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ABSTRACT 

The present work explores a new phenomenon 
that not all the transition probability of two 
photon processes is negligible at low irradiance. 
The irreducible representation 2B2 of C2v is un- 
expected, for there is no much deviation in os- 
cillator strength for two-photon and single-pho- 
ton process A1 to 2B2. This new phenomenon is 
only possible to be explored by the symmetrical 
consideration: the necessary and sufficient con- 
dition is molecular plane coincident with yz 
plane or the operation vσ (yz) for group C2v. It is 
only possible to be evaluated out by use of the 
full relativistic quantum mechanical theory. 
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1. INTRODUCTION 

Since two-photon absorption had been theoretically 
described by Maria Göppert-Mayer as early as in 1931, 
the multiphoton process has been one of the most inter- 
ested focuses after laser sources and synchrotron radia- 
tion.Two-photon absorption has been widely exploited in 
different fields due to its quadratic dependence on the 
irradiance, which makes it possible to confine the laser 
excitation to the focal volume. Such feature has led to a 
large number of technological applications, such as mul- 
tiphoton fluorescence microscopy and two-photon pho- 
topolymerization.  

The water molecule with only 10 electrons is an ideal 
system for comparing theory and experiment [1]. The 
process  of H2O system has been excited by use 
of 266 nm two-photon excitation energy of 7.5186 eV.  

Χ Β 

However, some of theoretical methods of two-photon 
absorption spectra were determined based on the density 
functional theory (DFT) with B3LYP functional as im- 
plemented at the Gaussian 03 package [2]. This is a non- 

relativistic theory. It is better to use the full relativistic 
theory which is involved in both space and time symme- 
try [3]. The inclusion of inversion with the spatial rota- 
tion as a symmetry operation suggests through the rela- 
tivistic equivalence of space and time that we also in- 
clude a time-reversal operation, which is related with 
4-dimensional Minkowski space. Time-reversal symme- 
try is introduced in Atomic and Molecular reaction Sta- 
tics in 1996 [4]. 

Both furan (C4H4O) and molecule CHe2++ are the C2V 
symmetry. All the carbon, hydrogen and oxygen atoms of 
furan form a planar ring with 2pπ delocalization. It is 
necessary to explore its two photon processes and related 
with fluorescence. Molecule CHe2++ is one of possible 
species to solidify the α-particle emitted from plutonium 
atom, which is the most significant. It is to prove that 
there are no much deviation in the oscillator strength for 
single-photon and two-photon process A1 to 1B2 of group 
C2V. 

2. THE FULL RELATIVISTIC THEORY 

Symmetry plays an important role for quantum me- 
chanical theory. There are three levels for quantum me- 
chanical method: Non-relativistic based on the single 
point group, relativistic based on the double group and 
relativistic based on the full symmetry group or quarter- 
nion symmetry. 

In consideration of the equivalence of space and time, 
for the relativistic theory based on the full symmetry 
group or quaternion symmetry, the time reversal symme- 
try operation is included in the symmetry group. It is 
well known that the product of two symmetry operators 
is represented by the product of the corresponding uni- 
tary matrices in the theory of group representation, how- 
ever, time reversal symmetry operation is an antiunitary 
operator. The inclusion both of space and time operations, 
the group is called the full symmetry group, and their 
group representation is called a co-representation, this 
nomenclature is introduced by Wigner. The co-repre- 
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sentation is not unitary representation; however, it is still 
possible to be broken down to irreducible form. The third 
level, i.e., relativistic quantum mechanical theory based 
on the full symmetry group or quaternion symmetry is 
firstly applied by the work of T. Saue and the others [5]. 

Time reversal operator or called Kramer operator [4] is 
defined as follows 

   *ˆ , ,Κ r t r t                 (1) 

If Hamiltonian Ĥ  is a real function of r, then  

       
     

* *

*

ˆ ˆ ˆ, ,

ˆ ˆ ˆ, ,

ΚH r r t H r r t

H r r t HΚ r t

 

 

 

  
       (2) 

i.e. 

ˆ ˆ,H Κ  0                   (3) 

The commutator (3) is the necessary and sufficient 
condition for two operators Κ̂  and Ĥ  having the 
same set of eigenfunctions, that is ,the state is invariant 
to time reversal(motion reversal). 

It is proved that time reversal operator is antiunitary 
[4], i.e.  

