
Open Journal of Acoustics, 2012, 2, 12-24 
http://dx.doi.org/10.4236/oja.2012.21002 Published Online March 2012 (http://www.SciRP.org/journal/oja) 

Three-Dimensional Free Vibration Analysis of  
a Viscothermoelastic Hollow Sphere 

Jagan Nath Sharma1, Dinesh Kumar Sharma2, Sukhjit Singh Dhaliwal2 
1Department of Mathematics, National Institute of Technology, Hamirpur (HP), India 

2Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Sangrur, India 
Email: jns@nitham.ac.in, dksharma200513@gmail.com, sukhjit_d@yahoo.com 

 
Received November 18, 2011; revised December 20, 2011; accepted December 30, 2011 

ABSTRACT 

This paper concentrates on the study of the three-dimensional free vibrations in a homogenous isotropic, viscothermoe- 
lastic hollow sphere whose surfaces are subjected to stress free, thermally insulated or isothermal boundary conditions. 
The use of governing partial differential equations is solved into a coupled system of ordinary differential equations. 
The equation for toroidal motion gets decoupled from rest of the motion and remains unaffected due to thermal varia- 
tions. Matrix Fröbenious method of extended power series is employed to obtain the solution. The secular equations for 
the existence of various types of possible modes of vibrations in the considered hollow sphere are derived in the com- 
pact form. The special cases of spheroidal and toroidal modes of vibrations of a hollow sphere have also been deduced 
and discussed. In order to explore the characteristics of vibrations the secular equations are further solved by using fixed 
point iteration numerical technique with the help of MATLAB software tools. The computer simulated results have 
been presented graphically for copper material. 
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1. Introduction 

The exact three-dimensional analysis of free vibrations of 
elastic spherical structures is well established in [1-4]. 
The coupled theory of thermoelasticity proposed by Lord 
and Shulman [5] incorporates a flux-rate term into the 
Fourier Law of heat conduction and involves a hyperbo- 
lic-type heat transport equation admitting wave type ther- 
mal signals. Green and Lindsay [6] formulated tempera- 
ture-rate-dependent thermoelasticity by introducing rela- 
xation time that reckons a finite speed of heat propaga- 
tion. Hetnarski and Ignaczac [7] studied the response of a 
semi-space due to a short laser pulse in context of gener- 
alized thermoelasticity. Buchanan and Ramirez [8] com- 
puted the free vibration frequencies for solid ellipsoids 
by using Ritz method. Sharma and Sharma [9] studied vi- 
brations of a transradially isotropic coupled thermoelastic 
solid sphere by using matrix Fröbenius method. Neurin- 
ger [10] developed the procedure of Fröbenius method 
when the roots of indicial equation are complex. Several 
mathematical models [11,12] have been used to accom- 
modate the energy dissipation is due to internal friction 
in vibrating viscoelastic solids. Moreover the Kelvin-Voigt 
model is one of the macroscopic mechanical models whi- 
ch is also used to describe the viscoelastic behavior of a 
material. Mukhopadhyay [13] studied the effect of ther- 
mal relaxation time on viscothermoelastic interactions in 

an unbounded body with a spherical cavity subjected to 
periodical loading. Sharma [14] investigated the propaga- 
tion of waves in an infinite Kelvin-Voigt type viscoelas- 
tic plate in the context of coupled thermoelasticity. 

This paper is devoted to the exact three-dimensional 
vibration analysis of homogenous isotropic, viscother- 
moelastic hollow sphere subjected to 1) stress free ther- 
mally insulated and 2) stress free isothermal conditions. 
The potential function technique has been employed to 
decouple purely shear motion which remains independ- 
ent of thermal variations. Upon using separation of vari- 
able technique, the problem is reduced to a system of four 
ordinary differential equations. In order to obtain frequen- 
cy equation as second class (spheroidal) vibrations the cou- 
pled system have been solved by using Matrix FRÖBE- 
NIUS series method. The fixed point iteration numerical 
technique with the help of MATLAB software tools is 
used to compute frequency and damping of the vibrations. 
The computer simulated results in respect of lowest fre- 
quency, dissipation factor, stresses, displacements and tem- 
perature change have been presented graphically of the 
hollow sphere. 

