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ABSTRACT

This paper concentrates on the study of the three-dimensional free vibrations in a homogenous isotropic, viscothermoe-
lastic hollow sphere whose surfaces are subjected to stress free, thermally insulated or isothermal boundary conditions.
The use of governing partial differential equations is solved into a coupled system of ordinary differential equations.
The equation for toroidal motion gets decoupled from rest of the motion and remains unaffected due to thermal varia-
tions. Matrix Frobenious method of extended power series is employed to obtain the solution. The secular equations for
the existence of various types of possible modes of vibrations in the considered hollow sphere are derived in the com-
pact form. The special cases of spheroidal and toroidal modes of vibrations of a hollow sphere have also been deduced
and discussed. In order to explore the characteristics of vibrations the secular equations are further solved by using fixed
point iteration numerical technique with the help of MATLAB software tools. The computer simulated results have

been presented graphically for copper material.
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1. Introduction

The exact three-dimensional analysis of free vibrations of
elastic spherical structures is well established in [1-4].
The coupled theory of thermoelasticity proposed by Lord
and Shulman [5] incorporates a flux-rate term into the
Fourier Law of heat conduction and involves a hyperbo-
lic-type heat transport equation admitting wave type ther-
mal signals. Green and Lindsay [6] formulated tempera-
ture-rate-dependent thermoelasticity by introducing rela-
xation time that reckons a finite speed of heat propaga-
tion. Hetnarski and Ignaczac [7] studied the response of a
semi-space due to a short laser pulse in context of gener-
alized thermoelasticity. Buchanan and Ramirez [8] com-
puted the free vibration frequencies for solid ellipsoids
by using Ritz method. Sharma and Sharma [9] studied vi-
brations of a transradially isotropic coupled thermoelastic
solid sphere by using matrix Frobenius method. Neurin-
ger [10] developed the procedure of Frobenius method
when the roots of indicial equation are complex. Several
mathematical models [11,12] have been used to accom-
modate the energy dissipation is due to internal friction
in vibrating viscoelastic solids. Moreover the Kelvin-Voigt
model is one of the macroscopic mechanical models whi-
ch is also used to describe the viscoelastic behavior of a
material. Mukhopadhyay [13] studied the effect of ther-
mal relaxation time on viscothermoelastic interactions in
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an unbounded body with a spherical cavity subjected to
periodical loading. Sharma [14] investigated the propaga-
tion of waves in an infinite Kelvin-Voigt type viscoelas-
tic plate in the context of coupled thermoelasticity.

This paper is devoted to the exact three-dimensional
vibration analysis of homogenous isotropic, viscother-
moelastic hollow sphere subjected to 1) stress free ther-
mally insulated and 2) stress free isothermal conditions.
The potential function technique has been employed to
decouple purely shear motion which remains independ-
ent of thermal variations. Upon using separation of vari-
able technique, the problem is reduced to a system of four
ordinary differential equations. In order to obtain frequen-
cy equation as second class (spheroidal) vibrations the cou-
pled system have been solved by using Matrix FROBE-
NIUS series method. The fixed point iteration numerical
technique with the help of MATLAB software tools is
used to compute frequency and damping of the vibrations.
The computer simulated results in respect of lowest fre-
quency, dissipation factor, stresses, displacements and tem-
perature change have been presented graphically of the
hollow sphere.

2. Mathematical Model

We consider a homogenous isotropic thermally conduct-
ing, viscothermoelastic hollow sphere of outer radius a
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and inner radius b initially at uniform temperature T, in

the undisturbed state. The basic governing equations of

motion and heat conduction for displacement

u(r, 0, ¢,t) = ( u,,u,,u ¢) and temperature change

T(r,0,¢,t) in spherical polar coordinates (r,6,¢), in the

absence of body forces and heat sources, are given by [15]
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Here o and g, (i,j=r,0,4) are the stress and
strain components, respectively; £ is the thermoelastic
coupling constant, «,, &; are the viscothermoelastic re-
laxation times; A, u are Lame’s parameters; oy is the
coefficient of linear thermal expansion; p is mass den-
sity; C, is the specific heat at constant strain; K is the
thermal conductivity; t, and t; are the thermal relaxa-
tion times. The quantity &, , i=12 is Kronecker’s
delta in which k=1 corresponds to Lord-Shulman (LS)
and k=2 refers to Green-Lindsay (GL) theory of ther-
moelasticity. The superposed dots represent time differ-
entiation and comma notion is used for spatial deriva-
tives.

