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ABSTRACT 

This paper concentrates on methods for comparing activity units found relatively efficient by data envelopment analysis 
(DEA). The use of the basic DEA models does not provide direct information regarding the performance of such units. 
The paper provides a systematic framework of alternative ways for ranking DEA-efficient units. The framework con-
tains criteria derived as by-products of the basic DEA models and also criteria derived from complementary DEA 
analysis that needs to be carried out. The proposed framework is applied to rank a set of relatively efficient restaurants 
on the basis of their market efficiency. 
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1. Introduction 

The development of tools for assessing the performance 
of for-profit and not-for-profit activity units has seen 
considerable expansion in recent years. The assessment 
of the relative efficiency of activity units such as retail 
outlets, bank branches, hospital units, schools and local 
authorities is a major concern for the central and local 
management of the corresponding organisations. Far-
rell’s [1] ideas have been used as the basis for developing 
nonparametric methodologies for assessing the relative 
efficiency of activity units. This development was opera-
tionalised by [2,3] from the operational research point of 
view and [4] from the economic point of view. A phe-
nomenal expansion followed the original development of 
the method see [5] while the recent developments of the 
method can be found in [6]. 

Data envelopment analysis and its evolution is based 
on the concept of relative efficiency which implies that in 
the absence of absolute standards of efficiency the best 
alternative is to use as basis of assessment the best ob-
served decision making units (DMUs). These observed 
DMUs and their linear combinations are used to con-
struct empirical efficient cost or production frontiers 
which can be used to assess relative efficiency. The effi-
cient frontier is used to assess the efficiency of relatively 
inefficient units whilst no information is provided re-
garding the performance of relatively efficient DMUs.  

The question of discriminating between relatively effi-

cient units gained progressive popularity partly due to the 
lack of any direct information obtained by the typical 
DEA models and partly due to the increasing use of DEA 
as a benchmarking tool. A number of methods can be 
found in the literature that provide information regarding 
the performance of relatively efficient DMUs. However, 
there has been no systematic attempt to assess the effec-
tiveness and pitfalls of these criteria. The main motiva-
tion of this paper, therefore, is the question of offering 
some insights on the performance of relatively efficient 
DMUs.  

The rest of the paper is organised as follows. The next 
section reviews different types of criteria that have been 
proposed for investigating the performance of relatively 
efficient DMUs. The third section discusses the ranking 
of relatively efficient DMUs based on information ob-
tained from the basic DEA model. The fourth section 
discusses complementary models for ranking efficient 
DMUs with their advantages and pitfalls. Results ob-
tained from a set of restaurants are used in the fifth sec-
tion in order to illustrate the criteria of ranking efficient 
DMUs. The sixth section concludes the paper. 

2. Ranking DEA-Efficient Activity Units 

The assessment of the efficiency of a set of DMUs gives 
no direct insights regarding the performance of relatively 
efficient DMUs. The graphical illustration in Figure 1 of 
a two dimension DEA analysis can be used to illustrate  
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Figure 1. Revised frontier for ranking relatively efficient 
DMUs. 
 
the discussion. 

Figure 1 contains a set of DMUs that use two outputs 
per unit of input with DMUs A, B and C defining an em-
pirical efficient frontier. The use of DEA does not pro-
vide any information, other than an efficiency index of 
one, for the three efficient DMUs A, B and C. However, 
simple observation shows that the three efficient units 
play a different role in the assessment of efficiency. For 
example, the very high concentration of inefficient units 
close to the efficient units B and C indicate that these two 
units will be used more frequently as efficient compara-
tors. Moreover, the contribution of DMU C to the targets 
assessed for the inefficient units seems to be pre-domi-
nated. This type of information can be obtained as a by- 
product of the efficiency assessment of the inefficient 
units using the customary DEA models [2]. 

