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ABSTRACT 

In some quantum chemical applications, the potential models are linear combination of single exactly solvable poten-
tials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field   
of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for 
some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of 
the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corre- 
sponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) 
method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works. 
 
Keywords: Harmonic Oscillator; Dirac Equation; Spin and Pseudospin Symmetry; Combined Potentials; 

Nikiforov-Uvarov Method 

1. Introduction 

The Schrödinger equation provides an insight to the fun- 
damental quantum chemical problems. There are a num- 
ber of solvable nonrelativistic quantum problems in which 
all the energy eigenvalues and wave functions are explic- 
itly known from different operator methods [1] and ana- 
lytical procedures [2] specially developed to solve the 
desired wave equation. This solution can be done by us- 
ing the supersymmetry (SUSY) [3,4], the Nikiforov- 
Uvarov (NU) method [5], the asymptotic iteration method 
(AIM) [6], the exact quantization rule (EQR) [7] and the 
tridiagonal J-matrix method (TJM) [8], etc. 

The electron confinement in harmonic oscillator (HO) 
potential exposed to n external electric field is one of the 
quantum chemical applications. Indeed, this is well known 
as charged HO in a uniform electric field or an HO in an 
external dipole field. Moreover, such model could be also 
used in the measurement of the relative photo ionization 
cross section of Rb in the presence of various strengths 
of external electric fields [9]. The model potential also 
makes specific predictions about the spacing as a func- 
tion of applied field and used in the calculation of the 
energy levels of ammonia in strong electric field [10]. The 
SUSY and shape invariance methods have been used to 
determine ESPs are extended to obtain the energy eigen-
values and their generalized partner potentials [11]. It de- 
mands the existence of the Witten superpotential  
[12] associated with the ESPs in order to find the witten 

superpotential for the combined potential. It is an ansatz 
used as particular solution of the involved Riccati equa- 
tion [13]. The generalized eigensolutions of some impor- 
tant ESPs in one-dimension have been studied [11]. Fur- 
ther, the determination of the vibration spectra in some mo- 
lecular systems is found essential in chemical study. The 
Morse [14], Hulthén [15,16] and Kratzer [17] potentials 
are models used to study diatomic molecules. The modify- 
cation on the spectrum energy due to the influence of 
electric field on a quantum particle of mass M  and charge 

 confined by HO potential was studied with a disclina- 
tion [18,19]. 
q

Besides, the spherical relativistic HO with spin sym- 
metry has been studied [20]. The Dirac Hamiltonian with 
scalar  S r  and vector  V r potentials quadratic in space 
coordinates [21] has been used to find an HO like second 
order equation. This can also be solved analytically for 
Klein-Gordon (KG) equation with equally mixed scalar 
and vector potentials    S r V r   (the sum potential 
  0r    0r  and the difference potential  [22]. Re- 

cently, the triaxial, axial and spherical HO for the case 
  0r   has been solved and applied to the study of anti- 

nucleons embedded in nuclei [23-25]. The case   0r 

 r  r

 
is particularly relevant in nuclear physics since it is a 
necessary condition for the pseudospin symmetry in nu- 
clei [26,27]. The bound state solution of the spin-1/2 par- 
ticles in Dirac equation with HO potentials have been 
obtained by letting either  or equal to zero 
[28]. The perturbative breaking of pseudospin symmetry 

( )W x
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induced by a tensor potential [29] has been studied despite 
the condition  or   0r    d d 0r r 

r

 

 can not be 
realized in nuclei [30]. The correlation between the pseu- 
dospin splitting and the shape of the HO potential, 
namely the HO frequency and the distance of well-bot- 
tom deviation from the center studied in [31]. The rela- 
tivistic HO in 1 + 1 dimensions, i.e., including a linear 
potential and quadratic scalar and vector potentials with 
equal or opposite signs has been solved [32]. The solu- 
tions found for zero pseudoscalar potential are related to 
the spin and pseudospin symmetry of the Dirac equation 
in 3 + 1 dimensions. The Dirac equation with scalar and 
vector HO potentials along with the tensor potential as a 
sum of linear and Coulomb-like potentials has been stud- 
ied [33]. It was found that the tensor potential preserves 
the form of the HO potential and generates spin-orbit 
terms. The bound states of a new ring-shaped equal mix- 
ture of vector and scalar HO for spin-1/2 Dirac particles 
were studied [34]. The bound state solutions of the relativis- 
tic pseudoharmonic potential have been studied using the 
Nikiforov-Uvarov method [35]. 