Boundary Conditions

We consider the free vibrations of the sphere which is
subjected to stress free, thermally insulated and isother-
mal conditions and r =a (outer radius) and r=b (in-
ner radius) of the hollow sphere. Mathematically this pro-
vides us

c,=0,0,=00,=0T,=0 (6)

In order to simplify the model, we define following
quantities

rr_r’t’ &t)ul’:_"T':l
O-i' ’ 2 ' !
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where ¢ = (/1+2,u)/p, C, =+/#/p are longitudinal,
shear wave velocities and @ = C,(A+24)/K is char-
acteristic frequency of the medium, & is thermo-me-
chanical coupling constant. The primes have been sup-

pressed for convenience.

3. Solution of the Model

In order to solve the model we introduce the potential
functions w, G and w defined by [1]

___1l oy oG
sin@ 0p 00’
(®)
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u, = ———, U =W
00 sin@ 0¢

Upon using the Equation (8) in Equations (1) to (2),

we find that y, w, G and T satisfy the non-dimensional
equations
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where V2 =

We take wave solution for the displacement functions
and temperature change as under

v(r.0.4.t)=r Zzl//n( ) S,

l »

W(r.0.0.0)=1 5w, (1) §]
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G(r.0,4,t)=1 23.G,(r) S"(6,4)exp(-iQ2t) (13)
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where S7'(6, ¢) ! (cosﬁ)exp( imp) are the sphere-

cal harmonics, (cos 6’) be the associated Legendre
polynomials; n and m are integers, (Q = a)/ a)*), ® is
the circular frequency. The substitution of Equations (13)
into Equations (9)-(12) provides us
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The uncoupling of Equation (17) for y, from those
of w,,G, and T, indicates the existence of two distinct
classes of vibrations in the considered hollow sphere.
The solution of Equation (17) for y, corresponds to the
toroidal modes of vibrations which remains unaffected
due to thermal variations and can be discussed in the
same manner as was done by Cohen [3] if viscous effects
are neglected. The solution of the spherical Bessel Equa-
tion (17) is given by

> a a’
S PO L L

where (a*)Q: _l , B, and B
l—lQal nl n2

constants determined from arbitrary conditions.

are arbitrary
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3.1. Extended Power Series Method

In order to solve the coupled Equations (14)-(16), we
apply Matrix Frobenius method for the domain of con-
sideration is b<r <a. We take power series of the type

Y, = Z,&P (20)
k=0

where Y, =[w, G, T.],Z,=[A B D]
p is the eigen value and A, B,,D, are unknowns to be
determined.

Substituting the solution (20) in Equations (14)-(16)
we get the following matrix equations

S[H, (p+k)E™ +H, (p+K)&" +H]E"*Z, =0 1)

where

H (p+ k):[Hij(p+ k)JM,

: (it Q!
HZ(p+k)=|:Hij(p+k):|3X33H zdlag[ 5(: 35_592-0]
(22)
The non zero elements of the matrices H,(p+Kk)

and H,(p+k) are given by
Hyy (p+k) =((p+k) -2 ),

le(p+k):n(n+1)(c§(p+k—q2)
H21(p+k)=—(c;(p+k)+b‘2),

Ha (p+k) =(c (p+k) -b7)

Ha (p+K)=((p+k)' =)

(23)

*1

HL (p+k) = Q/_ZO n(n+1)

. Sa . BB . 1-6%)8"
where ¢ = 5*1 ,C, = 15,? ,C, :( 5*) .
0 0 0

Equating to zero the coefficients of lowest powers of
£ (i.e. P =0)in Equation (21), we obtain

H(p)Z,=0 24)
where
(p*-B) n(n+1)(cip-B7) 0
H(p)=|-(cp+l’)  (¢p’-B) o |
0 0 (P -n)
Z,=[A B, D]
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The requirement for the existence of non-trivial solu-
tion of Equation (24) leads to the following two indicial
equations

2
p4—Ap2+C=0,p2=(n+%j (26)

where A:((bz2 +C,*b32)—n(n+l)(0;)2)/cr,

C = (b2 ~n(n+1)) <
The roots of Equation (26) are of the type p==+p (i =

1,2,3)
where
A+ A’ —4C A—+ A —4C
p = f»pzz f,&:T?

27)

We designate the roots of Equation (26) as p, (i =110 6)
with p, =—p;, Ps =—P,, Py =—p; . Obviously p;, pg
are real and p,, p,, p,, P; may be complex in general.
If p, (i =1, 2,4, 5) are complex, then leading terms in
the complex series solution (24) are of the type

[A) B, Do]fp=zopr+ip'
=Z, ™ [cos(pI 10g§)+isin(p| logg)]

In order to obtain two independent real solutions, it is
sufficient to use any one of the complex root and taking
its real and imaginary parts see Neuringer [10]. Moreover,
the treatment of complex case is unlike that of the real
roots with the advantage that the differential equation is
required to be solved only once in the former case rather
than twice in the later one. For the choice of roots of the
indicial equations, the system of Equations (24) leads to
following eigen vectors

Z,(p)=[1 Q(p) 0] Lz ()