2. Mathematical Model 

We consider a homogenous isotropic thermally conduct-
ing, viscothermoelastic hollow sphere of outer radius a 
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 and ije ,  , , ,i j r  
respectively; 

and inner radius b initially at uniform temperature 0  in 
the undisturbed state. The basic governing equations of 
motion and heat conduction for displacement  

T

  , , , , ,rr t u u u    u
 , , ,T r t

 and temperature change  
   in spherical polar coordinates  , ,r   , in the 

absence of body forces and heat sources, are given by [15] 
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Here ij  are the stress and 
strain components,   

0 1,
is the thermoelastic 

couplin nstant, g co    are the visco
laxation times;

thermoelastic re- 
 ,    are Lame’s parameters; T  is the 

coefficient of li on; near thermal expansi   is ss den-
si

ma
ty;  C  the sp stant strain; K is the 

thermal conductivity; 0t  and 1t  e the thermal relaxa-
tion times. The quantity ik

e  is ecific heat at con
ar

 , 1, 2i   is Kronecker’s 
delta in which k 1  corresponds to Lord-Shul n (LS) 
and 2k

ma
  refers to Green-Lindsay (GL heory of ther- 

moelasticity. The superposed dots represent time differ- 
entiation and comma tion is used for spatial deriva- 
tives. 

Boundary Conditions 

We consider the free vibrations of the sphere which is 
subjected to stress free, thermally insulated and isother- 
mal co

) t

no

nditions and r a  (outer radius) and r b  (in- 
phere. Mathematically this pro- ner radius) of the hollow s

vides us 
0, 0, 0, , 0rr r r rT              (6) 

In order to simplify the model, we define following 
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 s

3. Solution of the Mod

In order to solve the model we introduce the potential 
functions , G  and w defined by [1] 
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Upon using the Equation (8) in Equations (1) to (2), 
we find that , ,w G  and T satisfy the non-dimensional 
equations 
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3.1. Extended Power Series Method 

In order to solve the coupled Equations (14)-(16), we 
apply Matrix Fröbenius method for the domain of con-
sideration is b r a  . We take power series of the type 

0

p k
n k

k

Y Z 
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and is a constant. This suggest us to have 0L  
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   (39.7) 

4. Secular Dispersion Relations 

On applying the boundary conditions on Equations (6) 
we obtain a system of eight homogeneous linear alge-
braic equations which will have a nontrivial solution if 
and only if the determinant of the coefficients Bn1, Bn2 
and  , 1, 2, 3, 4, 5, 6njkC j   

nontrivial solution leads t
vanishes. This requirement 

of o a determinant equations 

for thermally insulated

4.1. For Stress Free Boundary Conditions 

Case 1: For 

 hollow sphere which further 
splits into two different classes of vibrations discussed 
below. 

0, 0,nk    the secular equations are given 
as 

   det 0, , 1, 2, 3, 4, 5, 6d i j        (40) ij

             (41) 
77 88 87 78 0d d d d 

     21 0
d
n m

nmP 


d mP 
   ,       (42) 

cos   where 

   

    1

* *
11 0 1 1 0

0 1

1
1 2

2B

p

d n n A Q p p A

A p a

          

 

      (43 ) .1

   

  

1

1

1 1 1

31

1

1
; thermally ins

2

; isothermal                           (43.2)

p k

k

p k

k

p k D p a
d

D p a






      
 

ulated
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   1

51 1 1 0 1

3
( )

2
p

Bd p Q p A p a
    
 

           (43.3) 

* * *

77 1

3

2

a a a
d J a a J 

  