Our aim is to obtain the exact s-wave Dirac bound 
state energies and the upper- and lower-spinor wave func- 
tions in HO potential influenced by a uniform electric field. 
Further, we investigate the modification on the spectrum 
energy of a quantum particle influenced by a uniform elec- 
tric field in the radial direction in the presence of the spin 
symmetry  and pseudospin symmetry  

cases in the framework of the NU method 
[5,14-16,36-39]. These solutions are reduced to the spin- 
less KG and Schrödinger limits when 

   S r V r
 S r  V

 S r V r 
r   0r 

and 
corresponding to exact spin and 

pseudospin symmetry limitations [23-25,40-47]. 
 S r  

 n


  0r 

V

The performance of any method applied to the Dirac 
equation depends on the selected representation of this 
equation and the mathematical structure of the resulting 
equation, in which there are conditions under which it 
may be reduced to a Schrödinger equation [48-50]. 

In this paper, Section 2 briefly introduces Dirac forma- 
lisms. The Dirac bound state energies of a particle con-
fined by an ESPs consisting of combined harmonic oscil- 
lator-plus-linear (HpL) potential model in the presence of 
spin and pseudospin symmetry using the NU method. In 
Section 3, we give our conclusions. 

2. Bound State Solutions of the 
Combined Potential Model 

The two radial coupled Dirac equations for the upper 
F r  and lower spinor components can be ex- 
pressed in the form [41] 

 nG r

   d
( ) ,

d n nF r
r r




   
 




r G r
 



 
  

 
    (1a) 

   d
,

d n nG r r F r
r r


 






       
   

  (1b) 

with 

 2 ,nMc E                      (2a) 

 2
2 2

1
 ,n psMc E C

c    


         (2b) 

and 

 2 ,nMc E                     (3a) 

 2
2 2

1
 ,n sMc E C

c    


          (3b) 

     r V r S r   and  where 

     r V r S r  
137.0359895c 

 are the difference and sum radial 
potentials, respectively. Also  is the ve- 
locity of light [35]. In the presence of the spin symmetry 
(i.e.,  r Cs   constant), one can eliminate 

 G rn  in (1a), with the aid of (1b), to obtain a second- 
order differential equation for the upper-spinor compo- 
nent as follows (for details see [41-47]): 

       
2

2 2

d 1
0,

d
n

n

F r
r F r

r r


  

 
 

 
     
 

 

 (4) 

and the lower-spinor component can be obtained fd rom 
(1a) as 

 2 2

1 d
,

dn nG r F r
r rc 






   
 

2E Mc 
0C

            (5) 

where n  (only real positive energy states 
exist) when s   (the exact spin symmetry case). On 
the other hand, under the pseudospin symmetry (i.e.), 

  ,psr C   where psC a constant, one can eliminate 

 nF r  in (1b), with the aid of (1a), to obtain a second- 
order differential equation for the lower-spinor compo-
nent as follows: 

       
2

2 2

d 1
0,

d
n

n

G r
r G r

r r


  

 
 

 
    

 
   (6) 

 and the upper-spinor component nF r

 

can be obtained 
from (1b) as 

 2 2

1 d
,

dn nr G r
r rc 






   
 

2
nE Mc 

0C

F              (7) 

where  (only real negative energy states exist) 
when ps   (for exact pseudospin symmetry). Thus, 
from the above equations, the energy eigenvalues depend 
on the quantum numbers  and and also the pseudo- 
orbital angular quantum number  according to 

n ,
l  1    

 1 ,l l    which implies that   1 2j l 

0.l

 are degene- 

rate for  It is worthy to note that the reality and fi- 
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 0 0 0,n nF G  
0.

Copyright © 2012 Sci

 
   n nF G    

niteness of our solutions demand that the upper and lower 
radial components are to satisfy the essential boundary 
conditions:  and 

and 

  ,W q r                    (11)   

is the classical potential energy of a charged particle in a 
uniform external electric field of specific value    in the 
radial direction with  being the charge of the particle. 