(28)

=[1 Qu(p) 0] LZy(py)=[0 0 1L,
Zo(p4)=[1 Qg(=p) O]’LO,ZO(pS)

29)
:[1 QB(_pZ) 0:| Loazo(ps)zzo(_p3)
where
(pjz_b;) C;pj"'blz .
Q p == * 2:*2 2’J=1:2
B( l) n(n+1)(03pj—b,) Clpj_bz ( )
(P -B)  —clp+bf
Q _p'= * 2: *ZJ 29J:1’2
B( J) n(n+1)(C3pj+Q) cp; - ( )
(30)
and L, isa constant. This suggest us to have
0JA
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lﬂj:152 QB(pj)sj:1a2
. = ’B . = N
A)(pj) {05123 O(pj) {0)]:3
(€2))
0,j=12
DO(pj): 1,j=3

where A ( of ), B, ( p; ), D, ( of ); j=4,5,6 can be written
from (31) by replacing p, with —p;,(j=12,3) and
again equating to zero the coefficients of next lowest de-
gree term &P which corresponds to k=1, and using
Equations (21) we obtain:

H (P +1)Z +H,(p;)Z,=0,(i=1.23)  (32)

Clearly Hl<pj +1) is non-singular for each p;,
therefore we have:

Z,=~(H,(p,+1)) H,(p)Z=D/Z, (3

where

Z=[A B DJ,

0 0 Li| 34

Dy =—(H,(p,+1)) H.(p)=| 0 0 L,

L31 L32 O
L, (i,j =1,2,3) are given by Equations (A.l) to
(A.4) of Appendix. Here the matrices Hl(pj +1) and
H, ( p; ) can be written from the Equations (22) and (23)
by set- ting k=1. Now equating the coefficients of

powers of &P equal to zero, we obtain following re-
currence rela- tion:

H, (P, +k+2)Z,, +H, (p; +k+1)Z,,, + HZ =0(35)

where the matrices H;,H, and H are defined in Equa-
tion (22) and (23). This implies that

Z., :—(H1 ( p; + k+2))_1

x| H, (p; +k+1)Z +HZ, |

(36)

Now putting k=0,1, 2, 3---
plifying we get

successively, and sim-

VA :_(Hl(pj +k+2))71

x| H,(p; +k+1)Dy,, +HD; |Z, = D;,,Z,
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BuiJ, (%r Q] +2.BoY, (% rQH P™ (cos§)e (™
n=1

where

*

D; =1.D;,, =—(H,(p, +k+2))

x| Hy(p; +k+1)Dy, +H Dy |,

It can be easily shown that the matrix D, , has simi-
lar form to that of H, ( p; + k+2) for even values of k
and it is alike H, ( p; + k+1) for odd values of k. Thus
we have

Loir = D;k+ZZO’sz+1 = D;k+1zo>k =0,1,2,3,
where D;,, =—(H,(p, +2k+2))
x| Hy(p; +2k+1)D;,., +H D;, ],
k=0,1,2,3,--

s

-1
Doy :_(Hl(pj +2k+1))
x| H,(p; +2K)D} +H Dy, , |, (37)
k=0,1,2,3,

3.2. Convergence Analysis

According to Cullen [16], in case of a matrix sequence
{A} in G, wehave LimA =A({A}— A) ifeach
of the k> component sequénce converges.

After straight forward calculations and simplifications

of Equation (37) we have

Ky Ky 0
D;k+2 =Ky Ky 0= O(kfz)D*,
0 0 Ky
0 0 K|
Dy =l 0 0 Ki|~o(k')D"
Ki Ky 0

K, Ki (i,]=1,2,3) are defined by Equations (A.5)-
(A.14) in Appendix.
where D" == gTa)r(;diag(C;,OA) and D" is 3x3
null matrix. Upon using above facts, we see that both the
matrices D,,,, >0, D, >0, as k—o. Thus the
series (20) is absolutely and uniformly convergent and
hence can be differentiated term by term being analytic.
Moreover, the derived series are also analytic functions.
Therefore, the potential functions W, G, T and y are
given by

(38.1)

*

(38.2)
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where {ﬂ ( P, ), By ( P, ), D, ( P, )} are eigenvectors ank, (j =1,2,3,4,5, 6) can be evaluated by four bo-

shown in Appendix (A.15) corresponding to the eigen- undary conditions of hollow sphere. Displacements and
values p;. The unknowns B,B,, and stresses are obtained as
1 o 6 o
u =(r)> Z{ZZcmkAk(pj)( Q)" }qu(cosé?)exp[—i(myﬁ+§2t)] (39.1)
n=0| j=1k=0

M

m . Fpﬂma[ii

n=0 j=

CaBc (P, )(fﬂ)””ij}F* (39.2)

