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ABSTRACT 

For Power distribution system the most important task for distribution engineer is to efficiently simulate the system and 
address the uncertainty using a suitable mathematical method. This paper presents a comparison of two methods used in 
analyzing uncertainties. The first method is Montecarlo simulation (MCS) that considers input parameters as random 
variables and second one is fuzzy alpha cut method (FAC) in which uncertain parameters are treated as fuzzy numbers 
with given membership functions. Both techniques are tested on a typical Load flow solution simulation, where con-
nected loads are considered as uncertain. In order to provide a basis for comparison between above two approaches, the 
shapes of the membership function used in the fuzzy method is taken same as the shape of the probability density func-
tion used in the Monte Carlo simulations. For more than one uncertain input variable, simulation result indicates that 
MCS method provides better output results compared to FAC, however takes more time due to number of runs. FAC 
provides an alternate method to MCS when addressing single or limited input variables and is fast. 
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1. Introduction 

Current time power distribution systems, especially in de-
veloping countries, are steadily approaching towards its 
maximum operating limits and voltage stability is a ma-
jor concern. Voltage instability leads to blackouts and 
makes the system unreliable. It is important to have a reli-
able power distribution system, which maintains voltages 
within the permissible range and ensure a high quality of 
output. 

The voltage instability can be addressed using the various 
techniques e.g. reconfiguration, addition of capacitor banks 
etc., however need an efficient simulation of load flow 
and a mathematical method which address the uncer-
tainty efficiently especially the uncertainty associated 
with input parameters. Distribution system uncertainties 
are due to error in measurement of feeder parameters, 
variation in expected values of the demands with time etc. 
and are main causes of uncertain simulation outputs. 

Uncertainty can be analyzed and addressed using sev-
eral techniques. In past, many solution methods have been 
developed on Load Flow distribution networks using Fuzzy 
and probabilistic models. 

D. M. Falcao describes the conceptual basis and prelimi-
nary results of a load estimation based on the application 
of neural network and fuzzy set techniques [1]. Chi-Wen 
Liu presents a neurofuzzy network for voltage security 

monitoring [2]. I. J. Ramirez-Rosado, Dominguez-Navarro, 
presents a new possibilistic (fuzzy) model for the mul-
tiobjective optimal planning of power distribution net-
works [3]. Vikas kumar presents a comparison between 
probalistic and Fuzzy alpha cut techniques in general [4]. 
A. J Abebe presents a comparison of two methods (fuzzy 
alpha cut and Monte Carlo simulation) of analysis of 
uncertainty arising from uncertain model parameters [5]. 
However none have been found comparing two methods 
and addressing importance of each other for radial dis-
tribution system calculations. 

This paper presents a comparison of “Monte-Carlo simu-
lation method (MCS)” a technique based on probability 
and “Fuzzy alpha cut method (FAC)” a technique based 
on Fuzzy. The MCS technique treats uncertain parameter as 
random variable that obeys a given probabilistic distribu-
tion and model output is then a random variable. The 
fuzzy analysis is based on fuzzy logic and fuzzy set theory, 
which is widely used in representing uncertain knowl-
edge. Uncertain model parameters are treated as fuzzy 
numbers with a membership function. 

2. Methodology 

2.1. Steps & Input Data 

For simulation purpose this paper uses a load flow algo-
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rithm, based on concept described by R. Raina, M Tho-
mas, R. Ranjan [6]. The algorithm calculates the total 
real and reactive system power loss of the radial distribu-
tion network. The algorithm considers input parameters 
as random variables for Monte Carlo simulation and as 
fuzzy numbers with a given membership function for 
fuzzy logic. 

This simulation is run on a typical 19 bus distribution 
system from the D. Thukram, H. M W. Banda and J. 
Jerome [7] shown in Figure 1. 

Input connected load data for the feeder are given in 
Table 1, Conductor data for the feeders are given in Ta-
ble 2 and Table 3. 

Figure 2 shows the Typical Load Flow calculation 
chart used for Fuzzy and Monte Carlo simulation. The 
details of formulas and computing method are in [6]. 

2.2. Monte-Carlo Simulation Method (MCS) 

The MCS principle is described in Figure 3. Uncertain 
input parameter is considered as a random variable P and 
numbers of realizations Pi of P are generated and load 
flow algorithm is run for each of them producing an out-
put Ri. The set of outputs Ri represents the set of realiza-
tions of the random variable R. The statistical properties 
of R are therefore computed from the realizations Ri. 

