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ABSTRACT 

It is proved, there is no aether and time-space is the only medium for electromagnetic wave. However, considering time-space 
as the medium we may expect, there should exist field equations, describing electromagnetic wave as disturbance in 
time-space structure propagating in the time-space. I derive such field equations and show that gravitational field as 
well as electromagnetic field may be considered through one phenomena-time dilation. 
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1. Introduction 

One of the main problems of the contemporary theoreti-
cal physics is Quantum Gravity (Bertfried Fauser, Jürgen 
Tolksdorf, Eberhard Zeidler, [1]). 

The motivation to create this paper is conviction, that 
reformulation of the concept of fields by emphasis on its- 
relationship with time dilatation factor and time-space struc- 
ture may support to efforts to field unification. 

Searching for Higgs boson or considering possible al- 
ternatives to Standard Model we try to explain issues, sort 
of: 
 The nature of the elementary particle rest mass, 
 The nature of the photon energy, 
 Photon’s behavior on Planck’s energy scales. 

The aim of this paper is tosupport issues mentioned above, 
by redefining electromagnetic field equations and stress 
similarity to Schwarzschild solution, what may open new 
ways for the quest for quantum gravity and the unified 
field theory. 

Almost a hundred years have passed since 1908 when 
Hermann Minkowski gave a four-dimensional formula- 
tion of special relativity according to which space and time 
are united into an inseparable four-dimensional entity— 
now called Minkowski space or simply spacetime—and 
macroscopic bodies are represented by four-dimensional 
worldtubes. But so far physicists have not addressed the 
question of the reality of these worldtubes and spacetime 
itself” (Vesselin Petkov, page 1, [2]). 

In this paper I reformulate Schwarzschild and Min- 
kowski metrics and explain these metrics as consequence 
of introduced electromagnetic field description. 

In first section I recall that one may consider curved 
time-space as collection of locally flat parts of Rieman- 
nian manifolds with assigned stationary observers. These 

infinite small flat fragments of time-space, according to 
transformed Schwarzschild solution and Rindler’s trans- 
formation appears to be accelerated. This approach allows 
us to define important reference frame, that may be used 
farther. 

In second section I use above approach and introduce 
some fields, that binds together time flow and motion in 
d’Alembertians. Derived wave equation express distur- 
bance in time-space structure propagating in time-space 
that may be explained as light. 

In this paper we also refer to Max Planck’s Natural Units 
introduced in 1899. Let us then denote following design- 
nations: 
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Farther I will deal with relativistic dynamics and show, 
that adding axis to Hamiltonian and Lagrangian we may 
obtain proper Lagrangian and Hamiltonian for gravita- 
tional field that one may understand as reformulation of 
the field interaction phenomena. 

This way we develop farther the idea presented by Alex- 
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ander Gersten: “(…) we have shown that thenon-rela- 
tivistic formalism can be used provided the momenta and 
Hamiltonian belong to the same 4-vector.” (Alexander 
Gersten, page 10, [3]). 

We will start with reference to the main equation of 
the General Theory of Relativity. We will narrow down 
our discussion to a spherically symmetrical mass to apply 
the Schwarzschild solution and then we will generalize 
above thanks to Rindler’s transformation. 

2. Time Dilation as Field 

2.1. Schwarzschild Metric and Time Dilation 

Let us start with recalling Schwarzschild metric (R. Al-
drovandi and J. G. Pereira, page 111, [4]) and consider 
relation between gravitational potential and time dilation. 
To simplify calculations, in whole section we are assum-
ing c = 1. For body orbiting at one plane around non-ro- 
tating big mass, we may write metric in form of: 

2
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We assume: 
 τ is the proper time of observer’s reference frame; 
 t is the time coordinate (measured by a stationary clock 

at infinity); 
 r is the radial coordinate; 
 φ is the colatitude angle; 
 rs is the Schwarzschild radius. 

According to this solution, the Schwarzschild’s radius 
and mass formulas are: 
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We introduce relativistic gamma factor: 
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were call, that Schwarzschild’s solution drives to gravita-
tional acceleration in “r” distance equal to: 
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As we may easy calculate: 
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Above formula drives us to conclusion that relativistic 
gamma acts here as it would be scalar field. Let us ex- 
plain above and its wide consequences in 

At first step, let us rewrite Schwarzschild metric for 
so



few steps. 

me new reference frame. We start using formula (5): 
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We may consider Schwarzschild metric for stationary
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observer, hanging at some point at distance “r” to source 
of gravitational force (such observer has to
force to keep his position). We will denote such observer 
pr

 use some 

oper time as τobs: 
1

d dobs
r

t


                     (9) 

Now, we might rewrite Schwarzschild metric (8) refer-
ring to some local, chosen stationary observer reference 
frame and its proper time. 