=
(R

u, _(ry:|m [iiicmksk(pj)(rQ)pi*k]P—sineni BHFP'}F* (39.3)

cm.o(pj +2A _%j'% ( p; )+icmo n(n+1)AB, (p, )}(rg)pjl

n=1 n=0
(39.4)

+ii{icmk nn+1) A Bk+l(pj)+icnjk(p,+k+zph+ jpm( )+C;Dk(pj)}(m)p,.+k}PF*
P

n=

o =_(r)*% [i[ iCmOMpJ )+icnj0(%_ pjjBo(pj )}j PP'(rQ)""

(39.5)
© 6 0 0 1 =, Sk oy P *
2212 CoicAca (P, )+Zank(—— p, _kj Be. (P, )} PP'(rQ)" ™ +SimF = |F
k=0 j=1 (n=0 n=0 2 n=1 P
R I e 3 . P pi-1
oy =—(r)> Z:, ZocnjOA)<pj)+ZlanO 5P Bo(pj) 'mE(rQ)
ma " (39.6)
© 6 © © 1 . P pj+k 0 =
+2. 2212 Cain A ( P )+zank —=p; -k |B, ( p; ) im=(rQ)”" - FPP'|F
k=0 j=1 {n=0 n=0 2 P n=l1
o a o a for thermally insulated hollow sphere which further
where F :Z Bqu ErQ +ZanYr, grQ splits into two different classes of vibrations discussed
i i below.
3 a a’ a’ .
F=B, Kn _Ej J, ger—grQJ,H, [grﬁﬂ 4.1. For Stress Free Boundary Conditions
. . X Case 1: For k=0, n>0, the secular equations are given
3 a a a as
+B — Y| —=rQ|-——rQY | —rQ
”ZKU zj ’{5 j 5 ”“[5 H det(d;)=0,(i,j=1,2,34,5,6) (40)
F* =exp[-i(mp+Qt)],P=PR"(cosd), d,,d —dg,d, =0 (41)
_ m 1-26%)a;,  (397) dR" (u m
B —sing,p— 2 (¢030) . *) ‘ (l—ﬂz)—”d( ) () =0, 42)
d(cos ) S, H
where 1 =cos@
4. Secular Dispersion Relations d, =[n(n+1) AQ,( p1)+( p +2A +lﬂ @
2 43.1
On applying the boundary conditions on Equations (6) B o
we obtain a system of eight homogeneous linear alge- XA ( pl)(aQ)
braic equations which will have a nontrivial solution if 1 bk _
and only if the determinant of the coefficients By, By 4 - (pl + k+5] D (p)(aQ)™ ™ ; thermally insulated
and Cy, (J=1,2,3,4,5,6) vanishes. This requirement 317 »
of nontrivial solution leads to a determinant equations Dk(pl)(aQ)pl ; isothermal (43.2)

Copyright © 2012 SciRes. 0JA
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d51

3-nJama(p)E) @33)

3 a’ a’ a’
o :K”‘z)% [Fea)-5u. (F“ﬂ o

Here the elements det(d ) (i,j=1,2,3,4,56) of
Equation (40) can be written from det( d; ),( =1,3,5)
by replacing p, with p,(j=2,4,6) and the elements
det(d”),( =2,4,6and | =1-6) are obtained by re-
placing a with b. The element d,; can be obtained by
replacing Bessel’s function of first kind J,  with that of
second kind Y, in Equation (43.4) and the elements
d,; and dgg can be obtained from d,, and d, by
replacing a with b, respectively.

Case 2: For k>0,n=0 the secular equations are
obtained as

det(df)=0,(i,j=1,23,4,56),  (44)

where

d/, = { KA +— JAM(pl)sz( )}(ag)"l*k

4 —_—
d31 -

0
(  + K+ %) Dy.. (P )(a)” ** thermally insulated
D, ; isothermal

(p)(a)™™;

ds’l = A<+l ( pl)(aQ)pl+k

The elements det(di} ), (1, =1,2,3,4,5,6) of Equa-
tion (44) can be obtained by just replacing p, in
det(d; (i=1,3,5)with p,,(j=2,3,4,56) while
det(d;
det(df).(i=1,3,5) withb.

Case 3: For k>0,n>0,
given as

,(i=2,4,6) are obtained by replacing a in

the secular equations are
det(dj)=0,(i,j=1,2.3,4,5,6) (45)

where
d;, ={n(“+1)A§Bk+l(p,)+(p, +k+%+2A§j

x A ( p1)+csz(p1):|(a£))pl+k

it ( p +k +%j Dt (B )(a())pl+k ; thermally insulated
317

D (p)(a®) P*. isothermal

d; {/’m(n){%— P —kj B (P )}(a&))p‘*k

The elements of det(d” ), (1,j=1,2,3,4,56) of de-
terminant equation (45) can be obtained by just replacing

Copyright © 2012 SciRes.

