

     4

3

G t
R t R t


                  (42) 

(42) is the same as the first formula of (39) when 
0p  . Because mass is invariable in the expansive pro- 

cess, we have        3 3
0 0t R t t R t  , here 0t  is the 

time at present. We have 

     
 

     
 

d d d d

d d d d

R t R t R t R t
R t R t

t R t t R t
  

  
       (43) 

Substituting (43) in (42) and taking the integral, we 
obtain (40). In this case, integral constant   is equiva-
lent with curvature constant in the R-W metric.  

It is obvious that (40) is the direct result of the Newto-
nian theory of gravity, for it dose not contain any revised 
item of relativity. This is why the standard theory of 
cosmology is effective for same problems, but is ineffec-
tive for other problems such as the high red shift of su-
pernova. The reason is that two simplified conditions are 
used, so that the Freidmann equation becomes non-rela-
tivity theory actually. We discuss these problems below. 

3.2. The R-W Metric Violates the Principle of 
Invariance of Light’s Velocity 

According to the principle of cosmology, the universe is 
uniform and isotropy. The R-W metric is considered with 

the biggest space-time symmetry. Its form is 

 
2

2 2 2 2 2 2 2 2 2
2

d
d d d sin d

1

r
s c t R t r r

r
  


 

     
(44) 

In which  is curvature factor. When 0  , the me- 
tric becomes flat with 

  2 2 2 2 2 2 2 2 2 2d d d d sin ds c t R t r r r         (45) 

For light’s motion, we have d 0s  . When light 
moves along radius direction, we have d d 0   . 
According to (45), we obtain  

 
d

d

r c

t R t
                 (46) 

For the light’s source fixed at point r , coordinate r  
does not change with time. But for the light emitted by 
light’s source, coordinate r  changes with time as de-
scribed in (46). The velocity of space expansion is 

     d

d

r t
V t R t r

t
              (47) 

By considering (46) and (47), the velocity of light 
relative to observer located at the original point of refer-
ence frame is 

       

   

d d d

d d d

        

c

r t r
V t r R t R t

t t t

R t r c V t c

  

   
     (48) 

The formula indicates that light’s velocity is related to 
the expansion speed of space and violates the principle of 
invariance of light’s speed.  

In fact, at the moment when light is just emitted out, 
(48) is the Galileo’s addition rule of light’s velocity. 
When light moves towards observer, minus sign is taken 
in (48) so light’s speed is less than its speed in vacuum. 
When the light moves apart from observer, plus sign is 
taken. In this case, light’s speed exceeds its speed in 
vacuum. Especially, because r  increases with time, 
enough long time later, light’s speed may greatly exceed 
its speed in vacuum. 

This is not allowed in physics. As we know that the 
watershed between classical physics and modern physics 
is just on the invariance principle of light’s speed. Be-
cause the R-W metric violates this principle, it can not be 
used as the space-time frame for modern cosmology 
which is considered as the theory of relativity. Especially 
when the expansion speed of the universe is great, huge 
error will be caused. 

As for the curve space with 0  , let d 0s   and 
d  d 0  in (44), we obtain 

 
2d 1

d

r c r

t R t


   
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or 

 2

d d

1

r c t

R tr
 


            (49) 

On the other hand, as we known that coordinate r  
has no meaning of measurement in curved space. What is 
meaningful is proper distance. Suppose that an observer 
stays at the original point of coordinate system, the defi-
nition of proper distance for the R-W metric between ob-
server and light’s source is [5]. 