2.3. Fuzzy Alpha-Cut Method (FAC) 

This method uses fuzzy set theory to represent uncer-
tainty or imprecision in the parameters. Uncertain parame-
ters are considered to be fuzzy numbers with some mem-
bership functions. In fuzzy logic, it represents the degree 
of truth as an extension of valuation. Degrees of truth are 
often confused with probabilities, although they are con- 

 

 

Figure 1. Shows a practical 19 bus distribution feeder used 
for the modeling and simulation purpose. 

Table 1. Load data. 

Phase Load in kVA 
Node 

A B C 

2 64 32 64 

3 68 32 60 

4 25 35 40 

5 40 32 28 

6 26 19 18 

7 60 50 50 

8 46 33 21 

9 76 92 82 

10 21 26 16 

11 46 46 68 

12 60 50 50 

13 27 33 40 

14 19 19 25 

15 27 30 43 

16 48 64 48 

17 40 30 30 

18 33 33 34 

19 54 62 44 

 
Table 2. Conductor data. 

Conductor type Resistance PU/Km Reactance PU/Km

1 0.008600 0.003700 

2 0.012950 0.003680 

 
Table 3. Conductor code & distances. 

Sending End 
Node(IR) 

Receiving End 
Node(IR) 

Conductor Code Distance in Km

1 2 1 3 

2 3 2 5 

2 4 1 1.5 

4 5 2 1.5 

4 6 1 1 

6 7 2 2 

6 8 1 2.5 

8 9 1 3 

9 10 1 5 

10 11 1 1.5 

10 12 1 1 

11 13 2 5 

11 14 1 3.5 

12 15 1 4 

12 16 2 1.5 

14 17 1 6 

14 18 2 5 

15 19 1 4 
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Figure 2. Typical Fuzzy & Monty Carlo Load Flow calcula-
tion chart used with fuzzy/probability interpreted inputs. 

 
ceptually distinct, because fuzzy truth represents mem-
bership in vaguely defined sets, not likelihood of some 
event or condition. Figure 4 shows a parameter P repre-
sented as a triangular fuzzy number with support of A0. 
The wider the support of the membership function, the 
higher the uncertainty. The fuzzy set that contains all 
elements with a membership of α ε [0,1] and above is 
called the α-cut of the membership function. At a resolu-
tion level of α, it will have support of Aα. Higher the 
value of α, higher the confidence in the parameter. 

 

Figure 3. Sketch for Monte Carlo Simulation method. 
 

 

Figure 4. Fuzzy representation and Alpha cut. 
 

The method is based on the extension principle, which 
implies that functional relationships can be extended to 
involve fuzzy arguments and can be used to map the de-
pendent variable as a fuzzy set. The membership function 
is cut horizontally at a finite number of α-levels between 
0 and 1. For each α-level of the parameter, the model is 
run to determine the minimum and maximum possible 
values of the output. This information is then directly 
used to construct the corresponding fuzziness (member-
ship function) of the output which is used as a measure of 
uncertainty. 

In order to provide a uniform basis of comparison be-
tween two techniques, the shapes of membership Function 
(MF) used in fuzzy method is assumed same as shape of 
probability density function used for Monte Carlo simu-
lation. 
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Simulation uses an assumption that connected load will 
vary between 20% to 135% of rated data and are shown 
in Figure 5 and Figure 6. Above assumption can be rep-
resented by a triangular distribution. 

3. Simulation Results 

In order to assess the results, two analyses were carried 
out: a spatial analysis, for which a measure of uncertainty 
was devised, and a point wise analysis, where the cumu-
lative density probability function (CDF) for the MCS 
methods and the membership function for the FAC method 
of the output values were analysed. 

3.1. Spatial Analysis 

To evaluate the spatial distribution of uncertainty, meas-
ure of uncertainty for the two methods is established. For 
the MCS method, such a measure is defined by the ratio 
of the standard deviation to the mean value, and for the 
FAC method the ratio of the 0.1-level support to the 
value for the membership function is equal to 1 (Refer 
Figure 7). 
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Figure 5. Fuzzy Membership function (MF) representation. 
 

 

Figure 6. Probability density function representing limit a 
(20% in our case), upper limit b (130% on our case) and 
mode c (100%), where a < b and a ≤ c ≤ b. 

Table 4 shows the calculated uncertainty values with 
FAC and MCS methods. It may be noted that uncertainty 
measure with FAC is much higher than that calculated 
using MCS method. 

For understating this further, the output results are 
plotted for all the trails. Figure 8 is the histogram of sys-
tem power losses for 500 trails using MCS method and 
Figure 9 is the scatter plot of MF vs. system power loss 
using FAC method. The output result range (variance) 
observed using FAC technique is much higher than that 
obtained from MCS method. It can be concluded that 
MCS method provides more reliable results compared to 
FAC method with less variance or uncertainty. 