The combined potential (8) becomes 

We shall study the spin and pseudospin symmetric 
Dirac equation for the charged HO in a uniform electric 
field of specific strength 

q

 
  or the HO in an external di- 

pole field. The corresponding scalar and vector compo- 
nents are taken to be the combined potential: 

2 2 2 2 2
0 02 2V r M r q M     , where 

2
0r r q M .     In Figure 1, we plot the ESP V r

r
1.0 MeVM

 
 V r

 

    ,U r W r                (8) 
versus distance  with the choices of parameters (a) 

where 1
0 1 2.4 fm ,  1.5 MeVM  and  (b)   

and 

Res.                                                                                 

2 2
0

1
,

2
M r

0 ,k r

U r

 F

                 (9) 

is the h.o. potential with the associated force given by 

                      (10) 

1
0 1 2.4 fm ,  1.0 MeVM  0 1.0  (c) and   

1fm , and (d) 1
0 1.0 fm , 1.5 MeVM  and 

0,  0.5,  1.0 

 for 
several values of electric field strength: 
  and . 12.0 MeV fm

 

     
     (a)                                                                     (b) 

     
      (c)                                                                  (d) 

Figure 1. Variation of the V(r) with distance r  in the presence and absence of electric field for the cases. (a) M = 1.0 MeV 
and = 1/2.4 fm–1; (b) M = 1.5 MeV and 0 0 = 1/2.4 fm–1; (c) M = 1.0 MeV and = 1.0 fm–1; and (d) M = 1.5 MeV and 0

= 1.0 fm–1. 0
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 It is clearly seen that the potential V r

0 ,
has the har- 

monic-like behavior with frequency   at least in the 
inner of nuclei, and at a radius r  describing the 0

distance of well-bottom deviation from the center. There- 
fore, the study of spin and pseudospin partners splitting 
as a function of these parameters is meaningful and real- 
istic enough to be applied to most nuclei at least qualita-
tively. It is known that, in certain isotope chains, as the 
mass number 

0

A  increases, the nuclear harmonic oscil- 
lator frequency 0 decreases according to the 1 3A  law 
( 1 341  MeVA

0 ), which means that it is important 
to study the role of the parameter 0

 
  in spin and pseu- 

dospin symmetry [31]. In particular, the HO potential can 
provide fully bound states which are helpful to discuss 
the symmetry systematically. 

2.1. The Spin-Symmetry Solutions 

Let us now study the potential model (8) in the context of 
spin symmetric Dirac Equation (4). Therefore, it can be 
solved exactly for , 1n n  because of the pre- 
sence of spin-orbit centrifugal term. Under this symmetry, 
we take the sum potential in (4) as the combined poten-
tial, i.e., 

2E Mc E 

 
0

2 2 .r q r
1

2
r M 

   r V r
 0. l 

                  (12) 

We choose as stated in [41-47]*. 
The s-wave ( ) case allows to rewrite (4) 
for the combined potential (12) as 

  2r V 
1,  ,i.e  

  
2

2 2
2

d

d
nF r

r r
r
         0,nF r      (13) 

where the constants are written as 

2
0

1
.

2
M    and  q                (14) 

To apply the NU method [5,39], we need to compare 
(13) with (2) of [39] to obtain values for the parameters: 

     0,  0,  r r r 2 2 .r r        

 r k

     (15) 

Inserting these values into (11) of [39], the selected 
forms of and  take the following particular values 

  ,
2

r r



                          (16) 

and 
2

2
,

4
k 

 


                           (17) 

for discrete bound state solutions. According to the 
method, the following polynomial of degree one can be 
obtained from (6) of [39]: 

    2 0,r   

e

2    and   r r
 


       (18) 

with prime denotes the derivative with respect to .r  Th  
parameters   and n  in (7) and (10) of [39] take the 
simple forms as 

2
and  = 2  k nv n

  


   

,

                (19) 

Using the condition n   we obtain the transcen-
dental energy equation for the charged particle confined 
by HO in an electric field of specific strength   as 

 
2 2

21
, 1 2

1 0

2 1 ,  0,1,2,
2n

q
n E Mc n

M

 
 





     

1,

 (20) 

where at   we have defined  

 2 2 2
1 , 1 0n sMc E C c       and 

2
1 0 1 2.M   

, 1nE

 We can compute the energy spec- 

trum by choosing suitable parameters in the symmetric 
potential. Equation (20) shows the energy spectrum 

  dependence on  and n sC  as well as on the pa- 

rameters 0  and .M  If we choose 0,   (20) re- 

duces to the one-dimensional energy spectrum of the 
relativistic HO: 