3 )Wlthpj,(J 2: 3949536)

py indet(d; ),(i =
( =2,4, 6) are obtained by replacing

while det(d;
ain det(di ):O,(|:1,3,5) with b.

4.2. First Class Vibrations

The vibrations of first class correspond to the solution of
Equation (38.2) of potential function y and hence are
given by Equation (41). After lengthy but straight for-
ward calculations, the characteristic Equation (41) can be
simplified by using asymptotic Expansion [3] for func-
tions as

tan ((a*/5)Qh)

(a’/s)@h

2
- 4277 +15 46)
8abQ? —4n* +33

a+b . .
where h=a-b, R= is the mean radius.

In the limiting case of the thickness h tending to zero,
we obtain from Equation (46)

RQ =5’ —% 47)

These Equations (46) and (47) are of similar type re-
ported by Cohen et al. [3] but completely agreement in
the absence of viscous effect.

1 .
If we take 7= n+5 the Equation (46) reduces to

tan((a*/é')Qh) 2

> - 48
(a0)an - @' for n=0 (43)
tan((;f/g)Qh)E 3 o e “9)
(a'/s)ah — abQ’+3
1) 15
tan((a*/é)Qh) (n+2j +Z
- = > for n>1
(a7/2)oh 2ab£22—((n+1] —33]
2) 4
(50)

4.3. Second Class Vibrations

The secular Equations (40), (44) and (45) govern the
second class vibrations called spheroidal vibrations
(S-modes) for Case 1. k=0,n>0, Case2. k>0,n=0,
and Case 3. k>0, n>0, Stress free conditions respec-
tively.

4.4. Thermo-Elastic Hollow Sphere

If we ignore the viscous effect (¢, =0=¢,), then the
present analysis reduces to that of generalized thermoe-
lastic hollow sphere. In case the thermal relaxation time
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is zero (t,=0=t,), the above results reduce to those
which govern the vibrations of coupled thermoelastic
hollow sphere.

4.5. Viscoelastic Hollow Sphere

If thermal equilibrium is assumed to be established then
(6 =0=T,t,=0=t,), and present analysis reduces to
one which governs the spheroidal and toroidal vibrations
of a viscoelastic hollow sphere.

4.6. Elastic Sphere

When in addition to establishment of thermal equilibrium,
the viscous effect in solid is ignored so that

& =0=T,t,=0=t,, o, =0=q,, then the above analy-
sis completely reduces to one that governs the spheroidal
and toroidal vibrations of an elastic hollow sphere. In this
case the results are observed to be in agreement with
Cohen [3].

5. Numerical Results and Discussion

In order to illustrate the analytical developments, we pro-
pose some numerical calculations to compute lowest fre-
quency of S-modes in the hollow sphere made of copper
material. The numerical computations have been carried
out for spheroidal modes of vibrations for k>0, n>0
by using fixed point iteration numerical technique with
the help of MATLAB software tools for thickness to
mean radius ratio. Due to the presence of dissipation
term in heat conduction Equation (2), the secular equa-
tions are, in general, complex transcendental equations
and hence provide us complex values of the frequency
Q and hence of . If we write @ = @ +i®, , then the
lowest frequency and dissipation factor are given by
QO =Re(Q/5)=Rmg/c, and D=Im(Q/5)=Rw/c, ,
for fixed values of n and k. The numerical computations
have been done by taking sufficient number of values of
the Frobenius parameter K in order to obtain the con-
verged values of lowest frequency (Q) and dissipation
factor (D) of S-modes. The computer simulated lowest
frequency, dissipation factor, displacements; stresses and
temperature change have been presented in Figures 1 to
10 for viscothermoelastic (VTE), thermoelastic (TE), vis-
coelastic (VE), elastic (E) materials of hollow sphere.
The material copper has been taken for the computation
purpose as whose physical data [14] is given as

A=82x10"Nm™~, £ =4.2x10""Nm7,
p=8.950x10""kg-m™, & =0.00265, o =1.0x10" /K,
K =1.13x10°Cal-m™ -s™" -K ',

a,=a, =6.8831x10""s, @ =1.11x10"s™", T, =300K.

