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ABSTRACT 

The performance of laminar Taylor-Couette flow with different developed procedures is studied by the way of compu- 
tational fluid dynamics (CFD) in steady state. In order to gain a group of developed procedure in CFD, a set of conver- 
gent solutions are used as the initial value of next boundary condition, and the new set of convergent solutions are re- 
garded as developing from the previous steady state. Three groups of developed procedures are gained from the rotating 
speed series of inner cylinder, respectively from the gradual increase procedure (GIP), the gradual decrease procedure 
(GDP) and the sudden increase procedure (SIP). It is proved that the convergent solutions of fluid control equations are 
different when they are solved from laminar state with the same boundary condition, the same fluid property, the same 
mesh grid in CFD and the same business software except that the flow states have developed from the procedures of 
GDP, GIP and SIP. It is shown that the developed procedure could leave behind some information in the performance 
of the flow. In other words, the flow between concentric rotating cylinders has somewhat memory for the procedure of 
its history. 
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1. Introduction 

Since Taylor made the initial contribution to the centrifu- 
gal instability of fluid in the fine annular gap between 
two concentric rotating cylinders in 1923 [1], hydro-me- 
chanical scientists have made great achievements in the 
research on the performance of Taylor vortex from two 
ways. 

One way is based on the control equations of fluid. 
When the small disturbances are added to the main flow 
between concentric rotating cylinders, the critical condi- 
tion is whether the small disturbances grow with time or 
not. In this way, the stability condition of flow between 
concentric rotating cylinders is made certain [1]. Taylor 
deduced the first stability condition from Navier-Stokes 
equation and axial-symmetrical small disturbances. When 
inner cylinder is rotating and outer cylinder at rest, his 
critical Taylor number is 1708, which is so coherent with 
the experiment that it is taken as one of the greatest mira- 
cles in hydro-mechanical history [2]. Subsequently, with 
the development of nonlinearity theory and group theory, 
the reasons why the Taylor vortex shows out a variety of 
flow patterns are made further explanations [3-5]. But so 
far the research on how the small disturbances impact on 
the solution of controlled equations is only confined to 
some special structures. 

The other way is based on the progress of measure me- 
ans and imaging technology. The researchers are endued 
with the capability to distinguish the various flow pat-
terns of Taylor vortex [6]. Snyder provided empirical evi- 
dence that the nonuniqueness of wave-numbers was not 
an end effect but a bona fide performance of the flow [7]. 
In the same structure full of same fluid at the same rotat- 
ing speed, Sobolik obtained the regime with 10 cells by 
slowly increasing the rotation rate, 12 cells by abruptly 
setting-up [8]. When Koschmieder studied the turbulent 
Taylor vortex flow, he made the rotation rate increase as 
slow as possible, namely at such an acceleration rate (7 × 
10–4 rad/s) that it took 8 hours to reach the highest studied 
Taylor number. Koschmieder also reported that the 
wavelength of laminar axisymmetric Taylor vortices 
were markedly different if a certain supercritical T was 
reached by a quasi-steady increase procedure or by a sud- 
den start procedure respectively [9]. The researchers who 
have investigated the performance of the Taylor vortex 
might have realized that the prevous states could leave 
behind some information in the performance of flow, but 
unfortunately, there are few litetures on the performance 
of laminar Taylor-Couette flow with different developed 
procedures.  

In order to study on the performance of laminar Tay- 
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lor-Couette flow with different developed procedures, the 
authors use computational fluid dynamics (CFD) to ob- 
tain the characteristics of laminar Taylor-Couette flow 
with different developed procedures, and then discuss the 
performance. 

2. Numerical Method 

2.1. Numerical Mode 

Commercial software GAMBIT2.0 is used for create me- 
sh grid. Based on the symmetrical characteristic of the 
flow between concentric rotating cylinders, the geometric 
model is created into two-dimensional (2D): Rin = 100 
mm, Rout = 110 mm, L = 98.5 mm [9]. The gap is me- 
shed into two grids such as L500 × R50 and L396 × R40. 
This two kinds of mesh grids are proved to be grid inde- 
pendence, so the mesh grid 396 × 40 is used for further 
analysis.  