  ,
2

HO-S2
1,2

2
1,

nn
n EMcE

Mc

McE






       

where S-HO 1 2E n n   

2

 is the well-known Schrö- 
dinger energy spectrum for the HO. The above result 
resembles the ones given in [22,33]. Hence, Dirac spec- 
trum is composed of two sequences of discrete energy 
levels separated by the Mc

1.0 GeVM

 gap. This is Dirac oscilla-
tor [22,51-53] based on a construction of the Dirac equa-
tion which is ESP and in the NR limit gives the Schrö- 
dinger HO equation. 

We use the parameter values of the HO potential 
  and 0  when 21.0 GeV  0 

0 1.4516059 GeV

 [54]. Hence, 
the numerical result for the s-wave energy spectrum of 
the bound state with relativistic corrections for the HO 
potential is: E , 1 2.1880707 GeV,E 

0 2.8110575GeV,E  3.3682575 GeVE 
0,  1,n

 
and 3  for states 

 2 and 3,

.n
0.0 MeVsC 

1.5 MeVM

respectively. 
We use (20) to compute some energy spectrum with rela- 

tivistic corrections for several values of  The com- 
puted exact spin symmetric ( ) energy spec- 
trum is displayed in Table 1. 

Also, for the combined potential we use the values 
11 2.4 fm . 

0,
  and 0 The strength of the 

electric field is set up at some arbitrary values of    
 Obviously, the energy 

levels are only positive under the spin symmetry limit 
when 

10.1,  0.5,  1.0 and 2.0 MeV fm

10 - 1.0 MeV fm .  
12.0 MeV fm ,  

 However, as the field 
strength increases, i.e.,  the results are 
noticed to become negative. The number of states in spec- 
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Table 1. Energy levels (in relativistic units) for different 
quantum numbers. 