The variations of lowest frequency Q and dissipa-
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tion factor in a stress-free and thermally insulated hollow
sphere of copper material versus degree of harmonics (n)
have been plotted in Figures 1 and 2 at different values
of thickness to mean radial ratio (t* =0.2,0.4,0.6,1.0),
where t"=h/R, h=a-b, R=(a+b)/2. It is concluded
from Figure 1 that the lowest frequency increases with
increase in degree of harmonics. It can be inferred from
Figure 2 that with increase in degree of harmonics the
dissipation of vibration modes go on increasing. Figure 3
the lowest frequency of toroidal vibrations has been plot-
ted versus degree of harmonics (n) for different values of
thickness to mean radial ratio (t* =0.2,04, 0.6, 1). From
Figure 3 it is revealed that with increase in the degree of
harmonics the frequency of vibrations go on increasing.
The trends of the profiles in Figure 3 are similar to that
as reported in Ding and Chen [17]. But the dissipation
factor of toroidal vibrations is very low (of the order 107')

180 +

160 -

140 -

120 -

100 4

80 -

Lowest frequency

60 4

40

20 - / /,

i}
A\

o=
1 2 3 4 5 6 7 8 9 10
degree of spherical harmonics (n)

Figure 1. Lowest frequency (Q) of spheroidal vibrations

versus degree of harmonics (n) in (VTE) hollow sphere.

dissipation factor

1 2 3 4 5 6 7 8 9 10

degree of spherical harmonics (n)

Figure 2. Dissipation (D) of spheroidal vibrations versus

degree of harmonics (n) in (VTE) hollow sphere.
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w0 Lol
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degree of spherical harmonics (n)

Figure 3. Lowest frequency (f!) of Toroidal vibrations ver-

sus degree of harmonics (n)in (VTE) hollow sphere

in the instant case which is negligible. From the trends of
variations of lowest frequency and dissipation factor of
S-mode, it is noticed that the thermal variations, thermal
relaxation time and viscous nature of the material signi-
ficantly affect the characteristics and behavior of sphere-
cal vibrations and their magnitudes in contrast to that of
toroidal modes which are only affected due to viscosity
but not by the temperature variations as expected.

In Figures 4 to 7, the variations of temperature change
(T) and stresses (o,,, 0y, 0,,) versus 7 =((r=b)/h)
ie Oﬁ((r—b)/ h)sl (difference in radius and inner
radius to thickness) for the modes (0, 0), (1, 0) and
(1, 1) have been plotted in case of stress free and ther-
mally insulated surface of the (VTE) sphere. Figure 4
revealed that the magnitude of temperature change is
though meager, but decreases with increasing values of
(77*) from its maximum value at 7" =0 to become
steady and stable at the 7" =1in case of all the modes. It
is inferred from Figure 5 that the variations of radial
stress (o, ) for modes (mn):(1,0), (1, 1) initially in-
creases and die out with increase in values of (77*) . But
for the mode (0, 0) , the stress is of compressive nature
and its magnitude vanishes with increasing values of

77*) . It is noticed from Figure 6 that the meridian stress

o0,,) of vibration modes (mn):(1,0),(1,1) has com-
pressive nature and it dies out with increasing values of
(77*). However the mode (0,0) has maximum varia-
tions of this quantity and its vibrations die out with in-
creasing values of (7" ). Figure 7 shows that the varia-
tion of stress for mode (1, 1) . It has maximum value and
its magnitude goes on decreasing with increasing values
of 7" to ultimately die out.

Figures 8 to 10 represent the variations of displace-
ments (ur , Uy ,uw) Versus (77*) for the modes

(m, n):(0,0),(1,0) and (1,1). Figure 8 revealed that

Copyright © 2012 SciRes.

the variations of radial displacement decrease from their
maximum variation 7 =0 with increasing values of
(77*) to become stable at 7" =1 for all modes of vibra-
tions. Figures 9 and 10 show the variations of dis-
placements U, and U, versus (77*). The profiles of

0.04
00354
£ 003 1 n=0,m=0
[} Y
- - -~ -n=l,m=
2 0025 | U P 1 e
= \\ Il—l,I’Il—l
S 0m{ O~
e
g ~_
£ 0.015 - T
= -
g T -
S 001 - Tt
0.005
0 . . : : )
0 0.2 0.4 0.6 0.8 1

n*
Figure 4. Variation of temperature change (T) versus (77)

of hollow sphere.

60 -
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404 \ . .
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0.8 1

-40 4

-60 -

Figure 5. Variation of stress (0',,) verses (77) of hollow

sphere.
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Figure 6. Variation of stress (o,,) verses (17) of hollow
sphere.
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Figure 7. Variation of stress (a,¢) verses (n) of hollow

sphere.
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Figure 8. Variation of displacement (u,) verses (n) of hol-

low sphere.
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Figure 9. Variation of displacement (u,) verses (17) of hol-

low sphere.
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5,

Figure 10. Variation between displacement (u,) verses (77)

of hollow sphere.

variations of these quantities show increasing trends with
respect to increasing values of 7" for all the modes of
vibrations.

5.1. Numerical Data/Information

Here in Table 1 shows the Comparison of lowest fre-
quency (Q) and Dissipation factor (D) in different me-
dia i.e. viscothermoelastic (VTE), thermoelastic (TE), vis-
coelastic (VE) and elastic (E) materials of hollow sphere
and Table 2 has been given to check the validity of the
numerical data by using t-test at fixed degree of harmon-
ics (n: 1,2, 3) for different values of thickness to mean
radius ratio i.e. (t* =0.2,04,0.6, 0.8, 1.0) of hollow
sphere.