Efficient DMUs may be investigated further by focus-
ing on their “position” relative to the efficient frontier in 
their absence. This is an issue that has been addressed in 
the literature by [7-10] that suggest ways for ranking 
relatively efficient units by removing them from the 
comparison set and then re-assess their efficiency. These 
absolute ranking indices are often referred in the litera-
ture as “super-efficiency” indices since efficient DMUs 
can get efficiency ratings that exceed 100%.  

To find the “super-efficiency” of, say, DMU B one 
needs to compare its efficiency against a revised efficient 
frontier that does not include the particular DMU. This 
frontier is thus made of units AEC and the efficiency of 
DMU B is given by the ratio OB/OE which yields the 
proportionate excess in the performance of DMU B in 
comparison with the revised frontier AEC. It must be 
noticed that the development of the revised efficient 
frontier gives the opportunity to previously inefficient 
DMUs like E to become efficient. If such a development 
is not desirable then the revised frontier would by the 
segment AC. 

The motivation for obtaining this modified measure of 
“efficiency” varies across the literature. For example in 

[8] these measures are used in order to be able to use the 
non-truncated efficiency scores in a regression analysis 
phase that sought to explain the assessed efficiencies. In 
[10] these indices are used as a measure of how “un-
usual” is the performance of efficient DMUs. Finally, the 
use of the revised efficiency index for ranking DMUs on 
a common scale is advocated in [9]. 

An alternative method has been proposed by [11-13], 
which calculates the cross-efficiency indices for obtain-
ing absolute rankings of DMUs. These cross-efficiency 
measures are obtained by direct comparison of each 
DMU against all DMUs within the sample set and not 
only those that would be used by DEA as its comparator 
set. Therefore, a set of n × n efficiency indices are de-
veloped, where n is the number of DMUs included in the 
assessment. The technical details of these coefficients 
are discussed in more detail in the next section of the 
paper.  

The methods capable of ranking relatively efficient 
DMUs can be classified into two broad categories as is 
shown in Table 1. This classification includes methods 
illustrated earlier using Figure 1 and also methods that 
require development of revised DEA models. 

The three criteria of the post-DEA analysis are by- 
products from the solution to the original DEA model [3]. 
The remaining three criteria require further modelling 
and analysis in order to rank relatively efficient DMUs. 

The use of the criteria will be discussed in more detail 
next using the mathematical formulation of the basic 
DEA model. Let us consider a set of  DMUs 
which use quantities xij of inputs  and pro-
duce quantities yrj of outputs . The relative 
efficiency of DMU k can be obtained using the linear 
programming models in (1). 

 1, ,j n 
 1, ,i m 

 1, ,r s 

Data Envelopment Analysis models       (1) 
 

Offensive model Defensive model 

Phase A  

,

1

1

Max  

free 0

k
k j

k k
z

n k

j ij ikj

n k

j rj k rkj

k

k j

z z

t x x i

y z y r

z









 





 

s  

  

  




1,

1

1 1

Min

1

0

, 0

k k
j r

m k

k i ikiv u

s k

r rkr

m sk k

i ij r rji r

k k

j r

h v x

u y

v x u y

v u

 



 




 

Phase A 



  

  




 
 

Phase B 

1

1

Max  

Max

, , 0

k
j

i ik r rki r

n k

j ij i ikj

n k

j rj r k rkj

k k

k

i r j

s x s y

t x s x i

y s z y r

z z

s s









 









 



s   

  




 

Phase B 

 




1 1,

1 1

1 1

Min

0

0

1 ,

k k
j r

m sk k rk
i ik ri rv u

k

m sk k rk
i ik ri r

k

m sk k

i ij r rji r

k k

j ik r rk

y
v x u

h

y
v x u

h

v x u y j k

v x u y

  

 

 



 

   

 

 

 

 
１

 
The model in (1) represents an instance of the se-

quence of linear programmes that need to be solved for  
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Table 1. Criteria for ranking efficient units. 