       1

2
0 1

d

1

r r
r t R t R t l r

r
 


       (50) 

Here  l r  equivalent to r  in the flat space. For il-
luminant material moving in the expansive universe, 
 l r  does not change with time. The velocity of illumi- 

nant material relative to observer is      V t R t l r  . By 

considering (49), the velocity of light emitted by illumi-
nant material moves in the curved space is 

       

       

1 1

2 2
0 01 1

2

d d dd d

d d d1 1

d
        

d1

r r

c

r t r r r
V t R t R t

t r tr r

R t r
R t l r V t c

tr

 



 
   
   

   


 



(51) 

So (51) still violates the principle of invariance of 
light’s speed. In fact, the four dimensional metric of flat 
space-time is 

 2 2 2 2 2 2 2 2 2d d d d sin ds c t r r r          (52) 

by using co-moving coordinate  r R t r  in (52), we 
obtain 

   

  

2 2
2 2 2

2

2 2 2 2 2 2 2

d 1 d 2 ( ) d d

         d d sin d

R t r
s c t R t R t r r t

c

R t r r r  

 
   

  

  




 (53) 

It is completely different from the R-W metric (44) 
when 0  . The metric (53) seems to be curved but is 
flat essentially. According to the principle of the Rieman-
nian geometry, if we can find a method to turn a curved 
space into flat, the original space is flat essentially. If we 
can not find such method, the original space is a curved 
space in essence. It is obvious that we can not find a 
transformation to turn (52) into (45) when   0R t  , the 
spatial part of (45) can not be flat!  

On the other hand, the four dimensional metric in which 
three dimensional space has a constant curvature   is 

2 2 2 2

2
2 2 2 2 2 2 2

2

d d d

d
      d d sin d

1

S c t s

r
c t r r

r
  



 

 
     

    (54) 

by using co-moving coordinate in (54), we obtain 

 
 

   
 

   

2
2 2 2

2 2 2 2

2
2 2 2 2 2 2

2 2

2 d d
d d

1 1

d
         d sin d

1

R t R t R t t r
S c t

R t r R t r

r
R t r r

R t r

 

  


 
   

   

 
     

 

(55) 

Let 0  , we reach (53) rather then (45). Therefore, 
if we use co-moving coordinate to describer the expan-
sive universe in which the space is flat, we should use 
(53), rather than (45). If we describe the expansive uni-
verse with constant curvature, we should use (55), rather 
than (44). 

Another result of using the R-W metric in cosmology 
is that it leads to the united universe time. In the R-W 
metric, 00 1g   indicates that we have the same time for 
any spatial point in the expansive universe. This obviously 
violates special relativity. Because there is a relative mo-
tion speed between two objects in the expansive universe, 
there exists time delay between them according to special 
relativity. It is actually the result of the Newtonian me-
chanics to use the united universe time in cosmology. 
This is another reason why we say that the Friedmann 
equation is equivalent to the Newtonian mechanics. 

However, it is easy to prove that if we use flat space- 
time metric (53) in the Einstein’s equation of gravity, the 
Einstein’s tensor would become zero with 0R  . In 
this way, we can not describe the gravity field of the ex-
pansive universe. Therefore, both the R-W metric and the 
flat space-time metric are unsuitable for cosmology. We 
should look for other proper methods to describe the ex-
pansive universe. 

3.3. Dynamic Energy Momentum Tensor 
Should Be Used in Cosmology 

The energy momentum tensor of ideal liquid is used in 
cosmology with the form 

 T p U U pg           (56) 

Here  U t  is the four dimensional velocity. In the 
standard cosmology, we take  0 1U t   and   0iU t   
with 00T  , 0 0iT  . It means that we take static en-
ergy momentum tensor energy in the Einstein’s equation 
of gravity without considering material’s velocity. 

This is an excessively simplified approximation. In fact, 
there exist relative velocities between materials and ob-
servers in the expansive universe. The most basic fact for 
cosmology is the Hubble’s red shift, which is explained 
as the kinematical effect caused by relative velocities be- 
tween observer and luminous material. If co-moving co- 
ordinate    r t R t r , material’s speed is    V t R t r   

0 . In fact, on the left side of the Fiedmann equation, 
we have   0R t  . How can we take   0R t   on the 
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right side of equation which contains energy momentum 
tensor? It is absolutely unjustifiable to use static energy 
momentum tensor to describe the expansive universe. In 
fact, if we use static energy momentum tensor to describe 
the expansive universe, what do we use to describer the 
static universe? This is a problem to make us embarrassing. 