2 2 2 2 2 2d d d dr r obs r            (10) 

2 2 2dr r

If we will note above for geodesics we obtain: 
2 2d dobs r               (11) 

Above formula will be useful soon. 
 we re-

call that Riemannian manifolds are loca
considered time-space into spheres w
di i metric with 
sl



Using such stationary observer reference frame
lly flat. If we shrink 
ith chosen “r” ra-

us we obtain spherical, anisotropic Minkowsk
ower coordinate light speed according to (11). 
If we shrink it more, we consider infinitive small, local, 

part of chosen sphere, where photon meets Stationary Ob- 
server. 

At second step, let us introduce velocity “vr”: 

s
r

r
v c

r
                  (12) 

We recognize velocity “vr” as Escape velocity and 
Free-falling velocity, thus we introduce some related spa- 
tial increment dxobs: 

d

d
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r

x
v

t
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and then derive from (9) below formula: 

2 2d d obst 

just like it 
city. 

Now, at third step, let us recall Rin
tion in some plane Minkowski time-sp
in

erver con- 
ce

2d obsx            (14) 

It is easy to notice, that above formula acts 
would be Minkowski for free-falling velo

dler’s transforma- 
acefor body mov- 

g with acceleration “a”, achieving velocity “v”. We 
may consider such body using co-moving obs

pt. We will denote its proper time as “τ” and note: 

v at                   (15) 
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Let us perform following transformation: 
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ce spatial increment as it w
inplane Minkowski metric. We will note this inc
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Let us note Minkowski metric for co-moving body: 
2d obs d r             (23)  

At the end, by substituting (21) we obtain: 
2 2 2 2 2 2 2d d d d dobs rr r r r          (24) 

2 2drr r2 2 2d dobs       

eodesics in 
Schwarzschild metric. Thus we must conclude tha
dler transformationmight be done for accelerated light…
To support above claim we will show
re
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Comparing above to (11) we recognize g
t our Rin- 

 
 in next section that 

st mass existence is not necessary to consider accelera-
tion for light. 

We may also easy transform (18) to form of: 

d

d
r

r
r

v
g


                      (26) 

Joining above with (7) we may explain acceleration by: 

1

d

dd
rv

r

d
r

rg
r




 

cceleration r may be then expressed by 
just introduced imaginary proper time τr and velocity vr. 

Recalling (14) we should conc
Schwarzschild metrics may be explained (besides classi-
cal explanation) as combination of two Minkowski met-

ric
- 

fal

ing to above conclusions we will introduce (in 
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Gravitational a g  

lude, that geodesics in 

s for: 
(14) stationary observer moving against accelerated, free
ling surroundings (light), 
(11) free-falling surroundings (light) considered in re- 

lation to stationary observer proper time. 
Referr
ction 3) reformulation of Lagrangian and Hamiltonian 

what might be understood as
ractions. 

2. Vector Fields for Minkowski Time-Space 

As we know there is no ether and the medium for elec-
tromagnetic wave is time-space. We should expect, then, 
there must 
tromagnetic wave as disturbance in time-space struct
(structure of the medium) distributing in the time-spac

Let us prepare to such electromagnetic field descrip-
tion, describing at first some regular rotation of Planck’s 
mass mP, with line velocity vr, on the circle with radius R. 
We will define velocity as function of R equal to: 
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where Rco is some defined constant. 
Related gamma factor will be equal to: 
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Non-relativistic angular momentum we may denote as: 
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Maxwell has defined electrom
by  sre-
mains [5]. Let us do the same, but eliminating test body 
while motion and time flow remains. 

We will construct vector fields to describe whole class 
of 
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agnetic field phenomena 
 eliminating particles from equations while field

just introduced rotations defined for any place in space. 
Rest mass we may understand as parameter. 

Let us define at first three versors nR, nx, ny. For any 
conductive vector R we define: 

R R


R
n                   (34) 
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R x y n n n                      (35) 

Let us define scalar field 
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Now, let us analyze consequences of derived fie
tions and define Lagrangian and Hamiltonian fo
defined this way. 