Post DEA analysis New model development 

Frequency as comparators Weight restrictions 

Proportionate contribution to 
targets 

Statistical analysis to detect  
outlier/influential DMUs 

Cross-efficiency scores 
Relative distance of efficient 
DMUs from the frontier  

 
assessing the efficiency of DMUs . The 
assessment of efficiency of individual DMUs is pursued 
in a two phase process. In the first phase we estimate a 
radial expansion factor 

 1, ,k n 

1 k kz h  . The second phase 
treats the objective function of the previous phase as a 
constraint and seeks to derive extra gains that can be re-
alised for individual inputs and outputs. The two phase 
process is an alternative to the classic way of putting the 
radial component with the slack variables in the same 
objective function. The efficiency values become de-
pendent on the magnitude of the scaling factor chosen to 
reduce the impact of the slack variables in the objective 
function that includes both components [14]. 

The efficiency of DMU k expressed in a percentage 
form can be obtained as 100E zk k . The names used 
for the two formulations are used to facilitate their 
managerial interpretation by focusing on the role of the 
relative efficient DMUs in DEA. The term “offensive” is 
used to indicate the primary objective of relative efficient 
DMUs to develop linear combinations of comparators 
with the corresponding assessed DMUs. On the other 
hand, the term “defensive” seeks to indicate the primary 
role of the efficient DMUs in this formulation which seek 
to defend their efficiency rating using the weights “se-
lected” by the corresponding assessed DMU k. 

2.1. Post-DEA Criteria for Relatively Efficient 
DMUs 

The criteria of the post-DEA analysis can be applied 
utilising the solution of the DEA models for assessing the 
efficiency of individual DMUs. Efficient DMUs can be 
ranked as follows. 

1) Frequency of use as comparator jF   

jF  = Frequency { }, 0k
j k   

where j
 

k

 is the optimal scale factor of DMU j when 
the efficiency of DMU k is assessed.  

2) Proportionate contribution to targets  
An efficient DMU j contributes an amount of j rj  

to the target of output r of DMU k where 
y

k
j  is the op-

timal value of the intensity variable of the efficient DMU 
k when DMU j is assessed. The aggregate proportionate 
contribution  of DMU j to the targets of output r 
of DMUs  is given in (2). 

1, ,k n
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          (2) 

Similar formula can be used to obtain the proportion-
ate contribution of the efficient DMU j to the input tar-
gets , assessed for DMUs . ij

3) Cross-efficiency scores 
The use of DEA to assess the performance of individ-

ual DMUs is based on the solution of a series of linear 
programming problems. The solution to these problems 
yields a set of weights for the inputs and outputs of each 
DMU. The utilisation of these weights, by developing 
payoff tables, which estimate the efficiency of individual 
DMUs derived from the optimal weights selected by 
other DMUs has been proposed [11-13]. The size of this 
payoff table is a n × n matrix and therefore the informa-
tion can be summarised by averaging out the efficiencies 
across rows and columns of the payoff matrix. These 
efficiencies are listed in (3). 

Summarising Cross-efficiency scores     (3) 
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AE

,k kv u
kj  represents the efficiency of DMU j when assessed 

using the weights ( i r ) of all other DMUs  
 1, , ;k n k j c. The other efficiency,  jkE , repre-

sents the average efficiency that all DMUs  
 1, , ;k n k j , get when the weights ( j jv ui r ) of 

DMU j are applied. The two average statistics can be 
used to obtain a measure of strength for individual effi-
cient DMUs. That is AEkj  shows the effect of all DMUs 
on DMU j whilst c

jkE , shows the effect of DMU j on all 
other DMUs.  

The cross efficiency scores can be utilised even further 
by defining the extent to which there is variation between 
the peer-appraisal and the self-appraisal efficiency of 
DMUs. This measure of concordance between the two 
efficiencies is called “Maverick” index [13] and it is de-
fined in (4).  

