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ABSTRACT 

Two semi-empirical approaches for prediction of elastic modulus of biphasic composites have been proposed. Develop- 
ed relations are for pore free matrix and pore free filler and found to depend on nonlinear contribution of volume frac- 
tion of constituents as well as ratio of elastic properties of individual phases. These relations are applied for the calcula- 
tion of effective elastic modulus mainly for Al2O3-NiAl, SiC-Al, Alumina-Zirconia, Al-Al2O3, W-glass and Flax-Resin 
composite materials. Theoretical predictions using developed relations are compared with experimental data. It is found 
that the predicted values of effective elastic modulus using modified relations are quite close to the experimental results. 
 
Keywords: Elastic Modulus; Composite Material; Matrix-Inclusion 

1. Introduction 

Composite materials have been intensively developed 
since the 1960 because these are leading classes of engi- 
neering materials due to their outstanding properties i.e. 
low weight in comparison with metals, high stiffness and 
strength as well as their high chemical resistance. Low 
cost fibers and resin materials have increased the use of 
composites in infrastructural applications such as build- 
ings and bridges. Carbon and composite nano-tubes have 
exclusive structural, energetic and mechanical properties 
i.e. exceptional stiffness and higher Young‘s modulus, 
highly resistant etc. Thus it is desirable to calculate the 
effective elastic properties from the knowledge of the 
structure of the composite material. The effective elastic 
properties are one of the most important properties that 
determine the mechanical performance of a material. The 
problem of determining the effective mechanical and 
transport properties of a composite material with com- 
plex microstructures is a challenging task to engineers 
and scientists because of its fundamental and techno- 
logical importance in almost every area of material sci- 
ence. This problem continues to be the focus of intense 
research, from design as well as theoretical point of view. 
Composites are widely being used in civil engineering 
and space vehicles/ sea vessels. Fiber reinforced compos- 
ite material’s elastic properties have been widely used in 
many structural applications varying from swimming po- 
ol diving board to advanced aerospace components. 

The basic information required for the evaluation of 

the effective moduli is the volume fractions, and elastic 
moduli, of each phase. Many previous theories for de- 
termination of elastic properties demonstrated that the 
mechanical and elastic properties depend on the adhesion 
between the phases, the geometrical setup of their con- 
stituent and the technological process employed for ob- 
taining them. The theoretical approaches discussed in the 
literature for estimating the effective elastic modulus are 
based on the effective medium theories, which provide 
approximate approximations by homogenizing the com- 
plex medium. Many empirical parameters have been in- 
troduced into the models to account for the influence of 
the structure variations on the results. The simplest theo- 
retical approaches to predict the elastic modulus of two 
phase material are the classical averaging schemes [1,2]. 
A common approximation for the effective moduli is the 
self-consistent method (SCM) of Hill [3] and Budiansky 
[4] which involves solving the equations of elasticity for 
a spherical particle of phase 1 surrounded by a medium 
of unknown effective moduli. Thus there have been sev- 
eral different approaches to study and approximate the 
elastic properties of composites. Yagi and Che [5] stud- 
ied the effect of the shape and distribution of anisotropic 
ellipsoidal inhomogeneity on the overall elastic moduli 
of a composite material using the concept of local region 
from the view point of micromechanics. Molina et al. [6] 
employed an orthogonal tight binding model in their 
work. Lu [7] did most extensive theoretical study using 
an empirical pair potential model to estimate the Young’s 
modulus, Poisson’s ratio and other elastic constants of 
both single wall and multi wall nano tube and nano tube *Corresponding author. 
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ropes. Lijma et al. [8] studied bending of nano tubes ex-
perimentally using simulation techniques. Treacy et al. [9] 
experimentally determined the Young‘s modulus of car- 
bon multi wall nano tubes using thermal vibration analy- 
sis of cantilevered tubes by recording the force needed to 
bend anchored nanotubes. Chopra and Zetly [10] have 
also used thermal vibrational analysis for Young mo- 
dulus of multiwall Boron Nitride nano tubes. Garshasbin- 
ia and Jame [11] studied the mechanical properties in 
laminated composite plates using genetic algorithm by an 
optimized search procedure. Genetic algorithm provides 
the additional technique of evaluating material properties 
from the measured natural frequencies. The theoretical 
approaches found in the literature for predicting the ef-
fective elastic properties by homogenizing the complex 
medium [12], an empirical parameter have been intro- 
duced for accounting the effect of structural variation on 
the results [13,14].  