Commercial software FLUENT 6.0 version 2 ddp is 
used to solve the laminar flow. In this version, the solver 
is segregated, implicit, axisymmetric swirl, steady and 
absolute. The viscous model is laminar. The material of 
fluid has dynamic viscosity 0.0214 kg/m·s, density 1039 
kg/m3 [8]. Under-relaxation factors are 0.3 for pressure 
and 0.7 for momentum. The way of discretization is stan- 
dard for pressure, SIMPLE for pressure-velocity coupling, 
first order upwind for momentum. Solution is computed 
from inner cylinder, and all initial values are zero unless 
specified. All the convergence criterions are 0.0001 un- 
less specified. The outer cylinder and both ends are rest- 
ing, and the inner cylinder is rotating with specified 
speed. 

2.2. Numerical Validity 

As it is well known that there are several qualitatively 
different steady states in the Taylor-Couette flow when 
the inner cylinder is rotating and the outer cylinder is at 
resting. The first steady state is the circular Couette flow 
at low Reynolds number, then following the axisymmet- 
ric Taylor-vortex flow [10]. When the Taylor number is 
less than the first critical Taylor number and the effect 
from end wall is ignored, the steady swirling velocity is 
known as follows: 

2 2 2

2 2 2 2
in in out

in out out in

R R R
V r

rR R R R


  

 
       (1) 

where Rin is the radius of inner cylinder, Rout is the ra- 
dius of outer cylinder, Ω is the rotational speed and r is 
radius of annular gap between two concentric cylinders. 
Compared the swirling velocity from analytical solutions 
with that from CFD at angular speed 2.0 rad/s along the 
radius at the centre position of axis, we can get the Fig-
ure 1 which is shown as follows: 

 

Figure 1. Compare the data from CFD with that from theory. 
 

Figure 1 shows that the data from CFD is coherent 
with the data from theory. That means the way of CFD is 
valid for the flow between the concentric cylinders. With- 
out introducing artificial equations to close the turbulen- 
ce mode equations, using CFD to study the performances 
of the laminar Taylor vortex can help us to grasp the es- 
sence of Navier-Stokes equations. 

2.3. Define Developed Procedure in Simulation 
Process 

Although there are analytical solutions for the fluid con- 
trol equations when fluid flows in the fine gap between 
concentric rotating cylinders [11], the ends of annular 
gap make the flow pattern unable to be depicted by ana- 
lytical expression. Computational fluid dynamics (CFD) 
has given a well way to this problem especially in lami- 
nar state. 

In CFD process with steady state, if a set of conver- 
gent solutions are used as the initial value of a new boun- 
dary condition, a set of new convergent solutions are tak- 
en as a new state which develops from the previous state. 
If the set of new convergent solutions are used as the ini- 
tial value of newer boundary condition, a set of newer con- 
vergent solutions are taken as the newer state which de- 
velops from its previous newer state, and so on. Along a 
series of some specified boundary conditions, a group of 
specific developed procedure, which has evolved from a 
series of past states, can be gained. 

There are three developed procedures to be compared 
with inner cylinder rotating and outer cylinder resting. 
The first developed procedure is that the angular velocity 
of inner cylinder increases from zero to 8.0 rad/s in a step 
of 0.2 rad/s with the convergent solution in previous step 
as initial values in present step, which may be named as 
gradual increase procedure (GIP). The second developed 
procedure is that the angular velocity of the inner cylin- 

Copyright © 2012 SciRes.                                                                                 MME 



X. T. ZHOU  ET  AL. 16 

der decreases from 8.0 rad/s to 0 rad/s with a step of 0.2 
rad/s, which may be named as gradual decrease proce- 
dure (GDP). In order to start the second procedure, we 
take zero values as the initial values of 10 rad/s and then 
decreased to 8.0 rad/s in one step. The third procedure is 
that the angular velocity of the inner cylinder increases 
from zero to a given state suddenly and computed from 
the inner cylinder, which may be named as sudden incre- 
ase procedure (SIP). 