               
      

a  (43.4) 

Here the elements  of 
Equation (40) can 
by replacing  with 

   det , , 1, 2, 3, 4, 5, 6ijd i j 
be written from  det , 1, 3,ijd i 

 2, 4, 6jp j   and the eleme
 nd 1-6j   are obtained by re

. The element 78d  can be obtaine
nction of first kind 

 5  
nts 

- 
d by 

1p
2,

b
ssel’s 

 det , 4, 6 aijd i
placing a with 
replacing Be fu J  with that of 
second kind Y  in Eq

d 88d can be 
replacing a , res

uation (43.4) and the elem
obtained from 77d  and 78d

pectively.  

ents 
 by 87d  an   

 with b
Case 2: For  the secular equations are 

obtained as 

     ( ) 

where 

0, 0k n 

   det 0, , 1, 2, 3, 4, 5, 6 ,ijd i j   44

      1*
11 1 0 1 1 2 1

1
2

2
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1
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51 1 1

p k

kd A p a


    

The elements    det , , 1, 2, 3, 4, 5, 6ijd i j   of Equa- 
tion (44) can be obtained by just replacing 1p  in 

   det , 1, 3, 5d i  with ij  , 2, 3, 4, 5, 6jp j   while  

   det , 2, 4, 6ijd i   are obtained by replacing a in  

   

 

det , 1, 3, 5ijd i   with b.  
Case 3: For 0, 0,k n   the secular equations are 

given as

   det 0, , 1, 2, 3, 4, 5, 6ijd i j        (45) 

where  

   

      1

* *
11 0 1 1 1 0

1 1 2 1

1
1 2

2k

p k
k k

n n A B p p k A

A p c D p a
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1
; therm

2
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allyinsulated

      1
51 1 1 1 1 1

1

2
p k

k kd A p p k B p a


 
           

The elements of 

 

   det , , 1, 2, 3, 4, 5, 6ijd i j   
45) can be obtained by just re

of de- 
terminant equation ( placing 

in1p    det , 1, 3, 5ijd i  with , ( 2, 3, 4, 5, 6)jp j   

while    det , 2, 4, 6ijd i   are obtained by replacing 

a in      with b. 

respond to the solution

det 0 , 1, 3, 5ijd i  

4.2. First Class Vibrations 

brations of first class cor  of 
Equation (38.2) of potential function 

 

The vi
  and hence

er lengthy b
eristic Equation (41) can 

ptotic Expansion [3] for fu

 are 
n by Equation (41). Aft

ward calculations, the charact be 
plified by using asym nc-

tions as 

give

sim

ut straight for-

  
 

*
2

2 2

4 15

8 4 33ab





  
    

*

tan a h

a h









 (46) 

e wher ,
2

a b
h a b R


    is 

In the limiting case of the t  zero, 
obtain from Equation (46)

the me

hickness h tending to
 

an radius. 

we 

2 2 2 9

4
R                 (47) 

 of similar type
plete

viscous effect. 

These Equations (46) and (47) are  re-
ported by Cohen et al. [3] but com ly agreement in 
the absence of 

If we take 
1

2
n    the Equation (46) reduces to 

  
 

*

2*

tan 2
0

4

a h
for n

aba h






 

 
         (48)  

  
 

*

*

tan a h 
2

3
1

3
for n

aba h
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2

*

2*
2

1 15

2 4
1

1 33
2

2 4

n
for n

a h
ab n





     tan a h
 

           

 

(50) 

4.3. Second Class Vibrations 

The secular Equations (40), (44) and (45) govern the 
second class vibrations called spheroidal vibrations 
(S se 1. 