According general relativity, we can use arbitrary ref-
erence frame to describe the gravity field. By using common 
spherical coordinate system, the partial velocities of an 
object which moves along the radius direction are  1V t  

 r t  ,    2 3 0V t V t  . The forth dimensional veloci-
ties are ( 1c  ). 

0 1 2 32 2

1
     0

1 1

r
U U U U

r r
   

 


 

  (57) 

To simplify discussion below, we use the R-W metric 
and take 0  . For the expansive universe with uniform 
distribution of material, dynamic energy momentum tensors 
are 

 

 

00 2

01 2

2

11 2

2
22

2 2
33

1

1

1

sin

p
T p

r
p r

T
r
p r

T p
r

T pr

T pr










 








 













              (58) 

3T g T p
                  (59) 

Substituting them in the Einstein’s equation of gravity 

1
8

2
R g G T Tg          

 
   (60) 

We get the motion equations of cosmology 

 2

3 1
8

21

r p
G p

r r

         


    (61) 

 
28

1

p r
G

r





 






              (62) 

   
22

2 2

2 1
8

21

p rr r
G p

r r r


 

 
      

  

 


(63) 

Substitute    r t R t r  in the formulas, we get 

 2 2

3 1
8

21

R p
G p

R R r

         


    (64) 

 
2 2

8
1

p Rr
G

R r





 




              (65) 

   
2 22

2 2 2

2 1
8

21

p R rR R
G p

R R R r


 

 
      

  

 
 (66) 

Take 0R   on the right sides but not on the left sides, 
we obtain the Fiedmann equation. But we can not do it in 
this way. Because   is a constant, we have three ways 
to make (65) tenable. The first is to let 0R    which 
describes the static universe. By considering the observa-
tion fact of the Hubble redshift, this is improper. The 
second is to take simultaneously 

 2 21    and   8R r A G p Rr B         (67) 

Here A and B are constants. From (67), we obtain 

 1    and   
B

V Rr A V Rr
p

    


      (68) 

The result violates the Hubble law too. In addition, these 
velocities are inconsistent, so (68) is impossible. The third is 
to get the solution from (65) 

 2 21

8

R r
p

GRr





 





             (69) 

Substitute (69) in (64) and (66), we have 

2 23 1
1 8

2

R R r
G

R Rr

 
 

      
 

 
      (70) 

2 2 2

2

2 1 1
8

2

R R R r
G

R R Rr Rr

 
 

      
 

  
  (71) 

by cancelling   from two formulas above, we obtain at 
last 

 

   

2 2 3 3

3
2 2 3 3

2

3 2 2

1 2 1 8 0

R
Rr R r R r

R

R r
Rr R r R r G

R


  

      

  

  
(72) 

The equation becomes so complicated that it is impos-

sible to solve actually. On the other hand, because the 

right hand sides of (64)-(66) contain r , if  t  and  p t  

are still unrelated to r , we should have  ,R R t r  by 

solving the equations. The result contradicts with the origi- 

nal definition  r R t r . In order to mate  R t  unre-

lated to r ,   and p  should be related to r . In this  
way, the principle of cosmology can not hold again. The 
result means that we will be in dilemma if dynamic en-
ergy momentum tensor is used in cosmology. 

Pioneers of cosmology must have considered this prob-
lem, so they had to use static energy momentum to estab-
lish the equation of cosmology. In the early stage of cos-
mology, the observed expansion speed of the universe 
was low, so the simplified motion equation could be suitable. 
When cosmology develops to now day’s level, we ob-
serve cosmic phenomena which take place in the high 
speed expansive processes such as the high red shift of 
supernova. The simplified Friedmann equation becomes 
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unsuitable so that many difficulties appear in the standard 
cosmology at present. This is the main reason why we 
have to introduce the hypothesis of the accelerating ex-
pansion of the universe, dark energy and non-baryon dark 
material. 