3. Compare the Performance of Laminar 
Taylor-Couette Flow from Different  
Developed Procedures 

3.1. The Radial Velocity 

Authors define a line L which locates at r = 105 mm on 
the meridian plane of annular gap. When the angular ve- 
locity of the inner cylinder is 1.0 rad/s, the radial veloci- 
ties of developed procedure respectively from GDP, DIP 
and SIP on line L are shown in Figure 2. 

Figure 2 shows that the radial velocity on the middle 
part of line L is nearly zero. The flow pattern usually 
takes as the Couette flow without the effect from end 
wall. In such situation, the swirl velocity can be expres- 
sed into Taylor’s main flow. But there is an Ekman vor- 
tex near the static end wall. The maximum radial velocity 
of inward is much faster than that of outward. There is 
some difference among the three developed procedures at 
the same place, but it is not very distinct. 

When angular velocity is 2.0 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 3. Figure 3 shows 
that there are some differences in the second vortex next 
to end wall. 

Figure 4 is enlarged to make the difference clearly. 
Figure 4 shows that the second vortex near the end has 
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Figure 2. Distribution of the radial velocity from different 
procedures on line L with inner cylinder rotating at 1.0 rad/s. 

 

Figure 3. Distribution of the radial velocity from different 
procedures on line L with inner cylinder rotating at 2.0 rad/s. 
 

 

Figure 4. Partial enlarged distribution of Figure 3. 
 
begun to develop and unroll the difference between the 
procedures of GDP, GIP and SIP. The inward maximum 
radial velocity of the second pair vortex near the end in 
procedure GIP is faster than that of SIP but slower than 
that of procedure GDP. The second pairs of vortex from 
GDP and GIP have developed completely, but the pair of 
vortex from SIP has not developed. 

Figure 4 shows that the second vortex near the end 
has begun to develop and unroll the difference between 
the procedures of GDP, GIP and SIP. The inward maxi- 
mum radial velocity of the second pair vortex near the 
end in procedure GIP is faster than that of SIP but slower 
than that of procedure GDP. The second pairs of vortex 
from GDP and GIP have developed completely, but the 
pair of vortex from SIP has not developed. 

When angular velocity is 2.6 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 5. 
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Figure 5. Distribution of the radial velocity from different 
procedures on line L with inner cylinder. 
 

Figure 5 shows that there are 13 extreme points on 
line L from GDP, 8 extreme points from GIP and only 6 
extreme points from SIP. The flow pattern from proce- 
dure of GDP has completely developed into the Taylor 
vortex full of the annular gap. The flow pattern from GIP 
has developed only near the ends and there is no clear- 
vortex in the middle of line L, so does that from of SIP. 
At this speed, there is difference not only from the num- 
bers of extreme points but also from the eddy structure 
for different developed procedures. 

When angular velocity is 2.8 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 6. 

Figure 6 shows that the flow patterns from the proce- 
dures of GDP and GIP have developed completely along 
the line L, but the flow pattern from the procedure of 

 

 

Figure 6. Distribution of the radial velocity from different 
procedures on line L with the inner. 

GDP has almost the same wave crest except for the first 
vortex near the end wall, which are obviously different 
from the wave crest from the procedure of GIP. Further- 
more, the flow pattern from procedure of SIP has barely 
developed, especially on the middle part of line L. At this 
moment, the maximum radial speed is depended on the 
eddy near the end wall. 

When angular velocity is 3.2 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 7. 

Figure 7 shows that the flow patterns from the proce- 
dures of GDP, GIP and SIP have developed completely 
along the line L, but the effect from the end wall is posi- 
tive for the formation of eddy. The distributions of the 
radial velocity in the procedure of GIP and SIP are almo- 
st the same, but the number of the procedure of GDP has 
an eddy more than those of the procedures of GIP and 
SIP. The outward maximum radial velocity from the pro- 
cedure GDP is less than that from procedure SIP and GIP 
except for the eddy near the end wall while the maximum 
radial velocity inwards from three procedures is almost 
the same. The outflows [12] in the middle from procedu- 
res of SIP and GIP are stronger than that from the proce- 
dure of GDP. 