 A AM j j kj kjE E E               (4) 

where Ej is the efficiency of DMU j obtained from the 
ordinary DEA model in (5) and AE

1, , 1k n

kj  represents the av-
erage efficiency of DMU j when compared with all other 
units   . The higher is the score of Mj the of 
a maverick is the assessed DMU j.  

The use of cross-efficiency indices has two main 
shortcomings. First, the likely event that efficient DMUs 
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have multiple optimal sets of weights imply that the cross 
efficiency scores will depend on the particular set of 
weights selected by the analyst. Methods for selecting 
sets of weights with particular properties are being sug-
gested [13,14]. The second limitation, not reported in the 
literature before, is that the cross-efficiency scores can-
not be obtained under the assumption of variable returns 
to scale as the cross-efficiency scores can even take 
negative efficiency values. This is due to the scale sign- 
free variable that is necessary in the formulation of the 
variable returns to scale model. 

2.2. New Model Development for Ranking  
Relatively Efficient DMUs 

A number of models with specific purpose to rank rela-
tively efficient DMUs can be found in the literature. For 
instance [15], suggested the use of value judgments as a 
means of ranking relatively efficient DMUs. In their re-
search [15] a customised DEA model was proposed 
which yields an absolute ranking coefficient for each 
assessed DMU. The implementation of weights restric-
tions, however, requires knowledge of preferences over 
the relative importance of the inputs and outputs included 
in the assessment. The particular type of method is not 
pursued any further in this paper since it relies on the use 
of decision maker value judgments which were not ob-
tainable in our empirical application. 

Work inspired from the multivariate data analysis lit-
erature has also been suggested [16-18] for detecting the 
effect of outlier and influential observations on the effi-
ciency results obtained by DEA. This research path, de-
spite its importance, seeks to diagnose the reliability of 
the input-output information of individual efficient 
DMUs by means of assessing their impact on the techni-
cal efficiency of individual DMUs. This angle is not 
pursued any further since the present study concentrates 
on the estimation of absolute ranking coefficients. 

The analysis focuses mainly on the so-called “super- 
efficiency” models that have been proposed for ranking 
efficient DMUs on a scale without upper bounds of 
100%, [19-22]. The modified efficiency indices for, say 
DMU k, can be obtained using the model in (5). 

Super-efficiency models           (5) 
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The notation of the model in (5) is similar to the one used 
in model (1). The two-phase process was employed to 
investigate the impact of the slack variables ( i r

s s,  ) after 
the estimation of the radial component k . The follow-
ing comments can be made regarding the solution ob-
tained by (5): 
 The efficiency value 100k kSE    of DMU k can 

take values greater than unity in the case that DMU k 
was relatively efficient under the basic DEA model in 
(1). 

 The efficiency value obtained in (5) for DEA efficient 
units have been proposed in the literature as a measure 
of “strength” of the corresponding units. It is argued, 
however, that the solution in (5) should be subject to 
more rigorous treatment, and in any case the use of 
the efficient figure Ek is not a representative measure 
of the “strength” of individual units. The criteria of 
dominance listed in (6) indicate the difficulty to use 
the coefficient 100k kSE    as a measure of “su-
per-efficiency” of corresponding efficient DMUs. 

Criteria of dominance (output maximisation)   (6) 
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The criteria in (6) show that the assessment of the effi-

ciency of DMU k using the model in (5) show that a 
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 is not a sufficient crite-
rion of dominance. The criterion of pure dominance re- 
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x y 
 
 

 
 
  
 
   is  

dominated by the assessed DMU k in all input and output 
dimensions. If the composite DMU dominates any input 
or output of the assessed DMU k the solution of (5) can-
not be used to deduce conclusive evidence regarding the 
optimal value k since there is no clear-cut Pareto domi-
nance of DMU k over the composite DMU and vice 
versa. 

Consider a numerical example with three DMU that 
use quantities of three inputs to generate quantities of 
two outputs listed in Table 2.  