Zhang et al. [15] proposed the random location of ob-
stacles in constructing an artificial random microstruc-
ture. Some researchers have given upper and lower bou- 
nds, and derived theoretical relations and verified by ex-
perimental data [16,17]. Synder et al. [13] gave a method 
to generate randomly distributed circular inclusions, digi- 
tal microtonographic information and statistical correla- 
tion functions have been adopted in reconstruction of the 
structures more accurately [17-19].Wang et al. [20] de- 
veloped a simpler method the random generation growth 
method (RGG), inspired by the spirit of cluster growing 
theory [21]. Robarts and Garboczi [22] used finite ele- 
ment method to study the influence of porosity and pore 
shape on the elastic properties of models, porous ceram- 
ics and found Young’s modulus and provided simple 
formula to predict elastic properties. Segurado and Llo- 
rca [23] developed a numerical approximation to the 
elastic properties of sphere reinforced composites. The 
elastic constants of the ensemble of spheres embedded in 
a continuous and isotropic elastic matrix were computed 
through the finite element analysis of the three-dimen- 
sional periodic unit cells, whose size was chosen as a 
compromise between the minimum size required to ob- 
tain accurate results in the statistical sense and the maxi- 
mum one imposed by the computational cost. 

Three types of materials were studied: rigid spheres; 
spherical voids in an elastic matrix and a typical compos- 
ite made up of glass spheres in an epoxy resin. The 
moduli obtained for different unit cells showed very little 
scatter. Sahraoui and Mariez [24] studied the linear elas- 
tic properties of anisotropic open-cell foams to examine 
the elasticity of these kinds of porous materials through 
their microstructure. Warren and Kraynik [25] presented 
a theoretical model for the introduction of the linear elas- 
tic properties of open-cell foams. They considered three- 
dimensional open-cell foams in a tetrahedral unit cell and 

derived a model for effective elastic constants, under the 
assumption that all possible orientations of the unit cell 
are equally probable in a representative volume element. 
The elastic constants are sensitive to the composition 
change. Ceramics have different bonding characteristics 
from those of metal. When ceramic is added or mixed 
into metal or vice-versa then heterogeneous interface is 
developed. That is why the elastic properties of the two 
phase materials generally deviate from the prediction 
calculated by using the rule of mixtures. These composite 
materials are very useful since their individual properties 
(i.e. of ceramics and metals) are different but effective 
properties of the composite demonstrate many significant 
applications in industry. Composites combine the proper- 
ties of two or more components; toughness of Al2O3 is 
improved by the addition of NiAl [26]. Thermal stability 
is improved by adding Al into SiC [27]. We need the 
elastic properties of two phase systems for designing new 
composites and application based materials.  

In this paper elastic moduli are calculated for several 
composites using two exclusively different semi empiri- 
cal approaches having dependence on volume fraction 
and elastic modulus of constituent phases and compared 
with experimental values. Experimental data given in 
Tables 3 on the elastic properties of several composite 
materials are taken from the literature. The experimental 
data cover Al2O3-NiAl [26,28] only limited part of the 
composition range for a certain composite. Here in our 
considered examples Al2O3-NiAl covers whole range of 
the compositions [29]. 

2. Theoretical Formulation 

Voigt [1] proposed the effective elastic modulus of the 
composite as 

1 1 2 2E E v E v                  (1) 

with 1 2 1v v  . This mixing rule is for the iso-strain 
state. This model assumes the constituents of a composite 
to be in parallel arrangement subjected to the same strain. 
For the condition of isostress, Reuss [2] proposed a for- 
mula for the effective elastic modulus as 

1 2

1 2 2 1

E E
E

E v E v



               (2) 

where  
E1: Elastic modulus of Filler; 
E2: Elastic modulus of Matrix; 
v1: Volume fraction of Filler;  
v2: Volume fraction of Matrix.  

But Hill [30] explained that for real materials, none of 
the iso-stress or iso-strain assumption is realistic. The trac- 
tions at interface are not at equilibrium under the Voigt 
condition and the interface cannot be considered under 
the Reuss condition. Though the equality in Equation (1) 
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is true only when the Poisson’s Ratio of the two phases is 
the same.  