When angular velocity is 4.6 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 8. 

Figure 8 shows that the flow patterns from the proce- 
dures of GDP, GIP and SIP have developed completely 
along the line L. The wave crest of radial velocity in dif-
ferent procedures are almost the same, but the wave trou- 
ghs of radial velocity in the middle of the line L are low- 
er than those in the eddy near the end walls. So the effect 
from end wall is negative for the growth of Taylor vortex. 
Further, the wave troughs of the GDP are lower than 

 

 

Figure 7. Distribution of the radial velocity from different 
procedures on line L with the inner cylinder rotating at 3.2 
rad/s. 
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Figure 8. Distribution of the radial velocity from different 
procedures on line L with the inner cylinder rotating at 4.6 
rad/s. 
 
those of GIP and SIP in the middle of line L, while the 
distribution of radial velocities on line L from the SIP 
and GIP are almost the same. 

When angular velocity is 6.8 rad/s, the radial velocities 
of developed procedures respectively from GDP, DIP 
and SIP on line L are shown in Figure 9. 

Figure 9 shows that the flow patterns from the proce- 
dures of GDP, GIP and SIP have also developed comple- 
tely along the line L. The effect from the end wall is also 
negative for the growth of Taylor vortex, in that the wave 
troughs near the end walls are higher than those in the 
middle, but the wave crests are almost the same for dif- 
ferent developed procedures. The wave troughs of the 
GDP are lower than those of GIP and SIP in the middle 
of line L. The inflows from GDP and SIP are stronger 

 

 

Figure 9. Distribution of the radial velocity from different 
procedures on line L with the inner cylinder rotating at 6.8 
rad/s. 

than those from GIP in the middle of line L. The most 
difference is that the distribution of the radial velocity in 
SIP is almost the same as that in GDP in Figure 9, but 
that of SIP is almost the same as that in GIP at lower 
angular velocity such as at 4.6 rad/s or 3.2 rad/s.  

The distributions of radial velocity described above 
have shown that the laminar flows in gap between a ro- 
tating inner and stationary outer cylinder have different 
radial velocity characteristics and flow patterns when the 
flow states have developed from the procedures of GDP, 
GIP and SIP. It is self-evident that the Navier-Stokes 
equations have different radial velocity when it is solved 
in steady state with the same boundary condition, the 
same fluid property, the same mesh grid in CFD process 
with the same business software except that the flow has 
developed from the procedures of GDP, GIP and SIP. 

3.2. Compare the Maximum Axial Velocity 

Axial velocity firstly results from the Ekman layer flow 
when Taylor number is less than the critical Taylor nu- 
mber, and later from the Taylor vortex [8]. The maxi- 
mum axial velocities in the GDP, GIP and SIP proce- 
dures are shown in Figure 10 in dependence on the an- 
gular velocity of the inner cylinder. 

It is clear that the maximum axial velocities of three 
procedures are almost the same when the angular veloci- 
ties are less than 2.8 rad/s. Then the course bifurcates 
into two courses. One course is along the way of GIP, 
and the other is along the way of GDP. The way of SIP 
firstly follows the way of GIP, and then turns to the way 
of GDP. 

It is clear that the maximum axial velocities of three 
procedures are almost the same when the angular veloci- 
ties are less than 2.8 rad/s. Then the course bifurcates 
into two courses. One course is along the way of GIP, 

 

 

Figure 10. Comparison of the maximum axial velocities in 
different procedures. 
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and the other is along the way of GDP. The way of SIP 
firstly follows the way of GIP, and then turns to the way 
of GDP. 