*ˆ ˆ                  (4) 

It is also anti-linear operator. 
Kramer theorem [4,6]: It can be proved that 2ˆ 1Κ    

corresponding to J value of half odd integer, i.e. fer- 
mions, there will be the new double degeneracy by time 
reversal; and 2ˆ 1Κ    corresponding to J value of in- 
teger, i.e. bosons, with no double degeneracy. 

For the time-independent Dirac equation   

 2ˆ ˆ ˆˆand .D Dh E h mc c p      V    (5) 
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2*2, unit matrix.
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
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

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     (6) 

And Pauli spins matrices 

0 1 0 1 0
; ;

1 0 0 0 1x y z

i

i
  

    
           

    (7) 

If , It is the Dirac equation of free electrons.  ˆ 0V 
Now，time reversal operator is defined using another 

equivalent method, i.e. Kramer theorem [4,7], in which 
2ˆ 1Κ   , that is 2Κ̂      , in which the state are 

recovered by twice of time reversal, however, the  wave 
function is changed to the negative; If 2ˆ 1Κ   , that is 

2Κ̂   , in which the state are recovered by twice of 
time reversal, the wave function is unchanged. Then   
and   are said to form a Kramers pair .Therefore, the 
operator can be expanded in terms of Kramer’s partners 
   and  . For example, Hermitian of one-electron 

operator [5,7] is defined as follows  

* *
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where  

ˆ ˆ,zd d i
z x .

y

  
  
  

           (9) 

It is easy to know 

2
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That is, A is a Hermitian and B is antihermitian. For 
Kramer’s partners, Dirac operator ˆ

Dh  can be expressed 
as  

2 2

ˆˆ 00ˆ
ˆˆ0 2 0
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z
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   (12) 

where, ˆ
Dh  is expressed as the quaternion, which exhib-

its the time reversal symmetry. 
Quaternion algebra [8] was developed by Hamilton 

and Fresenius, however, limited applications of quarter- 
nion in quantum mechanics have been made in recent 
years. 

Quaternion is expressed as  

3

0 1 2 3
0

q V e V V i V j V 


 



     k


.

     (13) 

where  

1 2 3; ;z y xe i i e j i e k i  
  

         (14) 

where , ,  are quaternion units, i-imaginary, 0 , 

1 , 2  and 3  are real part, 
i


j


k


V
V

V V z , y  and x  are 
Pauli spins matrices in (7). Quaternion includes 3-di- 
mension complex space and one dimension real space. It 
is known from (7) to (11) that quaternion algebra in- 
cludes both time and space reversal symmetry, then, it is 
called the full symmetry group, its matrix representation 
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is called co-representation. The ˆ
Dh

E

 in (12) is the Dirac 
operator of full symmetry group. The Dirac equation can 
therefore be rewritten into quaternion algebra form 

ˆq q q
Dh                   (15) 

In this paper, the study of furan (C4H4O) and CHe2++ 
molecule are based on the full relativistic quantum me- 
chanical theory for two-photon excitation, and the SAC- 
CI (The Symmetry Adapted Cluster/Configuration Inter- 
action Method (SAC-CI) ) method [11] for single-photon 
excitation ,which would be preferable by comparison.  

3. TWO PHOTON PROCESSES 

The transition probability of the two photon and three 
photon processes are obtained from the second-order and 
three-order approximation coefficients of time-dependent 
perturbation theory [9], separately. Let us now write the 
Hamiltonian operator as 

0H H  H                (16) 

where H   is the perturbation added on 0H . Following 
the electromagnetic theory, the x component of the per- 
turbation H   is expressed as 

 0 , etc.i t
x x x xH E E e      i te      (17) 

Substituting Eq.16 into the time-dependent Schrod- 
inger equation, then 
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Carrying out the integration, we have the transition 
probabilities for the single photon and two photon pro- 
cesses  

 
 


21

21 2πn

k n nk n k

C
W H

t h
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And  
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where  satisfies the resonance relation.  n kE E 
In Eq.18, the zeroth-oder coefficient, i.e. the zeroth- 

oder approximation representation is a constant, and the 
first and secondary approximations are also given. The 
transition probabilities are given in Eq.19 for single- 
photon and in Eq.20 for two-photon absorptions. The use 
of two identical photon absorption is just a particular 
case of Eq.20. 