5.2. Statistical Analysis

In this sub section we have performed some statistical
analysis of computed data for lowest frequency and dis-
sipation factor of three harmonics(n=1, 2, 3) of spher-
oidal vibrations in hollow sphere of different thickness to
mean radius ratio (t *) made from VTE, TE, VE and E
materials. The t-test has been used during the analysis in
order to examine the influence of thermal, viscous and
both thermal and viscous, effects on the vibrations.

5.2.1. Lowest Frequency

We take two samples X and Y, where X denotes lowest
frequency (f)) of each mode of vibrations in viscother-
moelastic (VTE), thermoelastic (TE) or viscoelastic (VE)
hollow spheres and Y represents lowest frequency f))
of elastic (E) hollow sphere. The size of the sample in
eachcaseis N =5. Let th e, the, the and ue denote
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Table 1. Comparison of lowest frequency (fz) and dissi-

pation factor (D) of vibrations of a hollow sphere with
thickness to mean radius ratio at ¢ =0.6.

Table 2. Numerical data of lowest frequency and dissipation
factor of first three harmonics (n=1,2,3) for different

values of thickness to mean radius ratio (t) .

Hollow sphere

Quantity  Harmonics (n)

VTE TE VE E
1 3.12531 4.13562 3.78694 2.78934
2 5.03378 5.40891 572728 5.86775
3 7.15597 532162 11.8138 6.23351
Lowest 4 13.9483  16.97901 20.2419  13.097
frequency 5 28.0503 33.74073 27.3885 22.8264
© 6 473415 512391 34.1007 26.8179
Quantity 7 551117 61.0285 39.3571 29.5775
8 65.60864 70.8765 43.93481 36.5856
9 74.49489 87.28608 48.6033  42.6692
10 80.9732  97.6551 58.6359  48.1659

Hollow sphere

Harmonics (n)

VTE TE VE

1 0.620948 0.99483  0.45198

2 134792 1.79812  1.13429

3 251173 234876  1.13425

4 2.10415 24755  2.09345

Dissipation 5 265234 3.24513 221375

factor

(D) 6 3.25564 3.90647  2.6234

7 3.65919  5.06335 2.86333

8 4.08234 6.82812 324512

9 463452 7.36345 3.51789

10 5.620948 7.65767  4.08993

mean values of the data representing to (VTE), (TE), (VE)
and (E) hollow spheres, so that X = s, it OF t4e and
Y =4 . The standard deviation S(ge, the and gz) is
calculated by using formula

S=\/$[Z(X—)_()2 +(Y—7)2J in each case for

all the considered modes. In order to test the null hy-
pothesis H, = s = tte = the = 4 for the consistency
of means of the data pertaining to each case, we use t-test
in which the t-statistic is computed from the relation

The computed values if t are given below
n=1: t =0.56,t, =135t =0.75
n=2:t=049,t,=0.67,t, =0.28

Copyright © 2012 SciRes.

n t* VTE TE VE E
02 779494 7.98734 6.87965 5.23654
04 374439 497239 4.07845 3.80674
1 06 312531 413562 3.78694 2.78934
08 201987 3.13458 278231 2.26505
1 247909 298234 206712 167816
Lowest 02 20.159179 24.67453 18.80713 15.9068
Frequency 04 17573726 19.96504 15.90145 13.3877
©) 2 06 503378 540891 572728 5.86775
0.8 513452 495097 4.04573 3.90154
1 490337 3.98352 3.27654 3.10546
02 503645 54.89765 43.90871 37.8096
04 4397568 4589654 28.46753 21.7894
3 06 715597 532162 118138 6.23351
08 634566 4.69831 6.09124 5.45873
1 6.15597 413654 4.89456 3.29342
n t* VTE TE VE
02 290823 3.56743 2.15973
04  0.802961 195643 1.65673
1 06 0620948 0.99483 0.45198
08 056743 087659 0.34563
1 045936 0.67845 0.27854
Dissipation 02  3.181368 4.87654 2.82341
Factor 04 1904031 2.10432 1.67834
(D) 2 06 134792 179812 1.13429
08 099874 120567 0.34723
1 0539367 0.67104 0.34823
02 53769 598754 3.87604
04 371877 4.13045 1.46539
306 251173 234876 1.13425
08 194876 198104 0.79654
1 1.15533  0.89045 0.35642

n=3:t =077t =0.62,t, =041

The tabulated values of t for 8 degree of freedom at
1% level of significance is given by t,,, =3.36, clearly
t <tyo (i =1,2,3) ineach case and hence the null hy-
pothesis H, is accepted at 1% level of significance.
Thus the numerical data is consistent.