Considering the dependence of elastic modulus on the 
ratio of elastic modulus of individual phases, the formula 
for the effective elastic modulus of composite material, 
composed of two phases (matrix and filler), is proposed as  

1n n
eff s pE E E                 (3) 

where 
                             (4) 1 1 2 2sE E v E v 

1 2

1 2 2 1
p

E E
E

E v E v



              (5) 

Equation (3) is solved for n in terms of Es, Ep and Eeff. 
The solution is 

 

 

11

1 2

1 2
1 1

2 1

1
ln

ln 1 1 2

eff eff

vv
E E

E E
n

E E
v v

E E

 
 

 
  
     

  

      (6) 

Here  

1 2 1v v                  (7) 

Here we see from Equation (6) that n is a function of v1, 
E1 and E2 respectively, so relation between n, v1, E1 and 
E2 is obtained using curve fitting technique as: 

4 3 2n Ax Bx Cx Dx E              (8) 

where 

1 3 2
1

1

ln
E

x v
E

                 (9) 

and A, B, C, D and E are constants, having different val- 
ues for different composite materials. Values of these con- 
stants for respective samples (composite materials) are 
given in Table 1. Thus we can calculate the effective 
Elastic modulus for a composite material from Equation 
(3), using the values of Es and Ep and the value of n for par- 
ticular composite material calculated from Equation (8). 

We calculated the values of n for many samples using 
Equation (8) to obtain theoretical value of effective elas- 
tic modulus and compared with the experimental results 
for respective samples. Comparison is shown in graphs 
(Figure 1 to Figure 6). 

We also propose another semi-empirical relation to ca- 
lculate effective elastic modulus having linear dependen- 
ce on elastic modulus E1 and E2 respectively. Proposed 
formula is given as: 

1
2

2
eff

v
E E K E

v

 
   

 
1

               (11) 

Table 1. Values of constants A, B

A B C D E 

          (10) 

Here  

1 2 1v v   

 and C for different com-
posite samples. 

Sample 

A l 12 – 6 1102 –6 2 0.l2O3-NiA 576 653 1.0 852

SiC-Al 31.14 133.4 211.6 147.4 38.58

Alum onia

F  

ina-Zirc 21672 –7177 780.8 –33.88 1.173

Al-Al2O3 73471 14139 10177 –32473 3.875

W-glass 10120 –14242 7333 –1644 136.4

lax-Resin 0 0 –4.585 9.72 –1.604

 

 

NiAl volume fraction  

Figure 1. Elastic Modulus of Al2O3-NiAl composite as a 
function of NiAl content. 
 

 

Sic volume fraction  

Figure 2. Elastic Modulus of SiC-Al composite as a function 
of SiC content. 
 

 

Al2O3 volume fraction  

Figure 3. Elastic Modulus of Al2O3-ZrO2 composite as a
function of ZrO2 content. 
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Figure 4. Elastic Modulus of Al-Al2O3 composite as a func-
tion of Al O content. 2 3 

 

 
Glass volume Fraction  

Figure 5. Elastic Modulus of W-glass composite as a func-
tion of Glass content. 
 
 

Flax volume fraction  

Figure 6. Elastic Modulus of Flax-Resin composite as a
function of Flax content. 

: Elastic modulus of Filler;  
ic modulus of Matrix; 

 and constant term K is 

 

 
and  
E1

E2: Elast
v : Volume fraction of Filler;  1

v2: Volume fraction of Matrix
written in term of volume fraction of filler phase as 

2K Lx Mx N                  (12) 

where 

1 3 2
1

1

ln
E

x v
E

                 (13) 

L, M and N in Equation (12) ar
ferent values for different compo

Particulate composite like Al O -NiAl, SiC-Al were pre-
owder processing tech-

 

e constants, having dif-
site materials. Values of 

these constants for respective samples (composite mate-
rials) are given in Table 2. We have calculated the value 
of K for respective samples using values of constants L, 
M and N given in Table 2. Using these values of K in 
Equation.10, we can obtain the value of effective elastic 
modulus for various composite materials at different fil- 
ler concentrations. Apart from the data of Al2O3-NiAl 
system, the available data for other ceramic-metal com-
posites, SiC-Al, glass-W and Alumina-Zirconia, Al-Al2O3 
Flax-Resin, are also compared in the present study to ve- 
rify our model predictions. 

3. Results and Discussion 

2 3

pared by using the conventional p
nique which show little dependence on orientation and 
the elastic constants are determined either  by static 
methods such as the measurements of  longitudinal de-
formation or by dynamic method, such as the method 
applying by ultrasonic waves. The static methods usually 
determine only elastic modulus due to the difficulties 
involved in the measurement of the transverse strain [31]. 