The nth-order time-dependent perturbation theory is 
not only a mathematical method, but also with more phy- 
sical significance. In fact, Göppert-Mayer noticed that 
the second-order perturbation theory is able to describe 
two-photon absorption. In the two-photon absorption, the 
two photons simultaneously transfer their energy to the 
atom. Furthermore, it became clear after Göppert-Mayer’s 
work that higher-order perturbation theory reveals mul-
tiphoton absorption processes. 

The parity selection rules can be described as follows 
[10]. The Racah’s normalized electronic multipole mo- 
ment is expressed as 

    
1/2

4π
, ,

2 1
k k
q qC Y

k
   

 
  

  
      (21) 

where, for k = 0, 1, 2, 3, ···, are called monopole, dipole, 
quadruple, octapole moments… The electronic dipole 
transitions of single photon processes connect two states 
with different parity, for operator 1 ,qC    has an odd 
parity. However, for electronic dipole transitions of two 
photon processes, the connected states are with common 
parity due to the second-order approximation coefficients 
of Eq.18. 

Symmetry selection rules based on the irreducible re- 
presentation of group are the same for both single-photon 
and two-photon absorptions. 

The transition probability is a key to apprehend the 
two photon processes [9]. The transition probability of 
single photon processes is proportional to the square of 
transition moment from Eq.19, i.e. to the square of elec- 
tric vector which is proportional to irradiance, however, 
the transition probability of two photon processes is pro- 
portional to the product of two transition moment, there- 
fore, proportional to its quadratic dependence on the ir-
radiance. This is why the transition probability of two 
photon processes could be negligible at low irradiance; 
however, it will be increased rapidly with the irradiance. 

4. TWO PHOTON EXCITATION OF C4H4O  
AND CHe2++ 

In order to review two photon excitation of furan and 
CHe2++, the energy, excitation energy and oscillator 
strength at light speed 137.036 au are listed in Table 1 
and Table 2, which is compared with the results of sin- 
gle-photon excitation by SAC-CI method (The Symme- 
try Adapted Cluster/Configuration Interaction Method 
(SAC-CI)) [11]. 

For a given initial irreducible representation, the final 
irreducible representation is determined from the Table 3. 
For example, from the initial state A1 and its y compo-
nents of transition moment, then, and the final state is B2. 
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Table 1. The calculations of two photon excitation at light speed 137.036 au for furan (C4H4O), (Two photon and Single-photon both 
at the same geometry/Å, deg: CO = 1.3553; CH1 = 1.07693; CH = 1.07832; CC1 = 1.35563; CC = 1.4295; HCO = 115.81476; COC 

= 106.90016; CCO = 110.53531; HCC = 126.50286: Ground state 1
1X A ; DIPLEN: the component of dipole length integrals). 

Two photon ( DIRAC10/6-311G**) 
E/au = −228.7900456 

Single-photon (SAC-CI/6-311G**) 
E/au =−228.6796844 Process 

Excitation energy/eV Oscillator strength DIPLEH/au Excitation energy/eV Oscillator strength DIPLEH/au 

A1 Excitations are from this state Excitations are from this state 

1A1 7.5737 0.85D-08 −0.21D-03 (Z) 7.0065 0.0012 −0.0835 (Z) 

2A1 8.1797 0.41D-06 −0.14D-02 (Z) 9.2248 0.6202 1.6566 (Z) 

1B1 4.2142 0.14D-08 −0.11D-03 (X) 8.4775 0.0293 −0.3756 (X) 

2B1 6.9253 0.80D-09 −0.69D-04 (X) 9.1635 0.0032 0.1189 (X) 

1B2 4.2142 0.11D-09 −0.14D-04 (Y) 7.0326 0.1838 −1.0328 (Y) 

2B2 6.4534 0.1384 0.94 (Y) 9.7175 0.1899 0.8930 (Y) 

1A2 4.2143 0.0000 0.0000 7.7168 0.0000 0.0000 

2A2 6.9253 0.0000 0.0000 8.7891 0.0000 0.0000 

 
Table 2. The calculations of two photon excitation at light speed 137.036 au for CHe2++ (Two photon and Single-photon both at the 

same geometry/Å, deg: CHe = 1.1135; HeCHe = 102.0; Ground state 1
1X A ). 