 

 

Figure 7. Measure of uncertainty for FAC technique. 
 

Table 4. Calculated uncertainty values. 

Method Basis (3.1) Uncertainty value

FAC 
Ratio of the 0.1-level support 
to the value at MF equal to 1 

1.779 

MCS 
Ratio of the Standard Deviation 

to the Mean Value 
0.315 
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Figure 8. Total real & reactive power loss for 500 trails. 
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3.2. Pointwise Analysis 

To evaluate the result obtained from spatial analysis fur-
ther a point wise analysis is carried out and the algorithm 
is run for three cases shown in Table 5. 

Figures 10-13 show the normalized Results obtained  
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Figure 9. Scatter plot of MF vs. reactive, real power loss. 

 
Table 5. Calculated uncertainty values. 

Case Description 
FAC 
Case 

MCS 
Case 

1 

All connected load considered 
uncertain and varying 
independently as represented 
by Figure 5 and 6 

F-1 R-1 

2 

Only one connected load 
connected to node 9 is assumed 
as uncertain and varying 
independently as represented 
by Figure 5 and 6 

F-2 R-2 

3 

Three connected load connected 
to node 7, 9 & 12 are assumed as 
uncertain and varying 
independently as represented 
by Figure 5 and 6 

F-3 R-3 
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Figure 10. System real power loss for case R-1, R-2 & R-3. 

shows that output range (variance) is more for Case 1, 
followed by Case 3 and minimum for Case 2 for each 
individual method. However when output is compared 
for two methods, the output from FAC method shows 
much more variance magnitude as compared to what 
obtained from MCS technique. 
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Figure 11. System reactive power loss for case R-1, R-2 & 
R-3. 
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Figure12. System real power loss for case F-1, F-2 & F-3. 
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Figure 13. System reactive power loss for cases F-1, F-2 & 
F-3. 
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Figure 14-16 show the cumulative density function 
(CDF) and normalized integrated fuzzy number plot for 
defined three cases. Results are comparable for Case 2 
but the variance increases for Case 3 and is maximum for 
Case 1. The results also shows that variance difference 
between two techniques depends upon the number of 
uncertain input variables considered. 
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Figure 14. CDF of real power loss comparison for case R-1 
& F-1. 
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Figure 15 CDF of real power loss comparison for case R-3 
& F-3. 
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Figure 16. CDF of real power loss comparison for case R-2 
& F-2. 

The reason of different variance can be explained with 
the fact that MCS considers random run for all connected 
load inputs, where as FAC technique takes two extreme 
values for all connected load values and envelops results 
for all extreme scenario together. 

Simulation result for three cases shows that results ob-
tained for single or limited input variables (i.e. case-3) are 
similar, however if an system has more uncertain input 
variables, MCS technique provides better results. 

4. Conclusions 

Fuzzy logic and probability are different ways of expressing 
uncertainty. While both fuzzy logic and probability the-
ory can be used to represent subjective belief, fuzzy set 
theory uses the concept of fuzzy set membership (i.e., 
how much a variable is in a set), and probability theory 
uses the concept of subjective probability (i.e., how 
probable do I think that a variable is in a set). While this 
distinction is mostly philosophical, the fuzzy-logic-de-
rived possibility measure is inherently different from the 
probability measure; hence they are not directly equiva-
lent. Probability, which ranges from 0.0 to 1.0, is used to 
gauge the likelihood that some particular, well-defined 
state is or will be the case, under conditions of ignorance 
or chance. Fuzzy set membership function number, which 
also ranges from 0.0 to 1.0, indicates the degree to which 
an individual case or circumstance belongs to a fuzzy set. 
Here, values between 0.0 and 1.0 are a result of the in-
herently imprecise nature of the definition of the fuzzy 
set, not ignorance or chance. 

For the MCS approach large numbers of model runs 
are required (500 model run considered for this simula-
tion), however FAC approach needed only 20 model runs. 
This is a drawback for MCS method due to its time con-
suming characteristic. However, when simulation results 
are analyzed, result was found comparable, when uncer-
tainty is on one input parameter. The variance increases, 
with increasing numbers of uncertain input variables. 
This is due to the fact that MCS considers random run for 
all connected load inputs, where as FAC technique takes 
two extreme values for connected load values. 

It can be concluded that for more than one uncertain 
input variable, simulation result indicates that MCS method 
provides better output results compared to FAC, however 
takes more time due to number of runs. FAC provides an 
alternate method to MCS when addressing single or lim-
ited input variables and is fast. 
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