 

-modes) for Ca 0, 0,k n   Case 2.

tively.  

 k
sp

0, 0,n   
and Case 3. 0, 0,k n   Stress free conditions re ec-

4.4. Thermo-Elastic Hollow Sphere 

If viscous effewe ignore the ct  0 10   , then the 
present analysis reduces to that of generalized thermoe-
lastic hollow sphere. In case the thermal relaxation time 
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is zero , the above results reduc
which go the vibrations of coupled thermoelastic 

If therm  is assumed to be established then 
, and present analysis reduces to 
pheroidal and toroidal vibrations 

of a llow sphere. 

hment of thermal equilibrium, 
 is ignored so that  

1

 0 10t t 
vern 
here. 

4.5. Viscoelastic Hollow Sphere 

al equilibrium
0 , 0T t   
ich governs th

viscoelastic ho

4.6. Elastic Sphere 

When in addition to establis
the viscous effect in solid

0 10 , 0T t t

e to those 

hollow sp

 0 1T t
one wh e s

0, 0T     
sis s to one that 

 
e

case the results are obse
[3]. 

merical Res

dius 
in heat conduction 

e, in general, c
e provide 

d hence of 

, then the above analy- 
governs the sp

to be in agreement with 

u ults and Discussion 

al developments, we pro- 
 to compute lowest fre- 

ha

ratio. Due to the presence 
term Equation (2), the 
tions ar omplex transcendent
and henc us complex values of t

an

 completely reduc heroidal 
and toroidal vibrations of an elastic hollow sphere. In this 

rved 
Cohen 

5. N

In order to illustrate the analytic
pose some numerical calculations
quency of S-modes in the hollow sphere made of copper 
material. The numerical computations ve been carried 
out for spheroidal modes of vibrations for 0, 0k n   
by using fixed point iteration numerical technique with 
the help of MATLAB software tools for thickness to 
mean ra of dissipation 

secular equa-
al

he frequency 
 equations 

   . If we write R Ii   , then the 
iven by 

 
lowest sipation factor are gfrequency and dis

  2R
ˆ Re  R c   and     1 2

r fixed values of n and k. The numerical computations 
have been done by taking suff

ImD R   

icient number of values of
 in order to obtain the con-

uency 

c , 

 
the Fröbenius parameter k

ed values of est freq

fo

verg
fac

low  ̂  and dissipation 
tor  D  of S-modes. The computer simulated lowest 

frequency, dissipation factor, displacements; stresses and 
temperature change have been presented in Figures 1 to 
10 for viscothermoelastic (VTE), thermoelastic (TE), vis- 
co ), elastic re. 
The material copper has been taken for the computation 
purpose as whose physical data [14] is given as  

elastic (VE  (E) materials of hollow sphe

10 2 10 2

10 3 8

8.2 10 Nm , 4.2 10 Nm ,

8.950 10 kg m , 0.00265, 1.0 10 K,T T

 

  

 

 

   

     
 

  

The variations of lowest frequency  and dissipa-

tion factor in a stress-free and thermally insulated hollow 
sphere of copper material versus degree of harmonics (n) 
have been plotted in Figures 1 and 2 at different value
of thickness to mean radial ratio 
where 

2 1 1 1

13 * 11 1
0 1 0

1.13 10 Cal m s K ,

6.8831 10 s, 1.11 10 s , 300K.

K

T  

  

 

    

     

 ̂

s 

 * 0.2, 0.4, 0.6, 1.0t  , 
 * , ,t h R h a b R    

from Figure 1 that the lowest fre
increase in degree of harmonics. It can be inferred from 

gree of harmonics the 

 w
 of easing. 

hat 
pation 

2a b  . It is concluded
quency increases with 

Figure 2 that with increase in de
dissipation of vibration modes go on increasing. Figure 3 
the lowest frequency of toroidal vibrations has been plot- 
ted versus degree of harmonics (n) for different values of 
thickness to mean radial ratio  * , 1t . From 
Figure 3 it is revealed that e in the degree of 
harmonics the frequency