n  0.0   0.1   0.5   1.0  1.5   2.0  

0.0 MeVa

sC   

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.271140 

0.725628 

1.11559 

1.46654 

1.79036 

2.09380 

2.38113 

2.65528 

2.91835 

3.17194 

3.41725 

0.253314 

0.709133 

1.09978 

1.45115 

1.77528 

2.07894 

2.36645 

2.64074 

2.90393 

3.15761 

3.40301 

–0.167413

0.321988

0.728580

1.08963 

1.42039 

1.72893 

2.02022 

2.29754 

2.56322 

2.81899 

3.06619 

–1.22805 

–0.705506 

–0.283911 

0.085816 

0.422329 

0.735034 

1.02949 

1.30932 

1.57705 

1.83453 

2.08318 

–1.48381

–1.36573

–1.17160

–0.941148

–0.696652

–0.448725

–0.202223

0.040681

0.279078

0.512668

0.741446

–1.49659

–1.46962

–1.41701

–1.34121

–1.24528

–1.13249

–1.00597

–0.868546

–0.722603

–0.570129

–0.412735

5.0 MeVa

sC  

5.0 MeVa

sC 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.140034 

0.411762 

0.673628 

0.926861 

1.17245 

1.41121 

1.64380 

1.87080 

2.09269 

2.30987 

2.52272 

0.121035 

0.393118 

0.65529 

0.908791 

1.15462 

1.39358 

1.62636 

1.85353 

2.07557 

2.29290 

2.50588 

–0.334675

–0.053633

0.216190

0.476322

0.727960

0.972082

1.20947 

1.44079 

1.66658 

1.88734 

2.10346 

–1.75436 

–1.43881 

–1.14065 

–0.856711 

–0.584715 

–0.322940 

–0.070054 

0.175004 

0.413093 

0.644922 

0.871085 

–4.08767

–3.67584

–3.30985

–2.97470

–2.66224

–2.36745

–2.08697

–1.81842

–1.56002

–1.31041

–1.06853

–6.41822

–6.05578

–5.68341

–5.33739

–5.01500

–4.71176

–4.42415

–4.14953

–3.88591

–3.63177

–3.38590

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3.51057 

3.59088 

3.73353 

3.91604 

4.12103 

4.33744 

4.55882 

4.78145 

5.00325 

5.22305 

5.44020 

3.51045 

3.58996 

3.73141 

3.91270 

4.11660 

4.33211 

4.55275 

4.77477 

4.99606 

5.21543 

5.43222 

3.50819 

3.57140 

3.68743 

3.84162 

4.02068 

4.21481 

4.41745 

4.62442 

4.83305 

5.04170 

5.24932 

3.50443 

3.53932 

3.60658 

3.70187 

3.82010 

3.95627 

4.10599 

4.26568 

4.43250 

4.60428 

4.77940 

3.50213

3.51907

3.55252

3.60167

3.66540

3.74238

3.83119

3.9304 

4.0386 

4.15451

4.27694

3.50104

3.50936

3.52592

3.55059

3.58314

3.62331

3.67079

3.72522

3.78622

3.85337

3.92628

aFor spin symmetry case, we used the procedures explained in Appendix. 

trum with negative values is finite (as n increases, , 1nE   
 and then energy eigenvalues flip their signs to 

positive values). In addition, the increase in the field 
strength, 

0

12.0 MeV fm   , leads to no bound states. 
We conclude that the strength   has a maximum limit to 
provide real spectrum and hence must be adjusted care- 
fully to produce real positive or negative values for the 
bound states. 

The NR limit as a special case obtained when s 0C   
(exact spin symmetry) and employing appropriate para- 

 metric transformations: 2 2 2 2
, 1 2 ,nE Mc c M   

2E Mc E 

 

and , 1n n  [28,42-47,55]. Therefore, the NR 
energy solution can be established for an electron con-
fined in HO potential combined with an external electric 
field [see (8)] is 

2 2
S-C
, 0 0 2

0

1
,  0,1, 2,

2 2n l

q
E n n

M




      
 

  (21) 

leading to the ground-state energy spectrum formula: 
22

0
0

0

.
2n

M q
E

M

 


  
    
   


 

 

Obviously, we see from (21) that the entire spectrum 
of the harmonic oscillator (9) is shifted by the quantity 

 2 2 2
02 ;q M   this translation comes from the well- 

known fact that the electric field exerts a force on a 
charged particle. The modification is due only to the electric 
field. In the NR limit, the above result can be obtained di- 
rectly from the well-known solution of the shifted HO in 
the absence of an electric field with change of variable 

2
0r r q M     HO ,n nE E c  and energy where the 

2 2 22 .Mshifting energy 0c q   
0,

 The above results 
are identical to the ones given in [11,18,19]. Taking    
(21) is simply the NR HO solution (cf. e.g., [56]). 

In Figure 2, (in units ), we plot the en- 
ergy spectrum in (21) versus the quantum number n for 
specific values of 

1c q  

M with the following choices: (a)   
1.5 MeV, 1

0 1 2.4 fm  1.0q  1.5M and and (b)   
, 0MeV 11.0 fm  1.0q 

0,  0.5,  1.0 and 2.0 MeV fm
 and  for several values of 

electrical field strength, 1   . 
As seen in Figure 2(a) when the frequency is small and 
in the presence of stronger electrical field, energy states 
are shifted toward the negative energy part, i.e., for   

11.0 MeV fm ,
12.0 MeV fm ,

 n < 6 are strongly bound, however, when 
  all states become strongly bound by 

the combined potential. 
On the other hand, in Figure 2(b), as frequency in-

creases, the electrical field has no much effect in shifting 
energy levels; all states are in the positive energy part. 

Next, we start the calculations of the corresponding 
wave functions. Consequently, both (4) and (9) of [39] 
give 
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     (a)                                                                   (b) 

Figure 2. Energy spectrum En versus n in the presence and absence of uniform electric field for (a) M = 1.5 MeV and 0 = 

1/2.4 fm–1 and (b) M = 1.5 MeV and 0 = 1.0 fm–1. 

 

 22( ) exp ,r r b  2
    

      (22) 

2 21
,

2
r br r      

1( ) exp      (23) 

where 
2 2

0 1 1
1 2

0 1

,  ,  , .
2 2

M q
b

M M

    
 

 



   
 

 

       2 202 2
2 ,y r H r b L r b           

(24) 

Hence, the first part of the wave function is 

2n n n  

  n

 (25) 

where H z
 L r

 is a nth degree Hermite polynomial, 
and n  is the associated Laguerre polynomial de-
fined for the argument The solution of (2) can 
be obtained by using (3) of [39] as 

 0, .r 

 22 2 2
2

1
exp .F N r br L r b            , 1 1 2n n n     

(26) 

In the NR limit, Equation (26) becomes 
21 42 2

2
0

1 q
r

M

  


   
  
   

2
0

( ) exp
22 !