If the maximum axial velocity increment in a step is 
divided by the step 0.2 rad/s in procedure, we can get the 
axial maximal velocity increasing rate per angular veloc- 
ity (AMVR): 

   1 1AMVR a a
n n n n nV V          (2) 

The AMVR curves of GDP, GIP and SIP are shown in 
Figure 11. 

It is clear that each curve respectively from GDP and 
GIP can be divided into three parts with different trends. 
The first part is located before point A, where the maxi- 
mal axial velocity depends only on the Ekman vortex 
which is caused by the end wall. The second is located 
from point A to point B, where maximal axial velocity 
depends on the synergy between the Ekman vortex and 
the Taylor vortex. The third is located after point B, 
where maximal axial velocity depends only on the Taylor 
vortex. There is an interest phenomenon in Figure 10 
that there is a singular point in the procedure of SIP near 
at 6.0 rad/s, which is unlike in the procedures of GDP 
and GIP. The AMVR curve of GIP goes a different way 
from that of GDP. The AMVR curve of SIP is more un-
even than that of both GDP and GIP. 

The maximum axial velocities described above have 
also shown that the laminar Taylor-Couette flows have 
different maximum axial velocity when the flows have 
developed from the procedures of GDP, GIP and SIP. It 
is also proved that the Navier-Stokes equation has dif-
ferent maximum radial velocity when it is solved in ste- 
ady state with the same boundary condition, the same 
fluid property, the same mesh grid in CFD process with 
the same business software except that the flow has de-
veloped from the procedures of GDP, GIP and SIP. 

 

 

Figure 11. Comparison of the AMVR of different proce- 
dures with the angular velocity. 

3.3. Compare the Maximum Radial Velocity 

The maximum radial velocities respectively from GDP, 
DIP and SIP are shown in Figure 12 in dependence on 
the angular velocity of the inner cylinder. 

It is very clear that the curve of GIP is different from 
that of GDP, but the curve of SIP goes to the same way 
with that of DIP first, then turns to the way of GDP. The 
trend of maximum radial velocity is similar to that of the 
maximum axial velocity varying with the angular veloc- 
ity of the inner cylinder. 

If the increment of maximum radial velocity in con- 
centric cylinders with the inner cylinder rotating and the 
outer cylinder at rest is divided by the step 0.2 rad/s in 
procedure, we can get the radial maximal velocity incre- 
asing rate per angular velocity (RMIR): 

   1 1RMIR r r
n n n n nV V            (3) 

Figure 13 shows that the RMIR of different proce- 
dures vary with the angular velocity of the inner cylinder.  

 

 

Figure 12. Comparison of the radial maximum velocities in 
different procedure in partial section. 
 

 

Figure 13. Comparison of the RMIR of different procedures 
on the angular velocity of the inner cylinder. 
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The curves of the procedures could be divided into three 
different kinds of sections. The first section increases 
quickly as exponential way before point A. The second 
section decreases quickly from point A to point B. The 
third section hardly changes, despite the angular velocity 
increases. The course of SIP has more mutations on its 
way. The curve of GDP travels across the curve of GIP 
near at the speed 6 rad/s. 

According to the above analysis on the maximum ra- 
dial velocity, it is self-evident that the performances of 
the different procedures show different characteristics at 
the same conditions for the same fluid in steady states 
near the first critical point. 

The maximum radial velocities described above have 
shown that the laminar Taylor-Couette flows have dif- 
ferent maximum radial velocity when the flows develop 
from the procedures of GDP, GIP and SIP. It shows that 
the Navier-Stokes equation has different maximum radial 
velocity when it is solved in steady state with the same 
boundary condition, the same fluid property, the same 
mesh grid in CFD process with the same business soft- 
ware except that the flow has developed from the proce- 
dures of GDP, GIP and SIP. 

3.4. Compare the Viscous Moment on Inner  
Cylinder 

The viscous moment on inner cylinder was reported by 
many researchers [13]. If we focus on the speed near the 
critical Taylor number, for example in Figure 14, we can 
find that the curves of the viscous moments on the inner 
cylinder from different procedures of GDP, GIP and SIP 
are departing after the critical point.  
 