Two photon (DIRAC10/6-311G**) 
E/au = −42.070062877425833 

Single-photon (SAC-CI/6-311G**) 
E/au = −42.0534355 Process 

Excitation energy/eV Oscillator strength Excitation energy/eV Oscillator strength 

A1 Excitations from this state Excitations from this state 

1A1 4.6730 0.11D-07 9.9793 0.0213 

2A1 9.1500 0.95D-01 20.9675 0.0413 

3A1 20.9650 0.56D-07 22.0924 0.0007 

4A1 21.5643 0.12D-01 25.5951 0.2256 

1B1 3.26160 0.24D-01 4.0982 0.0283 

2B1 4.6730 0.35D-06 23.0959 0.1111 

3B1 6.4494 0.74D-09 24.9701 0.0978 

4B1 20.9650 0.0000 27.7899 0.0086 

1B2 6.4494 0.66D-07 11.6169 0.0000 

2B2 10.9457 0.2381 23.0489 0.2309 

3B2 20.9650 0.31D-06 27.1677 0.2770 

4B2 21.1171 0.84D-09 30.1624 0.0522 

1A2 4.6731 0.0000 19.7793 0.0000 

2A2 6.4494 0.0000 28.9774 0.0000 

3A2 21.1171 0.0000 34.0372 0.0000 

4A2 21.8390 0.0000 35.2053 0.0000 

 
Table 3. The dipole transition moment E1 and components of transition moment for C2V. 

 1 1A A : 1E z   1 1A B : 1E x   1 2A B : 1E y   2 2A A : 1E z  1 2A A  

 2 1A B : 1E y   2 2A B : 1E x   1 1B B : 1E z   2 2B B : 1E z  1 2B B  
 

OPEN ACCESS 



Z. H. Zhu / Natural Science 4 (2012) 179-183 183

 
5. CHARACTERISTIC SYMMETRY OF  

TWO PHOTON EXCITATION FOR C2V 

In the general, people used to consider the transition 
probability negligible for two photon processes. From 
Tables 1 and 2, it is obvious that the oscillator strength 
of two-photon excitation is about 10−6 to 10−9 less than 
that of single-photon excitation. There is no much devia-
tion in the oscillator strength of process A1 to 2B2 for 
both two-photon and single-photon. Therefore, we would 
come to the conclusion that not all the transition prob-
ability of two photon processes is negligible, it depends 
on the symmetry of group. 

The (19) multiplied by delta function , 
then, it is the transition probability of single-photon ab-
sorption process with dipole integral element nk

 n kE E  

H   for k 
state to n state, which is determined by the resonance 
relation of single-photon process. 

The (20) multiplied by delta function , 
then, it is the transition probability of two-photon ab- 
sorption process with the product of dipole integral ele- 
ments mk

 n kE E  

H   and nmH   for k state to m state and m state 
to n state. The k state to n state is determined by the 
resonance relation of two-photon process, i.e.  

1 2 n kEh h E    or 2 nh E E   k  for two iden- 
tical photons. 

However, consider the characteristic symmetry of 
group C2V, both C4H4O and CHe2++ molecule are on the 
yz plane with the operation  v yz  , not so as the opera- 
tion  v xz  perpendicular to molecular plane, there- 
fore, the contribution of y components of transition mo- 
ment are rather significant. Therefore, the summation for 
all possible intermediate states m would lead to remark- 
able transition probability. 

In this case, the will no much deviation for two photon 
and single-photon processes in the oscillator strength, 
such as, process A1 to 2B2.  For the higher or lower ex- 
cited states, at least one of intermediate transition mo- 
ment elements will be quite small and its oscillator 
strengths negligible. The necessary and sufficient condi- 
tions are determined by the operation  v yz   for group 
C2V. 

6. CONCLUSION 

The relativistic quantum mechanical theory based on 
the full symmetry group or quaternion symmetry, i.e. 
inclusion both of space and time operations, is most suit- 
able method for the calculation of two photon processes. 
Neither non-relativistic, such as DFT implemented [2] at 
the Gaussian 03 package, nor relativistic without time 

reversal would be suggested for the two photon proc-
esses. 

It is found that not all the transition probability of two 
photon processes is negligible at low irradiance, which 
depends on the symmetry of group. The irreducible rep-
resentation 2B2 of C2v is unexpected .There is no much 
deviation in the oscillator strength of process A1 to 2B2. 
This new phenomenon is only possible to be explored by 
the symmetrical consideration: the necessary and suffi-
cient condition is molecular plane coincident with yz 
plane or the operation  v yz   for group C2V.  

If two photon process of A1 to 2B2 of furan is success- 
fully used, it will produce much higher-contrast images 
for two-photon fluorescence microscopy. 
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