3. Reformulated Lagrangian and 
Hamiltonian 

3.1. Lagrangian and Hamiltonian 
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r fields 

t us show how we may describe mechanics when we 
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defined with formula (29). 
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Now we define Lagrangian in form of: 
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Now, using above to construct 4-
tive vector we obtain relation bet
time-space curvature the same as main equation of Gen-
eral Relativity. 
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 of above for small velo- 

22 2 Rmv 2m vm v

2 2 2 2
corH mc
R

      (89) 

2

2
comMmv

H G
R

               (90) 

As we may see, above formula acts the s
Newton’s Mechanical Energy formula. 

s Hypothesis 

4.1. Photon Energy 

Let us notice, that pulsation described in (30) is equal to: 

ame way that 

4. Photon and Electrostatic

Non-relativistic angular momentum for such move is 
equal to: 

2 2
co co

P P

R R R R
L m c l

 
         

P Pl l
 (92) 

duced Planck’s action. Let us note such Radius with Rω 
and define as: 

as we may notice, there is some Radius causing that an- 
gular momentum become equal to smallest action-re- 

coP

P

Rl
                   (93) 

R l

Now we may introduce hypothetical gamm
rotation velocity with “E” index: 

a factor and 

P
E

l
v c

R
                   (94) 

2

1
E

2
1P

1 1

E
l

R

  


        (95) 
v

c


Kinetic Energy for such rotation is equal to: 

1 1 1
1

1
kin P

P

l
E E

l
cR


2 2

P
PE

RR


 
 

 


 
 

Now let us see, that 

  


   (96) 

c

R
 express pulsation in reference 

frame assigned to rotating frame. On a circle with radius 

R for line velocity 
c


 we may note as follows: 

2
c

T R


                   (97) 

2 2c 
'R T T

 
             (98) 

Let then denote inverse of Radius as pulsation and write 
down: 

1 1 1

2 2kinE
R

c

             (99) 

If we consider two twisted vectors of rotating field ma- 
king double Helix, we will obtain we
mula: 

ll recognized for-

2 kinE E                 (100) 

We may suppose that E  describes electromagnetic 
field and the above quantum of energy may be assigned 
to photon. This way we may treat (50) and (51) as equi- 
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valent versions of Maxwell’s Equations [6]
Pair production phenomena might be thu

. 
s rewritten as: 

1 1
2 1 2 1P PE E

l R

   
         

 (101) 

1 1P co

R

   

     
 

an

Pl 
 

d after Maclaurin’s approximation: 
22 mc               (102) 

4.2. Electrostatics 

Th
expressed in Planck’s units, can be noted as: 

e Electrostatic potential of two elementary charges, 

2 2

4 4
e e

Q

q q
V c

R c 
 

 



2

2
0 0

e

P

q
c

R q R
        (103) 

P
Q PV E

R
                

l
           (104) 

s introduce auxiliary constanLet u t “ε” and variables: 
1

l
1 P

R





                (105) 

P
Q P

R l
   (106) 

ve as equivalent of (85). 
Now, let us assume that expression (104) is Maclau-

rin’s approximation 
time dilation factor 



 lim 1E E          

We may understand abo

for R   lP of interaction based on 
 . 

Therefore, it should follow below formula: 

 1
2

P P
P

l
E        (107) Q Q Q

l
V E E

R R



  

as we can easy derive: 

1 1
1

21
1






 
  

 

 
 

(108)              

6.245919                 (109) 

, we have obtained epsilon close to 
2π. It brings to mind De Broglie condition
the orbit. Let us follow this indication. 

us being limit for R in formula 
(106) using present knowledge. Now, we define auxiliary 
radius such way, to obtain 2

What astonishing
 for length of 

Let us redefine radi

   . 
Let us introduce: 

1

1
2

Pl

R






               (110) Q

0.98890Q PR l                      (111) 

Let us redefine (106) and (107) as follows: 

 lim 1 4
Q

Q P Q P
R R

E E E 


             (112) 

 P1
4

P
Q P

l l
E E

R R
 


    (113) 

One may easy derive, that el
elementary charges may be expressed as: 

Q Q QV E   

ectrostatic force for two 

1
d

Q

2 2d 4
P Pl l

E E    (114) Q Q Q Q PR R
F E

R


  

5. Summary 

As we have just shown, the same field equations may de- 
scribe as well electromagnetism as well gravity

Field “A” defined in (37) may enter in place of: 
 

Field “T” (36) and related scalar potential may act as: 
 Electrostatic potential, 
 Gravitational potential. 

Field “Ω” (41) may act as: 
ion, 
rvature factor. 
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