4. Velocity, Acceleration and Initial 
Conditions of the Universe Expansion 

4.1. Velocity and Acceleration of the 
Universe Expansion 

Because (72) can not be solved practically when dynamic 
energy momentum tensor is considered, we have to look 
for other method to describe the expansive universe. We 
prove below that based on the revised formula (25), the 
high red shift of supernova can be explained well. There- 
fore, we do not need the hypothesis of dark energy and 
the universe accelerating expansion again. 

In principle, we can take the CMB as static reference 
to describe the universe expansion. Practically, we take 
the earth as static reference frame for convenience. Sup-
pose that the universe material is distributed with spheri-
cal symmetry and uniform density  . The static mass of 
sphere with radius R is 34 3RM R  . Similarly we 
have 34 3rM r   with radius r. According to the 
Newtonian theory, gravity acted on a small object located 
at point r with mass 0m  is [6] 

0
2

0
2

R

r

GM m
r R

rF
GM m

r R
r

  
 


       (73) 

The formulas indicate that when mass 0m  is located 
outsider the sphere with r R , the gravity acted on it is 
equal to that when the spherical mass is centralized at the 
center of sphere. When mass 0m  is located inside the 
sphere with r R , the gravity acted on it is only related 
to rM , having nothing to do with the mass distributed 
outside the radius r. 

Suppose that the universe expands along the direction 
of radius. In the process, angle momentum L is equal to 
zero. We calculate gravity between a spherical shell with 
radius R and an object located at point r R  with static 
mass 0m  and speed rV  along radius direction. Suppose 
that rV  satisfies (22) approximately, we use (22) to de-
scribe object’s effective mass. According to (23) and (25), 
we have 

2 2 2
0

2 2 2

2 2
0

2 2

4
d 1 1 d

4 d
     1

1

R r

r

R

Gm R V V
F R

r c c

Gm V R R

r c R







   


  



   (74) 

Here  22 3R RGM c  . Let  28 3G c   , 
2

R R R  , and taking the integral of (74), we get the 
total gravity that the expansive sphere with radius R r  
acts on an object located on the spherical surface with 
static mass 0m  and speed rV  

 

2 2
0

2 2 2
0

2
0

3/2 2 2

4 d
1

1

2
   1

r
r

r

Gm V R R
F

r c R

Gm V
Q r

r c





 



  




  


           (75) 

   2 21 ln 1Q r r r r r          (76) 

On the other hand, according to special relativity, we 
have 

 
0 0

3/22 2 2 2

d

d 1 1

r

r r

m V m r
F

t V c V c
 

 


       (77) 

Based on (76) and (77), we get the acceleration of an 
object located on spherical surface 

  22

3/2 2 2

2
1 r

G Q r V
r

r c

 



  
   

 
           (78) 

The acceleration is just related to the mass inside the 
sphere, and unrelated to the mass outsider the sphere. We 
also consider (78) as the expansion speed of spherical 
surface with radius r. Let rV V  and using relation 

d d d dr V t V V r   in (78), we obtain 

 
 

2

2 3/2 22 2

1 d 4

d1

V G
Q r

r rV c

 



 


     (79) 

Let x r , we have 

2

2 2

8 2

3

G r GM
x r

rc c r

  
        (80) 

In the expansion process of the universe,   changes 
while spherical radius r changes. But spherical mass M is 

unchanged with   constant. We have d dx r   

d 2r  or d 2dr x   . Suppose that initial radius 

is 0r  ( 0x x ) and initial speed is 0V  , substituting the 
relation into (79) and take the integral. Let 

   
1 23 d

Q x
Q x x

x
            (81) 

we get 

   1 1 02 2 2 2
0

1 1

1 1
Q r Q r

V c V c
  

     (82) 

Let 
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   1 0 02 2
0

1
1

1
Q r C r

V c
    


     (83) 

we have 

   1 02 2

1
1

1
Q r C r

V c
  


       (84) 

   1 0

1
1

1

V

c Q x C r
 

 
        (85) 