The Voigt-Reuss model treats a laminated system. 
Each phase in the system is separated by another layer 
but actually composites are treated as composed of con-
tinuous matrix and isolated phase. For example in SiC-Al 
composite the SiC particles are not sintered together in 
the SiC-Al composite. In another example in Al2O3-NiAl 
both phases are continuous [29]. These two phases form 
an interpenetrating microstructure which is quite differ-
ent from SiC-Al. Interface of the Al2O3-NiAl composite 
is relatively weak and the Al2O3-NiAl system is sintered 
at its solid state [28]. As any load is applied on the com-
posite in the presence of weakly bonded isolated particles, 
the load is mainly sustained by the matrix alone. The 
strains along and perpendicular to the loading direction 
thus close to those of matrix alone. The existence of the 

 
Table 2. Values of constants L, M and N for different com-
posite samples. 

Sample L M N 

Al2O3-NiAl –36.99 18.79 –2.521 

SiC-Al 1  1 0.  

Al ia

A  

.912 .57 486

umina-Zircon 8.753 3.884 –1.08 

l-Al2O3 –0.747 0.06 0.298 

W-glass 1.582 6.969 –3.796 

Flax-Resin –14.58 36.24 –23.73 
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e 3. Pre  Elastic s in comp son with experimental values. 

a) Al  = 186 GPa, E (Al O 0 GPa [2

Tabl dicted  Modulu ari

2O3-NiAl E1(NiAl) 2 2 3) = 40 6,29] 

S. No. v1 Eeff(Eq  
%Deviation (Equation 

(10)) 
uation (3)) GPa Eeff(Equation.(10)) GPa E(exp) GPa %Deviation (Equation (3))

1 0.1 356.97 357.31 357 0.007 0.087 

2 0.2 319.86 322.89 320 0.042 0.904 

3 0.3 302.42 296.44 302 –0.139 –1.839 

4 0.4 294.26 277.46 295 0.249 –5.944 

5 0.5 283.24 265.01 245 –15.609 8.188 

6 0.6 264.01 257.44 250 –5.607 2.977 

7 0.7 240.22 250.42 240 –0.094 4.345 

8 0.8 219.46 231.47 220 0.243 5.216 

b) S Al E1(S 33]

S. No. Eeff(Eq ) GPa Eeff(Equ )) GPa E(e Pa %Deviatio ation (3)) 
%Devia

iC- iC) = 450 GPa, E2(Al) = 70 GPa [32,  

v1 uation (3) ation (10 xp) G n (Equ
tion (Equation 
(10)) 

1 0.1 88.72 89.79 89.7 1.085 0.110 

2 0  

c) Al 3-Zirc 1(Zirconi GPa, E2(Al2O3)  

S. No. Eeff(Equ ) GPa Eeff(Equ )) GPa E a %Deviat tion (3)) 
%Devi uation 

.15 98.44 98.30 99.36 0.919 –1.057 

3 0.2 108.63 106.07 103.5 –4.957 2.487 

4 0.25 116.70 113.27 116.61 –0.080 –2.856 

5 0.3 123.12 120.15 119.37 –3.144 0.657 

6 0.35 130.07 127.01 128.34 –1.35 –1.036 

7. 0.4 140.56 134.25 135.93 –3.408 –1.234 

2O onia E a) = 210 = 400 GPa [34]

v1 ation (3) ation (10 (exp) GP ion (Equa
ation (Eq

(10)) 
1 0.069 384.99 384.11 385 0.0003 –0.229 

2 0  

d) Al l2O3 E 3)=390 G l) = 69 GPa [35]

S. No. E (Eq )) GPa E (Equ )) GPa E(e Pa %Deviati tion (3)) 
%Devia

(10)) 

.105 375.99 375.65 376 0.0002 –0.090 

3 0.142 366.99 366.86 365 –0.547 0.510 

4 0.18 358.31 357.73 353 –1.505 1.342 

5 0.219 350.00 348.30 350 –0.0003 –0.485 

6 0.304 333.00 327.62 333 –0.001 –1.614 

7 0.726 251.04 254.48 251 –0.017 1.388 

-A 1(Al2O Pa, E2(A  

v1 eff effuation (3 ation (10 xp) G on (Equa
tion (Equation 

1 0.73 222.20 216.64 216.4 –2.680 0.113 

2 0.8 251.52 242.04 241 –4.360 0.435 

3 0.88 283.01 282.62 282.8 –0.070 –0.063 

4 0.93 342.48 330.28 324.4 –5.570 1.813 

5 0.95 372.62 368.15 366.4 –1.690 0.478 

e) W lass E s) = 81 G ) = 355 GPa [32,

S. No. E  (Eq )) GPa E  (Equ )) GPa E( a %Deviati tion (3)) 
%Devia

(10)) 