Assessment of the relative efficiency of the three 
DMUs using DEA found all three DMUs as relatively 
efficient. The next step would be to obtain measures of 
absolute ranking for each DMU using model (5). For 
DMU 3, for example, the solution of model (5) gives 

3 3100 106%SE    , which implies that DMU 3 generates  
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Table 2. Input-output data used in the numerical example. 

 DMU 1 DMU 2 DMU 3 

Input 1 17 10 15 

Input 2 8 9 10 

Input 3 16 10 18 

Output 1 17 22 21 

Output 2 23 21 27 

 
106% more output that the composite DMU of model (5). 
A closer investigation on the targets obtained from (5), 
however, gives the information listed in Table 3. 

Interpretation of the information listed in Table 3 in-
dicates that the objective function value in (5) does not 
convey full information of the true comparison between 
the assessed DMU 3 and its composite DMU ( 1 , 

2 ). Furthermore, using the criteria of dominance 
from (6) it can be seen that the comparison between 
DMU 3 and its peer is inconclusive since the peer DMU 
dominates DMU 3 in one input and one output dimen-
sion.  

* 0.48 
* 0.68 

The simple numerical example that was used to illus-
trate the possible results obtained from model (5) casts 
doubts on the use of the objective function coefficient 

100SEk k
   unless it is complemented with the set of 

dominance criteria given in (6). The use of the comple-
mentary criteria in (6), on the other hand, will lead into 
cases of inconclusive dominance most of the relatively 
efficient DMUs. 

The revised model in (7) is next proposed which 
seeks to alleviate some of the limitations of the earlier 
formulation of model (5). That is, for an output expan-
sion case, the model satisfies the requirements of the 
dominance criteria regarding the input side and concen-
trates solely on the maximisation of outputs. The reverse 
argument holds for a case of input contraction. 

A non-radial DEA model for assessing relative  
dominance                (7) 
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Table 3. Targets obtained from super efficiency model for 
DMU 3. 

Variable Actual Target Improvement

Input 1 15 15.0 - 

Input 2 10 10.0 - 

Input 3 18 14.5 19.4% 

Output 1 21 23.2 10.5% 

Output 2 27 25.4 –5.9% 

 
Where ws and wm are weights attached to all outputs (s) 

and all inputs (m) respectively with the relation m s 
which indicates that the objective function in (7) gives 
pre-emptive priority to minimise the input requirements.  

w w

k

Model (7) belongs to the family of non-radial DEA 
models since it includes a separate improvement factor 
for each input ( i ) and output ( r ). As distinct issues, 
however, one needs to mention the lack of predetermined 
direction for the rate of improvement of the outputs 
( r ) since the optimal value of the corresponding 
variable (s) will determine the characterisation of domi-
nance for the assessed DMU k. For the input side, on the 
other hand, the restriction (7.3) ensures that the rate of 
improvement (if any) will not reach levels beyond which 
will make the production of output infeasible. This con-
straint was necessary due to flexibility that has been 
given to the direction of improvement given to the out-
puts of the assessment ( ). 

kz

0kz r 

0kz r 

1,k i

r

The rationale of the proposed modification is based on 
the assumption that an assessed DMU k should dominate 
the “composite DMU” in (7) in all input and output di-
mensions if it were to be considered as super-efficient. 
Therefore, the formulation in (7) guarantees no reduction 
to the levels of the inputs and seeks to estimate output 
improvement (see 7.0). The obvious idea to fix the coef-
ficient of improvement for individual inputs i 

(7.0)

(7.1)

(7.2)

(7.3)

(7.4)



kz

 
is not proposed since it would not give feasible solution 
to the model in (7). Instead the objective function of (7) 
includes a two-phase optimisation where in the first 
phase the minimisation of inputs is pursued and then in 
the second phase it follows the maximisation of outputs. 
The proposed formulation is a combination of the con-
straints (7.3) which ensure that the composite DMU will 
use more or the same resource, and that this increase will 
not exceed the maximum observed value across all the 
DMUs for each input variable. 