Because (81) can not be integrated directly, we need 
approximate method. When x is very small ( 1V c ), 
by developing (76) into the Taylor’s series in the region 
of 0x  , we obtain 

  3 5 72 1 3

3 5 28
Q x x x x            (86) 

  2 4 6
1

3 3

20 56
Q x x x x            (87) 

By considering (80), (87) becomes 

   
2

0
1 1 2

2 3 3
1

20 56

GM
Q x Q r

r rc r

             
 (88) 

Substituting the formulas in (78) and (85), we obtain 
the formula of acceleration and speed of the universe 
expansion 

3 2 2

0
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3 2 3

1 3
1

10 20

29 3
      

14 56
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r

r r rr

r r

  

 

                
              



      (89) 
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 

1 0
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0
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2 3 3
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20 56

V
Q r C r

c

GM
C r

r rc r

 

 

             

 (90) 

4.2. Initial Condition of the Universe Expansion 

In the discussion above, we assume that material is only 
acted by gravity. However, practical situation is that strong, 
weak and electromagnetic interactions could not be ne-
glected in the early phase of the universe during which 
material density was great. Even more, some unknown 
interaction may exist. 

According to the theory of Einstein’s theory, material 
may be compressed into infinite density by gravity. How- 
ever, infinite density is unimaginable. In fact, the author 
had proved that due to use the improper boundary condi-
tion of flat space-time in the gravity theory of curved 
space-time, the current theory of singularity black hole is 
wrong. By strict calculation based on the Einstein’s equa-
tion of gravity and curved boundary condition, singular 

black hole with infinity density do not exist [7,8]. By the 
same reasons, the fashionable idea that the universe 
originated from infinite small point is also impossible. 

In order to avoid infinite density, we assume that there 
exist a certain mechanism so that material sphere with 
mass M can only be compressed to a finite radius r0. In 
this way, the motion equation of the universe expansion 
should be revised as 

   0 nm r F r F r              (91) 

Here  F r  is gravity and  nF r  is the sum of other 
forces. For convenience, we simplify 

     
2

0
021

2n

m V
F r A r r r

c
        (92) 

Here  A r is undetermined function. It corresponds to 
an infinite potential barrier with radius r0 on which the 
spherical surface can not be contracted further. Mean-
while, by the action of  nF r  at the spherical surface 
with radius 0r r , the process of contraction become 
expansion and the surface moves with a positive accel-
eration. When 0r r , other forces become zero and only 
gravity acts. When 0 0r  , it is just the so-called big 
bang of the universe from an infinite singular point. By 
considering (92), (79) becomes 

 
     

2

02 3/2 22 2

1 d 4

d1

V G
Q r A r r r

r rV c

  

    


(93) 

The integral of (93) is 

     1 1 0 02 2 2 2
0

1 1

1 1
Q x Q r A r

V c V c
    

      (94) 

Let 

     1 0 0 02 2
0

1
1

1
Q r A r K r

V c
      


   (95) 

 0K r  represents the initial condition of the universe 
expansion. For different objects located at different posi-
tion r now days, their initial positions 0r  and  0K r  
are different. We will discuss how to decide  0K r  
later. In this way, (94) becomes 

   2 0

1
1

1

V

c Q r K r
 

 
         (96) 

Under the condition 1V c , by considering (86) and 
(88), the formulas of velocity and acceleration can be 
written as 

   

 

1 0

2

0
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2 3 3
   1

20 56

V
Q r K r

c

GM
K r

r rc r

 

 

             

 (97) 
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1

10 20
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r

r r rr

K r r r

  



                    
  


   (98) 

Here     2 21 2K r K r V c   . If expansive veloc-
ity is great, we should use (78) and (96) directly. 