-G 1(Glas Pa, E2(W 36] 

v1 eff effuation (3 ation (10 exp) GP on (Equa
tion (Equation 

1 0.5 194.80 194.31 195.25 0.226 –0.477 

2 0.6 156.32 160.81 156.2 –0.079 2.952 

3 0.7 135.42 127.23 134.9 –0.390 –5.680 

4 0.8 89.30 94.41 88.75 –0.625 6.388 

5 0.9 67.86 66.49 67.45 –0.615 –1.411 

f) F -Resin lax) = 4500 2(Resin) = 28000 GPa [37] 

S. No. E  (Eq )) GPa E  (Equ )) GPa E( a %Deviat tion (3)) 
%Devi uation 

(10)) 

lax E1(F  GPa, E

v1 eff effuation (3 ation (8 exp) GP ion (Equa
ation (Eq

1 0.4 12918.11 12922.6 12917 –0.008 –0.043 

2 0.5 15451.71 15462.53 15451 –0.004 –0.074 

3 0.6 17709.05 17733.59 17709 –0.0003 –0.138 
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second ph affects the strain atrix. 
Wh  an in enetrati structure is y the 
two phases one phase is closely constrained by the other 

h experimental values of Elastic modulus 
fo

ase little to of the m
en terp ng micro formed b

one though they do not bond strongly together. The elas-
tic behavior of matrix is thus affected by the presence of 
interpenetrating second phase. Alumina particles were 
well dispersed and well bonded to the matrix. Here we 
ignored the effect of porosity Thus these formulas can 
estimate the elastic modulus for non-porous materials 
only. Our proposed formula suits well for pore free 
matrix and pore free filler. With the knowledge of the 
correlation between the elastic moduli and porosity for a 
particular ceramic product we can determine elastic 
modulus of matrix with pore too. Since several investiga-
tions in literature show that Young’s modulus decreases 
as porosity increases. By introducing porosity and poros-
ity correction factor which takes account of geometrical 
variables such as pore size, shape and location. Only 
those composite materials which have considerable am- 
ount of porosity may show deviation between experimen- 
tal data and predictions that is too due to presence of thir- 
d phase air.  

The values of effective elastic modulus obtained by 
the proposed approaches (Equations (3) and (10)) are 
compared wit

r different composites (Al2O3-NiAl, SiC-Al, Alumina- 
Zir-conia, Al-Al2O3, W-glass and Flax-Resin). The basic 
properties of each phase in these composites are also 
shown in Table 2. The model predictions proposed in the 
present study cover most of the experimental data. The 
experimental data of the composites are close to the pre- 
dictions made by our proposed formula. One may note 
that the Elastic modulus shows strong dependence on 

2 1E E , less dependence on 1 2v v .This comparison for 
all composites is shown in Table 3 and in Figures 1-6. 

Our proposed predictions seem good on comparison 
ll some error is there d o the presence of air 

pores. Since we have neglected the pore effect and con
but sti ue t

-
si

e
to

 experimental data and proposed 
 is made in the present study. It shows 
on the micro structural character

ti nterface may ffect the elasti lus of 
c te. The elast f the co  mate-
rials depend strongly on elastic properties of individual 

REFERENCES 
ziehung Zwischen den Beiden 

dered the pore free matrix. References are given in the 
respect- tive tables for the source of experimental data. 

Results obtained from our proposed formula show 
good matching with the experimental values. Still a small 
difference is seen with the measured data. It may be du  

 relative arbitrariness of data selection. Thus our rela- 
tions provide a satisfactory prediction in terms of the vo- 
lume fraction variations. 

4. Conclusion 

The comparison between
models predictions
some dependence istics 
of ceramic metal composites. The interconnectivity of 
each phase in a composite and the bonding characteris-

phases, and their concentration in a composite. This de-
pendence is studied using two quite different semi-em- 
pirical approaches. In the first approach modified form of 
series and parallel combination is proposed to calculate 
effective elastic modulus, while as in second approach, 
we consider linear dependence of effective elastic modu- 
lus on elastic properties of the constituents and their re-
spective volume fractions respectively. Seven composites 
(Al2O3-NiAl, SiC-Al, Alumina-Zirconia, Al-Al2O3, W- 
glass and Flax-Resin) are used for comparison to validate 
the modified relations. The calculated values of elastic 
modulus using both the theoretical predictions are in go- 
od agreement with the experimental values for all com- 
posite materials. The suggested theoretical results offer 
good approximation for elastic modulus. 