0.2, 0.4, 0.6
ith increas
vibrations go on incr

milar to t
the dissi

 low (of the o

The trends of the profiles in Figure 3 are si
as reported in Ding and Chen [17]. But 
factor of toroidal vibrations is very rder 10–10) 
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 Figure 1. Lowest frequency of spheroidal vibrations 

versus degree of harmonics  n  in (VTE) hollow sphere. 
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Figure 3. Lowest frequency of Toroidal vibrations ver- 

sus degree of harmonics

 Ω̂

  n in (VTE) hollow sphere 

 
in

and behavior of sphere
ations and their magnitudes in c

 the instant case which is negligible. From the trends of 
variations of lowest frequency and dissipation factor of 
S-mode, it is noticed that the thermal variations, thermal 
relaxation time and viscous nature of the material signi- 
ficantly affect the characteristics - 
cal vibr ontrast to that of 
toroidal modes which are only affected due to viscosity 
but not by the temperature variations as expected. 

In Figures 4 to 7, the variations of temperature change 
(T) and stresses  , ,rr r r     versus   * r b h    
i.e.   0 1r b h    (difference in radius and inner 
radius to thickness) for the modes    0, 0 , 1,  and 
 1, 1  have been plotted in c d ther-
mally insulated surface of the (VTE) sphere. Figure 4 
revealed that the magnitude of temperature change is 
though meager, but decreases with increasing values of 
 *

0
ress free anase of st

  from its maximum value at * 0   to become 
steady and stable at the * 1  in case of all the modes. It 
is inferred from at the dial  Figure 5 th variations of ra
stress  rr  for modes      , :m n

e out with incr
1, 0

ease in val
, 1, 1  initially 

ues of 
in- 

creases and di  * . But 
for the mode  0, 0 , the stress is of com

vanishes with i
pressive 

creasing valu
nature 
es of and

 *
 its magnitude n

 . It is noticed from Figure 6 that the meridian stress 
 r  of vibration modes      ,m n

 and it dies out
: 1,

 with i
0 , 1, 1  has c
ncreasing values

om-
 of pressi

 *
ve nature

 . Howe
of this 

creasing value

ve

s

r the mode  0, 0
quantity and its 

 of  *

 has maximum 
die out with in- 

varia- 
tions vibrations 

 . Figure
r mode  1, 1 . It h

s on decreasing

 7
as 
 with
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maximum value

 increasing val

ria- 
 and 
ues 

tion of
its ma
of *

 stress 
gnitude

fo
 goe

  to ulti
Figures 8

ma
 to 

tely die out. 
10 represent the variations of displace-

ments  , ,ru u u  versus  *  for the modes  

     , : 0, 0 , 1, 0m n  and  1, 1 . Figure 8 revealed that  

the variations of radial disp ement decrease from thei
*

lac r 
aximum variation  with increasing values of m 0 

 *  
tions.
place

to become for all modes of vibra- 
 Figures 9 and  the variations of dis- 
ments 

 stable at *
10 sh

1  
ow

u  and u  versus  * . The profiles of  
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Figure 4. Variation o perature change  T versus  *  

of hollow sphere. 
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Figure 5. Variation of stress  rr  verses σ *  of hollow 

sphere. 
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Figure 6. Variation of stress  rσ   verses  *  of hollow 

sphere. 
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Figure 7. Variation of stress  rσ   verses  *  of hollow 
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Figure 8. Variation of displacement  ru  verses  *  of hol- 

low sphere. 
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Figure 9. Variation of displacement 
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Figure 10. Variation between displacement  u  verses  *  

of hollow sphere. 
 
variations of these quantities show increasing trends with 
respect to increasing values of *  for all the modes of 
vibrations. 