5. Red Shifts of Cosmology and Hubble 
Diagram of Supernova 

5.1. Red Shift of Cosmology 

According to the Doppler’s formula, when celestial body 
moves along radius direction, we have relation between 
speed and red shift 

1
1

1

V c
Z

V c


 


             (99) 

Suppose that observer is located at the origin point of 
flat reference frame, the distance between observer and 
celestial body is  r t  at moment t . In the expanding 
process of the universe, celestial body moves from 1r  to 

0r  with 0 1r r , while the light travels from 1r  to ob-
server along opposite direction. Suppose light’s speed is 
invariable in the process, we have following relation 

0 0

1 1

1 d
d

t r

t r

r r
t t

c V
               (100) 

According to (96), we have 

    
0 0

1 1

1

1 0

d d

1 1 1

r r

r r

r r
r

V c Q r K r
 

  
    (101) 

The real distance between observer and celestial body 
is 0r  at present moment 0t . We know the universe ma-
terial density 0  at time 0t , but do not know its value 

0  at arbitrary time t. By considering relation 3
0 0r   

3r , we write (80) as 

32
0 0

2 2

88

3 3

G rG r
r

c c r

 
      (102) 

Using (102) in (101) and taking the integral, we can 
obtain the relation in principle 

     1 0 0 1 0, ,r f r K r f r K r       (103) 

In the formulas above, 0 , 1r  and Z are known through 

observations, but  t , 0r  and  0K r  are unknown. By 

the relation   3 3
0 0t r r  , we can determinate  t . By 

connecting (100) and (103), we can determinate 0r  and 
 0K r . (101) can only be calculated by numerical method 

through computer. By taking G = 6.67 × 10–11, r0 = y0 × 
1026 m, r1 = y1 × 1026 m and 0  = b× 10–26 kg/m3, we have 

3
00.25

by
x

r y


           (104) 

We use x as basic variable to calculate y0 and  0K r  
in which b, Z and y1 are input parameters. According to 
this paper, we actually deduce the initial situations of the 
universe expansion reversely based on the present observa-
tions of red shift and distances. In other words, as long as 
the initial conditions of the universe expansion are known, 
we can know its current situations. 

5.2. The Red Shift of Ia Supernova 

In Figure 1, the curved line with 0 0.3m   and    
0.7  represents practical relation between red shift and 
distance of Ia supernova at the early period of time t. Ac-
cording to photometry measurement, the density of lu-
minous material in the universe is about 28

0 2 10    
kg/m3 at present day. Because there exist a great mount 
of non-luminous material, we suppose that practical ma-
terial is 10 times more than luminous material and let 

27
0 2 10    kg/m3. In Figure 1, we take 5.5Bm    

5log dL  in which dL  is luminosity distance with unit 
length 6 2210 3.09 10 mpc   . But the concept of luminos-
ity distance is unnecessary in this paper for our discus-
sion is based on flat space-time. So we need to transform 
dL  to real distance r. 

The curved line in Figure 2 shows the relations be-
tween red-shifts, distances and parameters of initial con-
dition of Ia supernova. The vertical coordinate is the 
values of  0K r . The bottom horizontal coordinate is 
the value of red-shift. On the upside, under the line of 
horizontal coordinate are the values of distance r, above 
the line is the values of r0. For Z = 1 and 25Bm  , we 
get 26

1 1.23 10 mr   . By the numerical calculation, we 
obtain 26

0 1.91 10 mr   and   2
0 8.09 10K r     . For Z 

= 0.5 and 23.1Bm   corresponding to r1 = 0.67 × 1026 
m, we obtain 26

0 0.91 10r    and   2
0 3.41 10K r    . For 

Z = 0.1 and 19.1Bm   corresponding to r1 = 0.15 × 1026 
m, we obtain r = 0.16 × 1026 and   3

0 5.56 10K r    . 
 

 

Figure 1. Hubble diagram for red shift and distance of Ia 
supernova (Cited from Ricss A.G. et al., 1998） 
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Figure 2. Relations between red-shifts, distances and initial 
parameters of Ia supernova. 

 
In this way, we can explain the high red shift of Ia su-

pernova well. The hypotheses of dark energy and the accel-
erating expansion of the universe become unnecessary. 
The universe began its expansion from a finite volume, 
rather than from a singularity. 