 

Figure 14. Viscous moments on inner cylinder from pro- 
cedures of GDP, GIP and SIP as a function of angular velocity 
near critical Taylor number. 

If the increment of viscous moment on inner cylinder 
in each step is divided by the step 0.2 rad/s in procedure, 
we can get the increment of viscous moment on inner cy- 
linder per angular velocity (IVMPA): 

   1 1IVMPA inner inner
n n n nM M  n         (4) 

Figure 15 shows the variation of the IVMPA with the 
angular velocity of inner cylinder. When the angular ve- 
locity is less than 2.4 rad/s, the IVMPA of GDP, GIP and 
SIP are almost the same, in that the Taylor number is less 
than the critical Taylor number. When the angular velocity 
is more than 3.0 rad/s, the IVMPA curves of GDP, GIP 
and SIP go on various ways. The way of SIP is almost on 
the same way of GDP when angular velocity of the inner 
cylinder is between 4.0 rad/s to 5.5 rad/s firstly; and then 
the way of SIP turns to the way of GDP at about 6.0 rad/s. 

The viscous moments on inner cylinder described abo- 
ve have shown that the viscous moments on inner cylin- 
der have different characteristics when the flows have 
developed from the procedures of GDP, GIP and SIP. It 
proved that the Navier-Stokes equation has different vis- 
cous moments on inner cylinder when it is solved in ste- 
ady state with the same boundary condition, the same 
fluid property, the same mesh grid in CFD process with 
the same business software except that the flow has de- 
veloped from the procedures of GDP, GIP and SIP. 

3.5. Compare the Viscous Moment on End Wall 

The viscous moments on end wall from GDP, GIP and SIP 
procedures depending on angular velocity of inner cyl- 
inder are shown in Figure 16. It shows that the way of 
SIP turns from the way of GIP to the way of GDP at 
about 6.1 rad/s as the same in Figure 15. 

If the increment of viscous moment on one of the end 
walls in each step is divided by the step 0.2 rad/s in pro- 

 

 

Figure 15. Variation of the IVMPA with the angular velocity 
of inner cylinder. 
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Figure 16. Viscous moments on end varying with angular 
velocity near the transition point. 
 
cedure, we can get the increment of viscous moment on 
end wall per angular velocity (IMW): 

   1 1IMW wall wall
n n n nM M    n         (5)  

The curves of IMW depending on angular velocity 
from procedures of GDP, GIP and SIP are shown in 
Figure 17. In Figure 17, the IMW curves are almost the 
same for various procedures before the critical Taylor 
number. After that, the curve of GDP differs from that of 
GIP. The curve of SIP firstly has nearly the same way 
with that of GIP before 6 rad/s, and then turns to the way 
of GDP after 6 rad/s. The curves of GDP and DIP are smo- 
other than that of SIP especially near the speed of 6 rad/s. 

There are some remarkable points on the way of SIP 
near at 6.0 rad/s. The authors insert simulated values near 
at 6 rad/s, whose convergence criterion of continuity and 
velocity are set to be 0.00001 which is a tenth of the pre- 
vious convergence criterion 0.0001. The IMW curves of 

 

 

Figure 17. IMW in dependence angular velocity of inner cy- 
linder. 

the GDP and GIP with convergence criterion 0.0001 and 
the SIP with convergence criterion 0.00001 are shows in 
Figure 18. 

Like reported above, the IMW curve of SIP with con- 
vergence criterion 0.00001 is almost coincident with that 
of GIP with convergence criterion 0.0001 before 5.96 rad/s, 
and it is also almost coincidence with that of GDP with 
convergence criterion 0.0001 after 6.07 rad/s. 

The viscous moments on end wall described above 
have shown that the viscous moments on end wall have 
different characteristics when the flows have developed 
from the procedures of GDP, GIP and SIP. It proved that 
the Navier-Stokes equation has different viscous moments 
on end wall when it is solved in steady state with the same 
boundary condition, the same fluid property, the same me- 
sh grid in CFD process with the same business software 
except that the flow has developed from the procedures 
of GDP, GIP and SIP. It also proved that the difference is 
not from the convergence criterion. 