5.1. Numerical Data/Information 

Here in Table 1 shows the Comparison of lowest fre-
quency  


 

. viscot

al dat

and Dissipation factor (D) in different me-
dia i.e hermoelastic (VTE), thermoelastic (TE), vi - 

at holl
to chec alidity

a by using t-test at fixed degree of harmon-
ics 

s
coelastic (VE) and elastic (E) m erials of ow sphere 
and Table 2 has been given k the v  of the 
numeric

 n   
us i.e

1, 2, 3
 ratio 

for different values of thickness to mean 
radi .  * 0.2, 0.4, 0.6, 0.8, 1.0t   of hollow 

5.2. Statistical Analysis 

In this sub section we have performed some statistical 
analysis of computed data for lowest frequency and dis-
sipation factor of three harmonics of spher-
oidal vibrations in hollow sphere o 
mean radius ratio 

sphere. 

 1, 2, 3n 
of different thickness t

 *t  
t-test has 

made from , VE and E 
materials. The been 
order to examine the influence of thermal, viscous and 
both thermal and viscous, effects on the vibrations. 

Y, w eno
y 

 VTE, TE
used during the analysis in 

5.2.1. Lowest Frequency 
We take two samples X and here X d tes lowest 
frequenc  ̂  

c (VTE
heres 

of each mode of vibrations in viscother- 
oelasti ), thermoelastic (TE) or viscoelastic (VE) 

hollow sp and Y represents lowest frequency
m

  ̂  
ple in of elastic (E hollow sphere. The size of the sam

each case is 
) 

1n 5.  Let , , andVTE TE VE E     denote  
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Table 1. Comparison of lowest frequency  Ω̂

ow sp

 and dissi- 

pation factor (D) of vibrations of a holl here with 
thickness to mean radius ratio at 

Hollow sphere 

* .0 6t  . 

Quantity Harmonics (n) 
VTE TE VE E 

1 3.12531 4.13562 3.78694 2.78934

2 5.03378 5.40891 5.72728 5.86775

3 7.15597 5.32162 11.8138 6.23351

4 13.9483 16.97901 20.2419 13.097

5 28.0503 33.74073 27.3885 22.8264

6 47.3415 51.2391 34.1007 26.8179

7 55.1117 61.0285 39.3571 29.5775

 4 36.585

 74.49489 87.28608 48.6033 42.6692

Lowest 
frequency 

10 80.9732 97.6551 58.6359 48.1659

Hollow sphere 
 Harmonics (n) 

VTE TE VE  

1 0.620948 0.99483 0.45198  

2 1.34792 1.79812 1.13429  

3 2.51173 2.34876 1.13425  

4 2.10415 2.4755 2.09345  

5 2.65234 3.24513 2.21375  

6 3.25564 3.90647 2.6234  

7 3.65919 5.06335 2.86333  

8 4.08234 6.82812 3.24512  

9 4.63452 7.36345 3.51789  

Dissipation 
factor 
(D) 

7 3

8 65.60864 70.8765 3.93481 6

9

ˆ(Ω)  

Quantity 

10 5.620948 7.6576 4.0899  

 
mean values of the data representing to (VTE), (TE), (VE) 
and (E) hollow spheres, so that ,VTE TE VEX or    and 

EY  . The standard deviation   is 
calculated by using formula  

  , andVTE TE VEs   

   2 2

1 1

1

2
s X X

n n
         Y Y in each case for  

all the considered modes. In order to test the null hy-
pothesis 0 VTE TE VE EH         

of the data pertaining to eac
for the consistency 

of means h case, we use t-test 
in which the t-statistic is computed from the relation 

1

2

X Y
t

s
n




 
 
 

 

The computed values if t are given below 

y an on
 harmonics for different 

alues of thickness to mean radi

T

1n  : 1 2 30.56, 1.35, 0.75t t t    

2n  : 1 2 30.49, 0.67, 0.28t t t    

Table 2. Numerical data of lowest frequenc d dissipati  
factor of first three  n = 1, 2, 3  

us ratio  *t . v

n t* VTE E VE E 

0.2 7.79494 7.98734 6.87965 5.23654

0.4 3.74439 4.97239 

0.6 3.12531 4.13562 1

4.07845 3.80674

3.78694 2.78934

2 50.3645 89765 90

0.4 43.97568 45.89654 28.467

0.6 7.15597 5.32162 11.8138 6.23351

66 4.69831 6.09124 5.45873

3
 

7 4.13654 4.89456 3.29342

43 2.15973

 