6. Revised Equation of Cosmology 

In order to compare with the equations of cosmology, we 
now transform (97) and (98) to the form of the Fried-
mann equation. Suppose that the universe is a uniform 
sphere with density  t  . We define    ,r t R t r r  
in which r  is a parameter unrelated with time. Let 0t  
represent today’s time, we have    0 0 ,r t R t r r r   
and can write (80) as 

2 2 2
2 2

2 8

3

GM G
r b R r

r c r c

  
      (105) 

Here  28 3b G c  . Under the condition V c , (100) 
can be written as 
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      




    (106) 

Similarly, let  0k K r  , we can write (97) as 
2 2

2 3 3
2

8 3 3
1

3 20 56

R k G b b
Rr R r

R R
  

   
       

  


(107) 

On the other hand, the Friedmann equation containing 
cosmic constant   are 

 4
3 2

3

R G
p

R  
   


        (108) 

 
2

2
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3

R k G

R R  
  

   
 


       (109) 

Here   is considered as a constant energy density 
corresponding to vacuum and   in the current cosmol-

ogy. Comparing (106) and (107) with (108) and (109), 
we have 

2
2 2 3 33 3

20 56

b b
Rr R r                  (110) 

2 2
2 5/2 2 2 2 3 323

60 30 35

b b b
p Rr R r R r        (111) 

It is obvious that after (110) and (111) are used, re-
vised equations in this paper are with the same form with 
the Freidmann equation. The differences are that   is 
not a constant,   and p are also related to r . In order 
to be consistent with the observation of Ia supernova’s 
red shift, the current theory have to assume 3 2p     

0 , so that we have to think that the universe is pushed 
by repulsive force and do accelerating expansion. Ac-
cording to this paper, we always have 13 2 0p    , 
so there is no repulsive force and accelerating expansion 
again. Because the forms of differential equations (106) 
and (107) are very complex, it is more convenience for 
us to use (97) and (98) directly to do calculations. 

7. The Hubble Constant, Dark Material and 
the Universe Age 

7.1. The Hubble Constant 

According to (97), we have 

 
2

0
02

2 3 3
1

20 56

GMV
Z K r

c r rc r

               
(112) 

Let e  represent the equivalent density of the uni-
verse 

2
3 3

1
20 56e r r

  
           

    (113) 

We get 

 
2

02

8

3
eG r Hr

Z K r
cc

           (114) 

At present 0t t  and 0r r , the Hubble constant is 

 00
0 2 2

0

8

3
e

K rG
H

c r

 
             (115) 

We see that 0H  is related to  0K r  and 0r , not a real 
constant even under condition 0 1r  . This is the 
reason why we can not determinate the Hubble constant 
precisely up to present days. 

In fact, only taking the first and last items in (98), we 
obtain the result of the Newtonian theory 

 
22

0
02 2

82

2 2 3

G rV Z Z
K r

c Z Z c

   
 

 (116) 
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Taking 0  = 2× 10–26 kg/m3 and 310r  , we get 
232.84 10 mr   . In cosmology, we generally take 0H  
1 165 Km s Mpc    182.0 10 s  . We get V c Z   

31.89 10  and   6
0 2.57 10K r     according to (116). 

In the calculation, we consider r as the present position 
of luminous celestial, without considering its practical 
position to be r0. For the situation with Z = 1 and 1r  

261.23 10 m  , according to (116), the result is  0K r  
171.04 10 0   . The result indicates that even though 

based on the Newtonian theory of gravity, we can also 
explain the high red shift of the Ia Supernova by taking 
different  0K r  for different objects. It is also unnec-
essary for us to introduce the concept of dark energy by 
introducing the effect of initial conditions. 

For 31.89 10Z    and 232.84 10 mr   , by using (96) 
for accurate numerical calculation, the result is 0 2.85r   

2310  and   6
0 3.0 10K r     which is similar to that 

based on (116). But for the situations of high red shift, 
the differences of results are large. 