The outputs in (7) are sought to be maximised without, 
however, imposing any restrictions on whether the coef-
ficients of improvement r  will be less or greater than 
unity (see 7.4). The solution to (7) can be used to revise 
the earlier criteria of dominance to the ones listed below 
as follows. 
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Pure dominance Inconclusive dominance 

1rz r   : 1rr z   

 
The non-parametric model in (7) seeks to derive abso-

lute ranking indices in an output expansion case. The 
indices are obtained after an assumption is made that the 
composite efficient DMU will be dominated by the as-
sessed DMU k in all input dimensions (i.e. i ). 
Having fixed the input dimensions the emphasis is then 
given on the expansion factors of the outputs ( r ). If 
these factors take optimal values  for all outputs 

 then the assessed DMU k dominates the 
composite DMU in all input and output dimensions. Po-
tential values of r  greater than unity for some outputs 
indicates cases of inconclusive dominance between the 
assessed and the composite DMU. The results, however, 
can be used to estimate amounts of certain outputs that 
need to be sacrificed in order to increase amounts of 
some other outputs. Furthermore, a summary measure, 

1, i  

kz

 1, ,r s 

kz

1k
rz 

1 rr

k s kAD z s


, of this dominance can be obtained 
regarding the average rate of “super-efficiency” across 
all outputs. 



3. Empirical Results from Retail Outlets 

The post-DEA criteria were applied on a set of data used 
in a previous application [19]. Data from a set of 32 res-
taurants were used to disentangle different aspects of the 
market efficiency of the individual outlets. The input- 
output model used for assessing market efficiency com-
prised a set of six inputs and two outputs. As outputs 
were taken the revenue from sales of food (y1) and reve-
nue from sales of alcohol (y2). The input set included the 
size of the bar area (x1) the number of covers used for 
food services (x2), the concentration of establishments 
offering similar services within 0.5 mile radius (x3), the 
number of competing establishments in 2 minus 0.5 
miles radius (x4), the number of potential customers (so-
cial classes A and B of age category from 25 to 45 years 
old (x5)) and the average income per household in the 
surrounding area (x6). 

In [19], DEA models are being used with alternative 
economic assumptions in order to assess the efficiency of 
retail outlets in accord with the different levels of man-
agement within the organisation. In the current study 
only the market efficiency model is employed which 
concentrates on the overall market efficiency of retail 
outlets. This assessment is based on the assumption of 
constant returns to scale and it is suitable for estimating 
the scores of efficient DMUs on the ranking criteria of 
the previous section. 

The assessment of the efficiency of the 32 restaurants 
using the input-output set above characterised 19 of them 

as relatively efficient. The question of discriminating 
among the relatively efficient DMUs was eminent and 
thus the criteria for deriving absolute ranking coefficients 
were employed and their results are listed in Table 4. 

AE
1, ,k n

kj  Is the average efficiency of DMU j assessed by 
DMUs  ; 

C
jk  Is the average efficiency of DMU j as comparator 

of DMUs 
E

1, ,k n ; 
 Is the maverick index score of DMU j; M j

F  Frequency as comparator; j
1, ,k nC  

1, ,k nC  

1 j  Contribution of DMU j to aggregate targets 
of food turnover (%); 

2 j  Contribution of DMU j to aggregate targets 
of drinking turnover (%); 

jSE  Super efficiency index of DMU j obtained from 
model (5); 

j  Is the average dominance index of DMU j; AD
F, D Efficient DMU dominated by composite in Food 

and Drink turnover respectively. 
The eight ranking criteria listed in Table 4 are classi-

fied into three types, namely cross-efficiencies, target 
contributions and super efficiencies. The DMUs are 
listed according to the Maverick index score estimated in 
(4). In the cross-efficiency scores the DMUs with the 
smaller Maverick scores also have high efficiency scores 
( AEkj ) when assessed by their peers. On the other hand, 
the same DMUs tend to give very low efficiency scores 
( C

jk ) to the remaining DMUs when used as their com-
parators. 