 

0.4 1.904031 2.10432 1.67834  

792 1.79812 1.13429  

 

0. 94876 1.98104 0.79654

Factor 

3564

0.8 2.01987 3.13458 2.78231 2.26505

1 2.47909 2.98234 2.06712 1.67816

0.2 20.159179 24.67453 18.80713 15.9068

0.4 17.573726 19.96504 15.90145 13.3877

0.6 5.03378 5.40891 5.72728 5.86775

0.8 5.13452 4.95097 4.04573 3.90154

2

1 4.90337 3.98352 3.27654 3.10546

0. 54. 43. 871 37.8096

53 21.7894

Lowest  
Frequency

ˆ(Ω)  

0.8 6.345

1 6.1559

n t* VTE TE VE 

0.2 2.90823 3.567  

0.4 0.802961 1.95643 1.65673  

0.6 0.620948 0.99483 0.45198  

0.8 0.56743 0.87659 0.34563  

1

1 0.45936 0.67845 0.27854  

0.2 3.181368 4.87654 2.82341
Dissipation 

0.6 1.342(D) 

0.8 0.99874 1.20567 0.34723  

1 0.539367 0.67104 0.34823  

0.2 5.3769 5.98754 3.87604  

0.4 3.71877 4.13045 1.46539

0.6 2.51173 2.34876 1.13425  

8 1.  

3

1 1.15533 0.89045 0. 2  

 
3n  : 1 2 30.77, 0.62, 0.41t t t    

The tabulated values of t for e 8 degre  of freedom at 
level of significance is given , clearly 1%   by 0.01 3.t  36

 1, 2, 3i   0.01it t in each case a,
hesis 0

nd hence the null hy- 
pot H  is a

 nume al d
ccepted at ce. 

a

ssipat  Fac
Here X denotes the dissi  (D r 
(TE) hollow sp  a
tor (D) of (VE ollow s  s  
again

1%
s

 level o gnificf si an
Thus the ric ta is con istent. 

5.2.2. Di ion tor 
pation facto

nd Y represents the di
r ) of (V

ssipation 
TE) o

fac-heres
) h  sphere . The size of the ample is

 1 5n  and the n tull hypo hesis H0 VTE TE VE     
e E)  is tested f V E) an p

adopting abov roce e  
t-statistic are given below: 

or ( T d (TE) s heres v rsus (V  one by
e p dure. The computed valu s of the
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Since in e case  henc e 
null hy

1n  : 1 20.1t t 5, 0.96  

2n  : 1 20.t t 51, 1.51  

3n  : 1 21.49, 1.42t t   

,t t i  , 2  0.01 1i

pothesis 0

ach  and e th
H  for is acce

. Thus the nu
pted at 
ata is co

1%  level of sig-
nificance d

6. Conclusion 

After simplify  the o o otion and 
uctio of li c  

homogen s isot o e  the  
holtz position th , th nded o- 

wer series (Ma x Frö m fully sed 
to solve the re lting i s no ced 
that toroidal v ratio o t led om 
rest of the mo  an  t ure varia-

ons as expected. The lowest frequency of spherical vi-

bology and geop
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Appendix 

The non-zero elements  , , 1, 2,3ijL i j   of the matrix 
*
1D  in Equation (34) are given by 
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The non-zero elements  , , 1, 2,3ijK i j   and 
 , , 1, 2,3ijK i j  of the matrix *

2 2kD   and *
2 1kD   de-

fined in Equation (37) are obtained as 
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