5.2.2. Dissipation Factor

Here X denotes the dissipation factor (D) of (VTE) or
(TE) hollow spheres and Y represents the dissipation fac-
tor (D) of (VE) hollow spheres. The size of the sample is
again N, =5 and the null hypothesis H, = tz = 14 = 14
is tested for (VTE) and (TE) spheres versus (VE) one by
adopting above procedure. The computed values of the
t-statistic are given below:
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n=1: t =0.15t, = 0.96
n=2: t, =0.5Lt, =1.51
N=3: t =149, t, =1.42
Since t <t,, ,(i=1,2) in each case and hence the

null hypothesis H,, for is accepted at 1% level of sig-
nificance. Thus the numerical data is consistent.

6. Conclusion

After simplifying the system of equations of motion and
heat conduction of linear coupled viscothermoelasticity
for a homogenous isotropic hollow sphere with the help
of Helmholtz decomposition theorem, the extended po-
wer series (Matrix Frobenius) method is successfully used
to solve the resulting system of equations. It is noticed
that toroidal vibrations (T-modes) get decoupled from
rest of the motion and remain free of temperature varia-
tions as expected. The lowest frequency of spherical vi-
brations is noticed to be significantly affected due to
temperature variations in a hollow sphere of copper ma-
terial. This study may be useful in tribology and geophy-
sical industrial applications.
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Appendix < _H;l(pj+2k)Hg3(pj+2k+1) i Hy (P +2K)
The non-zero elements L, (i,j=1,2,3) of the matrix 2 H33(pj+2k+l) 5 H (pj+2k)
D, in Equation (34) are given by
L 22(pj+1) 13(pj)_ 12(pj+1)H2'3(pj) (A7)
T H, (b, +1)H (P, +1)=Hy (p, +1)Ha, (p, +1) < _Hi (P +2k)Hi (py +2k+1) ! Hyy (P +2K)
@an Ha (py +2k+1) & H(py+2K)
(o) (p) Hu(p )M (p) ws
? Hll(pj+1)sz(pj+l)_H12(pi+1)H21(pj+1) H'( +2k+1)K* H'( +2k+1)K*
(AZ) K33: 31 p] l+ 32 p] 2
H:, (p,) H"(p, +2k+1) H™(p, +2k+1)
L, =—— 1l (A3) (A9)
1 ’
H33(pj+1) .
+—
L, = H;Z(pj) (A.4) H33(pi+2k)
= :
H33(pj+1) * ’
The non-zero elements K, ( J—123) and Ki :(HZQ(pj+2k+1)H]3(pj+2k)
. j=1,2,3) of the matrix D,,,, and D,,., de- '
ﬁnjed(m Equatlol)l (37) are obtained az: ’ - _le(pj +2k+1)H23(pj +2k))
< :H;l(pj+zk)H;3(pj+2k+1)+iQ—1 Ho, (b, +2K) K;:(HZI(pj+2k+l)H1'3(pj+2k)
1 H33(pj+2k+1) 5; H*(pj+2k) .
(A5) +H11(pj+2k+l)H23(pj+2k))
‘- HY, (o +2K)HY; (py +2k+1)_ig*—1 Hlf(p,- +2k) H'(p; +2k)=H,, (p, +2K)H,, (p; +2k)
Hy (p; +2k+1) & H'(p;+2k) (A.10)
(A6) —H,, (p; +2K)H,, (p; +2K)
o le3<pj+2k)+igl (Ha (py +2k=1) HY; (py +2k+1)=Hy, (py +2k+ 1) Hi (py +2k+1)) AlD
]3_H33(pj+2k) 5 H™(p; +2k+1) '
< ~ HL (b, +2K) iQ—l(H21(pj+2k+1)H1’3(pj+2k+1)—H11(pj+2k+1)H£3(pj+2k+l)) AL
® Hy(pj+2K) & H"(p; +2k+1) .
o (=H:, (py +2K)H,, (b, +2k)+H31(p]+2k) 12<p1+2k)) H (p, +2k+1)z; A3
e H(p; +2k) Hy (p; +2k+1) '
o :(—H;I(pj+2k)H (p, +2k)+H1(p]+2k) (p, +2k))+H3’2(pj+2k+1)z{;I Al
? (pj+2k) H33(pj+2k+1) '
5 _ g _ D;k+2 Z,; k for even numbers (A15) D;k+1 L
“ D D, Z,; K for odd numbers :_(Hl(pj+2k+1)) X|:H2(pj+2k)D;k+HD;k—l:|’
‘ k=0,1,2,3,--
where
D;k+1

=—(H,(p, +2k+1))"
x| H, (P, +2K) Dy, + HD}, |,k =0,1,2,3,-
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