7.2. Non-Baryon Dark Material 

According to the theory of nuclei synthesis in cosmology, 
relative density of baryon is b b h   , in which b  
is baryon’s density and h  is total density of all mate-
rial. We have relation [9] 

2
0 0.0037      9b h         (117) 

Take 1 1
0 65 Km s MpcH     which corresponds to 

0.65h  , we have h  = 7.9× 10–27 kg/m3 and 0.08b  . 
Practical observation is 0 0.30m  , so the theory indi-
cates that our universe is mainly composed of non- 
baryon material. However, according to this paper, by 
considering the existence of parameter  0K r  in (115), it 
is enough for us to take 0h   2 × 10–27 kg/m3 and 
get h   0.325  and 0.32b  . We do not need the 
hypothesis of non-baryon dark material. At least, we do 
not need to assume that non-baryon dark material is 5 ~ 6 
times more than normal baryon material in the universe if 
non-baryon dark material exists actually. 

7.3. The Age of the Universe 

We consider the universe as a material sphere with radius 
11

0 1.5 10 mr    at initial moment, which is about the 
distance between the sun and the earth. Long enough 
later, an observer located at the original point of refer-
ence frame receives the light omitted from a celestial 
body on the spherical surface with radius 261.23 10r    
kg/m3 and find its red shift is 1Z   at time 0t . Sup-
pose that the material density of the universe is 

27
0 2 10    at present, the initial density inside the 

sphere is 17
0 5.9 10    kg/m3, equal to the density of 

neutron star. According to the calculation before, the 
celestial body has moved to the position 26

0 1.91 10r    

m at present moment. We consider this distance as the 
radius of the observable universe and substitute corre-
sponding value  0 0.0809K r    to following formula 
to calculate the time during which the universe expands 
from radius 11

0 1.5 10r    m to 26
0 1.91 10r    m. 

  
0 0 0

1 0 0 2

d d
d

1 1 0.0809 1

t r r

t r r

r r
t t

V c Q r 

   
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   (118) 

The result is 30.8t   billion years. But this value is 
not sensitive to small initial radius. Taking 20

1 10 mr  , 
equal to the radius of the Milky Way galaxy, the result is 
the almost same. It means that the age of the universe 
mainly depends on the later expansive process. 

Using (118) to calculates the time during which the 
universe radius expanses from 1.23 × 1026 m to 1.95 × 
1026 m, the result is 13 billion years, so the time during 
which the radius of the universe expanses from 111.5 10  
m to 1.23 × 1026 m is 17.8 billion years. This is just the 
universe age we consider at present. In the present cos-
mology, the universe age is estimated to be about 10 ~ 15 
billion years, too short to the formation of galaxies [10]. 
The problem does not exist according to this paper. 

8. Conclusions 

By transforming the geodesic equation of the Schwarzs- 
child solution of the Einstein’s equation into flat space- 
time to describe, the revised Newtonian formula of grav-
ity and the revised equation of cosmology are obtained. 
The singularity problem in the Einstein’s theory of gravity 
described in curved space-time is eliminated thoroughly. 

Because using two improper and approximate condi-
tions, the Freidmann equation becomes the result of the 
Newtonian theory of gravity actually. It is only suitable 
to describe the low speed expansive processes of the uni-
verse, unsuitable to describe the high speed expansion. 
The equation of cosmology needs relativity revision.  

By using the revised Newtonian formula of gravity, 
the revised equation of cosmology is obtained. The high 
red-shift of supernova can be well explained. It is unnec-
essary for us to introduce the hypotheses of the universe 
accelerating expansion and dark energy. It is also unnec-
essary for us to assume that non-baryon dark material is 5 - 
6 times more than normal baryon dark material if it exists 
actually. Many problems existing in cosmology including 
the problem of the universe age can be resolved well. 

In this way, the theory of gravity returns to the tradi-
tional form of dynamic description and becomes normal 
one. The revised equation can be used as the foundation 
of more rational cosmology. 
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