4. Discussions 

According to above contrast, there are several numerical 
solutions to the fluid control equations with the same 
boundary condition in steady laminar states from differ- 
ent procedures. In past, the solution of fluid control equa- 
tions was usually taken for granted as the real flow so 
that the solution to the fluid control equations was some- 
times thought of being the one and only.  

In reality, it is well known that there is always perturb- 
bation in the fluid. One kind of perturbation is from the 
surroundings such as the perturbation from outer forces 
as well as the roughness of its wall, and the other is from 
fluid itself such as the macro-behavior of molecular mo- 
tion, in which one of the well known perturbations is the 
Brownian motion. When the perturbation is specified to  
 

 
Figure 18. Comparison of the SIP points with convergence 
criterion 0.00001 to the different procedures with conver- 
gence criterion 0.0001. 
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be the symmetrical form, Taylor deduced the theoretical 
predictions in his paper, and found that there would be a 
definite speed at which the perturbation would suddenly 
make the Taylor vortex appearance. Although mathema- 
ticians could not make certain the condition so as to es- 
timate whether the general small perturbation could grow 
in the flow governed by fluid control equations, the gen- 
eral small perturbation could come from the truncation 
error in CFD process, so that laminar Taylor vortex can 
be gained in the way of numeric solution with the small 
perturbation grown. So the small perturbation equations 
may be taken as a kind of condition beyond the stability. 

As having proved above, there are different steady so- 
lutions to the fluid control equations at the same bound- 
ary condition, the same fluid property, the same mesh grid 
in CFD process with the same business software except 
that the flow has developed from different procedures of 
GDP, GIP and SIP. It was reported in the work of Kosch- 
mieder and Burkhalter [14] that the wave length of lami-
nar axisymmetric Taylor vortices was significantly dif- 
ferent if a certain supercritical Taylor number was rea- 
ched either by quasi-steady increasing to the given angu- 
lar velocity or by sudden start to the given angular veloc- 
ity. Koschmieder also found that when a wavelength was 
once established by some procedure, it did not change in 
some rang with subsequently increased slowly or quickly. 
And the wavelength obtained from the sudden starts was 
smaller than that from the slow acceleration experiments 
[9]. So the developed procedure, in which the present 
state has undergone, should be taken as another condition 
of getting the real flow solution beyond the stability. In 
other word, the present flow state may include the infor- 
mation of its past, namely the flowing fluid may have the 
memory to some degrees. 

From the view of solving fluid control equation, steady 
boundary condition has been generally accepted. The 
perturbation condition has also been accepted by resear- 
chers in hydrodynamic stability. What needs to be em-
phasized is that the developed procedure can leave be- 
hind some information of its history in present state so 
that the solutions to fluid control equations are different 
when the flows undergo different developed procedures. 
By distinguishing the details in the flow performance, we 
may deduce what the fluid has undergone to some de- 
grees. In other words, the flow between concentric rotat- 
ing cylinders has somewhat memory for the procedure of 
its history.  

5. Conclusions 

The performances of laminar Taylor-Couette flow with 
different developed procedures have shown that the solu- 
tions of fluid control equations are different when they 
are solved in steady state with the same boundary, the 

same fluid property, the same mesh grid in CFD process 
with the same business software except that the flows have 
developed from the procedures of GDP, GIP and SIP.  

The developed procedure should be taken as the nec- 
essary condition in order to make the solution of fluid 
control equations become coincident with the reality be-
side the boundary condition and the perturbation in ste- 
ady state. The developed procedure can leave behind so- 
me information of its history in the present state. 

By distinguishing the details in the flow performance, 
we could deduce what the fluid has undergone to some 
degrees. In other words, the flow between concentric ro- 
tating cylinders has somewhat memory for the procedure. 
This may be a way of understanding the history of the 
present state for the fluid. 
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