5. Acknowledgements 

A Junior Research fellowship awarded by CSIR-UGC to 
one of the authors (AU) is gratefully acknowledged. 

cs of i  also a c modu
omposi ic properties o mposite

[1] W. Voigt, “Ueber die Be
Elasticitätsconstanten Isotroper Körper,” Annalen der Phy- 
sik, Vol. 274, No. 12, 1889, pp. 573-587.  
doi:10.1002/andp.18892741206 

[2] A. Reuss and ng der Fließgrenze 
von Mischkris astizit tsbedingung 

posite Ma-
s and Physics of Solids, 

 Z. Angrew, “Berechnu
tallen auf Grund der Pl

für Einkristalle ,” ZAMM-Journal of Applied Mathemat-
ics and Mechanics, Vol. 9, No. 1, 1929, pp. 49-58. 

[3] R. Hill, “A Self-Consistent Mechanics of Com
terials,” Journal of the Mechanic
Vol. 13, No. 4, 1965, pp. 213-222.  
doi:10.1016/0022-5096(65)90010-4 

[4] B. Budiansky, “On the Elastic Moduli of Some Heteroge-
neous Materials,” Journal of the Mechanics and Physics of 
Solids, Vol. 13, 1965, pp. 223-227.  
doi:10.1016/0022-5096(65)90011-6 

[5] K. Yagi and L. Che, “Elastic Properties of Composite Ma-
terial with Anisotropic Ellipsoidal Inhomogeneities,” Pro-

V. Khokhriakov, “A 
 

ceedings of the Fifteenth International Offshore and Polar 
Engineering Conference, 19-24 June 2005, Seoul, pp. 
551-556.  

[6] J. M. Molina, S. S. Savinsky and N. 
Tight Binding Model for Calculations of Structures and
Properties of Graphite Nanotubes,” Journal of Chemical 
Physics, Vol. 104, No. 12, 1996, p. 4652.  
doi:10.1063/1.471211 

[7] J. P. Lu, “Elastic Properties of Carbon Nanotubes and 
Nanoropes,” Physical Review Letters, Vol. 79, No. 7, 1997, 
pp. 1297-1300. doi:10.1103/PhysRevLett.79.1297 

[8] S. Lijima, C. Brabec, A. Maiti and J. Bernhole, “Structural 

Copyright © 2012 SciRes.                                                                                 MME 

http://dx.doi.org/10.1016/0022-5096(65)90010-4
http://dx.doi.org/10.1016/0022-5096(65)90010-4
http://dx.doi.org/10.1016/0022-5096(65)90010-4
http://dx.doi.org/10.1063/1.471211
http://dx.doi.org/10.1063/1.471211


A. UPADHYAY  ET  AL. 12 

Flexibility of Carbon Nanotubes,” Journ
Physics, Vol. 104, No. 5

al of Chemical
, 1996, p. 2089.  

 

doi:10.1063/1.470966 

[9] M. M. J. Treacy, T. W. Ebbeson and J. M. Gibson, “Ex-
ceptionally High Young’s Modulus Observed for Indi-
vidual Carbon Nanotubes Nature,” Nature, Letters to Na-
ture, Vol. 381, 1996, pp. 678-680. doi:10.1038/381678a0 

[10] N. G. Chopra and A. Zettl, “Measureme
Modulus of a Multiwa

nt of the Elastic 
ll Boron Nitride Nanotube,” Solid 

State Communications, Vol. 105, No. 5, 1998, pp. 297-300. 
doi:10.1016/S0038-1098(97)10125-9 

[11] N. Garshashbinia and J. E. Jam, “Properties in Laminated 
Composite Plates Using Genetic Algorithm,” Indian Poly-
mer Journal, Vol. 14, No. 1, 2005, pp. 39-46. 

[12] J. P. Watt, G. F. Davies and R. J. Cnnel, “Elastic Proper-
ties of Composite Materials,” Reviews of Geophysics, Vol. 
14, No .4, 1976, pp. 541-563.  
doi:10.1029/RG014i004p00541 

[13] K. A. Snyder, E. J. Garboczi and A. R. Day, “The Elastic 
Modulii of Simple Two Dimensional Isotropic Compos-
ites, Computer Simulation and Effective Medium The-
ory,” Journal of Applied Physics, Vol. 72, No. 12, 1992, 
pp. 5948-5955. doi:10.1063/1.351903 

[14] M. T. Tilbrook and M. Hottman, “On the Mechanical 
Properties of Alumina Epoxy Composites with an Inter 
Penetrating Network Structure,” Materials Science and 
Engineering: A, Vol. 393, No. 1-2, 2005, pp. 170-178.  
doi:10.1016/j.msea.2004.10.004 