E

DMUs with high scores on the cross-efficiency indices 
have also satisfactory performance on the target contri-
bution criteria. It is noteworthy, however, that the criteria 
of this set yield a more variable ranking of the DMUs as, 
for example, Rest 18 which was given a very poor effi-
ciency rating under the cross-efficiency criteria was used 
frequently as a comparator and also have contributed to 
the targets of inefficient DMUs. On the target contribu-
tion criteria there is some variation regarding the propor-
tionate contribution of efficient DMU to the targets of 
individual outputs. For instance, Rest 4 has a 4.3% con-
tribution to the overall targets of turnover from sales of 
food whilst on the other hand it has 9.8% contribution to 
the corresponding targets of turnover from the sales of 
drinks. 

The super-efficiency scores are obtained from the so-
lution to the modified DEA models in (5) and (7) respec-
tively. The so-called super-efficiency (SEj) obtained from 
the solution to (5) gave scores in the range 111% to 
282%. The scores attached with the D or F superscript 
represent cases where the composite DMU dominates the 
assessed DMU and thus there is no conclusive domi-
nance on the output side. Furthermore, all assessed 
DMUs where dominated in at least one input dimension 
from the composite DMUs which does not let SEj to  
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Table 4. Criteria on the performance of relative efficient restaurants (denoted with j). 

Cross efficiencies Target contributions Super efficiencies 
Outlet 

Copyr

A

kjE  C

jkE jM   jF  1, ,k n  1, ,

2

k n

j

 
jSE1 jC  C   AD j  

Rest 1 89 53 0.13 10 10.0 7.1 129 105 

Rest 2 87 41 0.14 7 8.4 6.7 169D 109 

Rest 3 82 55 0.21 6 8.2 7.0 138 129 

Rest 4 77 60 0.29 7 4.3 9.8 152F 96 

Rest 5 76 65 0.31 4 6.8 5.6 121 124 

Rest 6 75 54 0.33 4 5.3 6.3 120 101 

Rest 7 75 64 0.33 6 5.2 8.1 111 105 

Rest 8 73 57 0.36 4 1.8 3.3 194 88 

Rest 9 73 41 0.37 5 6.6 6.3 171 126 

Rest 10 73 51 0.37 4 9.8 6.0 202 95 

Rest 11 73 55 0.37 1 2.9 3.4 150 91 

Rest 12 69 38 0.44 3 1.7 3.5 282 59 

Rest 13 65 61 0.53 4 5.6 6.8 151 66 

Rest 14 64 64 0.57 2 3.1 2.9 108 108 

Rest 15 63 55 0.59 2 3.5 2.4 115D 69 

Rest 16 63 50 0.60 2 2.3 1.6 102D 66 

Rest 17 56 50 0.77 3 6.7 5.8 224 87 

Rest 18 49 62 1.03 4 5.0 4.7 133 53 

Rest 19 34 62 1.93 1 2.5 4.2 113D 51 

Mean 69 55 0.51 4.2 5.3 5.3 160 91 

 
 1, , ;k n k jcomply with the dominance criteria in (6). The results 

obtained from the revised model yield an index of aver-  
   the less dissimilar is DMU j from 

these DMUs.  
The two super-efficiency indices have a weak positive 

association since the basis of their assessment is different. 
Looking at their rank correlation with the remaining cri-
teria we can see that the average dominance score ob-
tained from model (7) yields similar ranks to those ob-
tained from the target contribution and the 

jAD  of each DMU. This index takes  age dominance 
values in the range 51% to 129% which are systemati-
cally different from the corresponding values obtained 
from the super-efficiency scores SEj.  

The performance of individual criteria regarding the 
ranking of efficient DMUs can be qualified further using 
the Spearman rank correlation coefficients in Table 5. 

