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ABSTRACT 

In this work we consider the Von Kármán system with internal damping acting on the displacement of the plate and 
using the Theorem due to Nakao [1] we prove the exponential decay of the solution. 
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1. Introduction 

Theodor von Kármán (1910) [2] started the nonlinear 
system of partial differential for great deflections and for 
the Airy stress function of a thin elastic plate. For several 
years this system was studied in different situations. Us-
ing frictional dissipation at boundary, I. Lasiecka et al. 
[3-5] proved the uniform decay of the solution. G. P. 
Menzala and E. Zuazua [6] by semigroup properties gave 
the exponential decay when thermal damping was con-
sidered. For Viscoelastic plates with memory, J. E. M. 
Rivera et al. [7,8] proved that the energy decays uni-
formly, exponentially or algebraically with the same rate 
of decay of the relaxation function. C. A. Raposo and M. 
L. Santos [9] gave a General Decay of solution for the 
memory case. In [10-13] the authors consider the von 
Kármán system with frictional dissipations effective in 
the whole plate, in a part of the plate or at the boundary. 
It is shown in these works that these dissipations produce 
uniform rate of decay of the solution when t goes to in-
finity. In this work we also consider the system with in-
ternal damping, which is the natural problem. A distinc-
tive feature of our paper is to use Nakao’s method to 
show that the energy decays exponentially to zero.  

2. Existence of Solution 

We use the standard Lebesgue space and Sobolev space 
with their usual properties as in [14] and in this sense 

 and  ,  ,   denotes the inner product in  and 2L
1
0H  respectively and by     we denote the usual norm 

in . Let  be a bounded domain of the plane with 

regular boundary 

2L 

 . For a real number  we de-
note 

0T 
 0,Q T   and . Here 0,T    ,u u x t  

is the displacement,  ,v v x t  the Airy stress function 
and   is the unit normal external in . With this no-
tation we have the following system 



 2
tt  

2 

, inu u v

in Q

t

]u

u u 

[ ,v u

Q             (1) 

                  (2) 

   0 1 0 inu u0 ,u u t              (3) 

0 inu u v v                 (4) 

where 

 
2 2 2

2 2
, 2

u v

x y

2 2

2

u v u
u v

x y

2

2

v

x y y x

  
 

 
 


 


   

 

Now using the same idea of [6] we have the following 
result of existence of solution. 
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,u v  weak solution of (1)-(4). 
Proof. We defining the energy  of the system 

(1)-(4) by 
 E t
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2
E t t u t v t    
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tu . 

This system is well posed in the energy space (see [15]) 
and we have and E’(t) < 0. Galerkin’s method together 
with the dissipative properties of the energy give us *Corresponding author. 
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global existence of solution in the energy space. Finally 
using the results from [5] on the regularity properties of 
von Kármám bracket the uniqueness follows. 

3. Asymptotic Behaviour 

In this section, we will use the Theorem of Nakao to 
prove the exponential decay of the solution. 

Theorem 3.1. (Theorem of Nakao) Let  E t  be a 
nonnegative function on  satisfying  0,
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Proof. See page 748 of [1]. 
In the sequel we have two lemmas, 
Lemma 3.1. The functional      2 1F t E t E t    
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from where follows 
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Performing integration in 0 t t 1   , we have 
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Now, choosing C such that u C u   and applying 
Cauchy-Schuwarz inequality we get 
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from where follows 
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Now we are in position of to prove our principal result. 
Theorem 3.2. The solution  satisfies  ,u v
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Proof. From (7) and (10) we obtain 
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