[15] H. F. Zhang, X. S. Ge and H. Ye, “Randomly Mixed 
Model for Predicting the Effective Thermal Conductivity 
of Moist Porous Media,” Journal of Physics D: Applied 
Physic, Vol. 39, No. 1, 2006, pp. 220-226.  
doi:10.1088/0022-3727/39/1/032 

[16] Z. Hashin, “Analysis of Composite Materials—A Sur-
vey,” Journal of Applied Mechanics, Vol. 50, No. 3, 1983, 
pp. 481-505. doi:10.1115/1.3167081 

[17] S. Torquato, “Random Heterogeneous Materials: Micro 
Structures and Macroscopic Properties,” App
ics Reviews, Vol. 55, No. 4, 2002, p. B62. 

lied Mechan-
 

doi:10.1115/1.1483342 

[18] N. Losic, J. F. Thovert and P. M. Adler, “Reconstruction 
of Porous Media with Multiple Solid Phases,” Journal of 
Colloid and Interface Science, Vol. 186, No. 2, 1997, pp. 
420-433. doi:10.1006/jcis.1996.4659 

[19] D. S. Li, G. Saheli, M. Khaleel and H.
“Quantitative Prediction 

 Mgarinestani,
of Effective Conductivity in Ani-

 

sotropic Heterogeneous Media Using Two Point Correla-
tion Functions,” Computational Materials Science, Vol. 38, 
No. 1, 2006, pp. 45-50.  
doi:10.1016/j.commatsci.2006.01.004 

[20] M. Wang, J. K. Wang, N. N. Pan and S. Y. Chen, “Meso- 
scopic Predictions of the Effective Thermal Conductivity 
of Micro Scale Random Porous Media,” Physical Review 
E, Vol. 75, No. 3, 2007, pp. 260-265.  

[21] P. Meakin, “Fractals, Sca
librium,” Cambridge University Press, 

ling and Growth Far from Equi-
Cambridge, 1998. 

x

[22] P. A. Roberts and E. J. Garboczi, “Elastic Properties of 

Model Porous Ceramics,” Journal of the American Ce-
ramic Society, Vol. 83, No. 12, 2000, pp. 3041-3048.  
doi:10.1111/j.1151-2916.2000.tb01680.  

[23] J. Segurado and J. Llorca, “A Numerical Approximation 
to the Elastic Properties of Sphere-Reinforced Compos-
ites,” Journal of the Mechanics and Physics of Solids, Vol. 
50, No. 10, 2002, pp. 2107-2121.  
doi:10.1016/S0022-5096(02)00021-2 

[24] S. Sahraoui, E. Mariez and M. Etchessahar, “Linear Elas-
tic Properties of Anisotropic Open-Cell Foams,” Journal 
of the Acoustical Society of America, Vol. 110, No. 1, 
2001, pp. 635-637. doi:10.1121/1.1378351 

[25] W. E. Warren and A. M. Kraynik
Properties of Open-Cell Foams,” Jour

, “The Linear Elastic 
nal of Applied Me-

chanics, Vol. 55, No. 2, 1988, pp. 341-346.  
doi:10.1115/1.3173680 

[26] W. H. Tuan, Y. P. Pai, “Mechanical Properties of Al2O3- 
Nial Composites,” Journal of the American Ceramic So-
ciety, Vol. 82, No. 6, 1999, pp. 1624-1626.  
doi:10.1111/j.1151-2916.1999.tb01974.x 

[27] M. F. Ashby, “Criteria for Selecting the Com
Composites,” Acta Meta

ponents of 
llurgica et Materialia, Vol. 41, 

No. 5, 1993, pp. 1313-1335.  
doi:10.1016/0956-7151(93)90242-K 

[28] W. H. Tuan, W. B. Chou, H. C. You and S. T. 
Effects of Microstructure on the Mechanic

Chang, “The 
al Properties of 

Al2O3-Nial Composites,” Materials Chemistry and Physics, 
Vol. 56, No. 2, 1998, p.157.  
doi:10.1016/S0254-0584(98)00168-0 

[29] C. L. Hsieh, W. H. Tuan and T. T. Wu, “Elastic Behavior 
of a Model Two-Phase Material,” Journal of the Euro-
pean Ceramic Society, Vol. 24, No. 15-16, 2004, pp. 3789- 
3793. doi:10.1016/j.jeurceramsoc.2004.02.002 

[30] R. Hill, “Elastic Properties o
Theoretical Principles,” Journal of the Mechan

f Reinforced Solids: Some 
ics and 

Physics of Solids, Vol. 11, No. 5, 1963, pp. 357-372. 
doi:10.1016/0022-5096(63)90036-X 

[31] W. Koster and H. Franz, “Poisson’s Ratio for Metals and 
Alloys,” Metallurgical Review, Vol. 6, No. 21, 1961, pp. 

rial 
 2005, pp. 133-139.  

erican Society for Composites—7th Technical Con-

e 

1-56. 