AEkj  cross- 
efficiency indices. The corresponding association re-
garding the super-efficiency score obtained from (6) is 
much weaker. These results show that the revised aver-
age dominance measure conveys information which is 
more compatible with the information obtained from 
other benchmarking criteria. This in relation with the 
difficulties of the dominance criteria listed in (6) cast 
doubts about the usefulness of the super-efficiency scores 
obtained in (5).  

The three scores of the target contributions of individ-
ual DMUs are highly correlated which shows the degree 
of congruence between the three indices. The cross- effi-
ciency scores, on the other hand, do not seem to rank 
efficient DMUs on a similar scale. The correlation coef-
ficients have the expected signs. For example, the Mav-
erick indices convey information about the degree of 
dissimilarity of individual efficient DMUs from the rest 
of the DMUs. The negative association between AE Summarising, the eight criteria used in Table 4 pro-

vide complementary information regarding the perform-
ance of relatively efficient DMUs. It is argued that the  

kj  
and Mj shows that the higher is the efficiency attached to 
DMU j using the weights chosen by all other DMUs 
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Table 5. Spearman rank correlation of ranking criteria. 

Fi 0.73**       

Mi –0.12 –0.16      

A

kjE  0.65** 0.87** –0.22     

C

jkE  0.14 0.27 0.40* 0.50*    

SEj 0.39 0.50* 0.35 0.51* 0.12   

A jD

1, ,

2

k n

jC  

1, ,

2

k n

jC  

 0.71** 0.72** –0.10 0.90** 0.52* 0.41*  

 0.71** 0.87** –0.40 0.71** 0.14 0.32 0.45* 

  Fj Mi 
A

kjE  C

jkE  SEj AD j  

*Significance at 5% level; **Significance at 1% level. 

 
use of the super-efficiency index scores in (5) do not 
provide ranks compatible with the ranking criteria of the 
target contributions and cross-efficiency indices.  

4. Conclusions 

The development of data envelopment analysis as a 
method for assessing the relative efficiency of decision 
making units is based on the estimation of empirical effi-
cient frontiers. A variety of methods have flourished 
since the development of DEA [2] regarding the per-
formance of relatively inefficient DMUs. Only limited 
progress can be reported regarding the performance of 
DMUs that define the efficient frontier and thus they are 
relatively efficient. 

In this paper we compared methods for their suitability 
to provide information about the performance of DEA 
efficient DMUs. Two major families of these methods 
were considered, notably those that are based on the re-
sults obtained from the basic DEA model and those that 
require further modelling and analysis. 

The paper has shown that the most prominent of these 
criteria, namely the super-efficiency scores yield incon-
clusive evidence regarding the dominant character of the 
performance of individual DMUs. A revised DEA model 
was proposed that alleviates the problems of the previous 
index by resolving the problems of dominance of the 
assessed DMUs. The ranking criteria were applied on a 
set of restaurants in the UK employing a DEA model 
with two output and six input variables. The results of the 
analysis confirm the claims of the paper regarding the 
problematic nature of the super-efficiency indices. More- 
over, the results have shown the complementary charac-
ter of the information obtained by the independent crite-
ria for ranking efficient DMUs.  

Despite the statistical similarities of the ranks obtained 
from some of these criteria the scale of ranking is inde-
pendent among the various criteria and thus their results 
retain their autonomy. The empirical results conclude that 

there are no methods at present to yield a universally 
agreed rank among relatively efficient DMUs. On the 
other hand, the results have shown that a combined use 
of these criteria can be used to obtain a set of relatively 
efficient DMUs that excel in most criteria and thus can 
be selected as the exemplary performers of organisations. 
As the importance of benchmarking as a process of 
managing organisations is growing it is anticipated that 
the demand for methodologies that would aid manage-
ment to identify exemplary operating practices will in-
crease. Data envelopment analysis can be used to support 
the development of successful benchmarking strategies 
taking into account the need to improve continuously the 
criteria of selecting these benchmarks. 
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