[32] C. L. Hsieh, W. H. Tuan and T. T. Wu, “Elastic Proper-
ties of Ceramic-Metal Particulate Composite,” Mate
Science and Engineering A, Vol. 393,

[33] L. C. Davis, J. Chen and M. F. Thorpe, “Predicting the 
Elastic Properties of Composite Materials,” Proceedings of 
the Am
ference, Pennsylvania, 13-15 October 1992, pp. 339-348. 

[34] W. Pabst, G. Ticha, E. Gregorova and E. Tynova, “Effec-
tive Elastic Properties of Alumina-Zirconia Composite 
Ceramics, Part-5 Tensile Modulus of Alumina-Zirconia 
Composite Ceramics,” Ceramics Silikaty, Vol. 49, No. 2, 
2005, pp. 77-85.  

[35] M. Wang and N. Pan, “Elastic Property of Multiphas
Composites with Random Microstructures,” Journal of 
Computational Physics, Vol. 228, No. 16, 2009, pp. 5978- 
5988. doi:10.1016/j.jcp.2009.05.007 

[36] D. P. H. Hasselman and R. M. Fulrath, “Effect of 
Spherical Tungsten Dispersions on Young’s Modulus of a 

Copyright © 2012 SciRes.                                                                                 MME 

http://dx.doi.org/10.1103/PhysRevLett.79.1297
http://dx.doi.org/10.1063/1.470966
http://dx.doi.org/10.1063/1.470966
http://dx.doi.org/10.1063/1.470966
http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1029/RG014i004p00541
http://dx.doi.org/10.1029/RG014i004p00541
http://dx.doi.org/10.1063/1.351903
http://dx.doi.org/10.1063/1.351903
http://dx.doi.org/10.1016/j.msea.2004.10.004
http://dx.doi.org/10.1016/j.msea.2004.10.004
http://dx.doi.org/10.1088/0022-3727/39/1/032
http://dx.doi.org/10.1088/0022-3727/39/1/032
http://dx.doi.org/10.1088/0022-3727/39/1/032
http://dx.doi.org/10.1088/0022-3727/39/1/032
http://dx.doi.org/10.1115/1.3167081
http://dx.doi.org/10.1115/1.1483342
http://dx.doi.org/10.1115/1.1483342
http://dx.doi.org/10.1115/1.1483342
http://dx.doi.org/10.1006/jcis.1996.4659
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01680.x
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01680.x
http://dx.doi.org/10.1016/S0022-5096(02)00021-2
http://dx.doi.org/10.1016/S0022-5096(02)00021-2
http://dx.doi.org/10.1016/S0022-5096(02)00021-2
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1121/1.1378351
http://dx.doi.org/10.1115/1.3173680
http://dx.doi.org/10.1115/1.3173680
http://dx.doi.org/10.1115/1.3173680
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01974.x
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01974.x
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01974.x
http://dx.doi.org/10.1016/0956-7151(93)90242-K
http://dx.doi.org/10.1016/0956-7151(93)90242-K
http://dx.doi.org/10.1016/S0254-0584(98)00168-0
http://dx.doi.org/10.1016/S0254-0584(98)00168-0
http://dx.doi.org/10.1016/S0254-0584(98)00168-0
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.02.002
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.02.002
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.02.002


A. UPADHYAY  ET  AL. 

Copyright © 2012 SciRes.                                                                                 MME 

13

the American Ceramic Society, Vol. 48,Glass,” Journal of  
No. 10, 1965, pp. 548-549.  
doi:10.1111/j.1151-2916.1965.tb14668.x 

[37] D. Bolcu, G. Stanescu and M. Ursache, “Theoretical and 
 

Experimental Study on Determination of the Elastic Prop-
erties for Composite Materi
Physics, Vol. 56, No. 1, 2004, pp. 3-12. 

 

als,” Romanian Reports in 

http://dx.doi.org/10.1016/j.jcp.2009.05.007
http://dx.doi.org/10.1016/j.jcp.2009.05.007
http://dx.doi.org/10.1016/j.jcp.2009.05.007