            ,

n n

n

R r
n

q
H r

M




   

  
      

    (27) 

where 2
0 ,r q M  

 

 for all eigenstates r and for the 

ground state it is given by 

   1 4 22 2 2
0 0exp 2 ,R r r q M           

where   2
0 0 1.H r q M   

 , 1nG r

As seen, the modification in (26) is essentially pro- 
duced from the external electric field. Furthermore, the 
associated lower-spinor component satisfying 
Equation (5) is taking the form 

 

 

 

   

      

2 2
, 1 1

202 2
1 2

212 2 2
2 2

exp 2

           

             2 ,

n n

n

n

G N r br

b r L r b
r

r b L r b

 

   

    


    

           

     

N d N

 (28) 

where 0n n 2 21 c0 1d  with    is counted as a 
new normalization constant. It is worth to mention that 

under the exact spin symmetry 

 

2
, 1nE Mc   0.sC   

2.2. The Pseudospin Symmetric Solutions 

 S rThe exact pseudospin symmetry occurs when   
 V r

 r

 

 [16,23-25,40] and the quality of the pseudospin 
approximation in real nuclei is connected with the com- 
petition between the pseudo-centrifugal barrier and the 
pseudospin-orbital potential [31]. Here  in Equa- 
tion (6) is taken to be the same as the combined potential 
(8), that is, 

2 2
0

1

2
r M r q r.   

( 1),

          (29) 

Thus, for the s-wave    Equation (6) can be 
rewritten as 

     
2

2 2
2

d
0,  1

d
n

n

G r
r r G r

r


           (30) 

where 

2
0

1
  and  .

2
q M             (31) 
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To avoid repetition in the solution of Equation (30), a 
first inspection for the relationship between the present 
set of parameters ( , , )    ( , , and the previous set  

)
 



2 2

 ,

, ,

s psC

 tells us that the energy solution for pseudospin 
symmetry can be easily obtained directly from the spin 
symmetry energy solutions by performing the transfor- 
mation changes [42-47,55,57]: 

 
    
, 1 ,1 , 1 ,1( ),  ,

 or ,

n n n nF r G r E E C

V r V r    

   

      

 

  

2 2 ,r r

(32) 

or alternatively, the essential parameters given by 

0,  1,              

   2 2 ,2 ,  4i r k                

 2 ,  2 ,ii r           

/ 4

 

 2 2 i          , 2 .n i n     

are used to obtain the following transcendental energy 
equation: 

2 2
2 1

,12
10

2 1
2 n

q
n i E Mc

M





    

 




, 0,1,2, ,n


  (33) 

with 

2 2
1 0 1 1 2 2

1 1
,

2
M M

c
      


,1 0n psc E C  

2
n psE Mc C 

 (34) 

where  is the restriction condition for ,1

the discrete bound states. Hence, Equation (33) is identi- 
cal to Equation (62) of [23] obtained for the HO potential 
if the electric field strength   is set to zero. 

0,psCThe NR limit of Equation (33), when   be- 
comes 

2222 2
0

,1
0

1
1 ,

2 2 2n

q
E n

M M

 



          
     



E

       (35) 

where is the classical frequency for small harmonic vi- 
brations [58]. The right hand side of (34) is always po- 
sitive. Therefore, there are only positive energies in the 
NR limit for the HO potential [28,35]. Hence, using (33), 
we can compute the energies by choosing suitable para- 
meters in the pseudo symmetric limit. The energies ,1n  
are dependent on n and ps  as well as on the parameters 

0

C
  and .M  We also compute the energy spectrum of 
the bound state system with relativistic corrections for 
several values of n with parameter values of the potential 

1.5 MeVM  and 11 2.4 fm . 
10.3 MeVC

0  (for two constants 
 11.5 MeV as represented in Ta- ps  and 

ble 2. The external electrical field is set up at some val- 
ues  10,  0.1,  0.5,  1.0 and 1.5 MeV fm .  

10 - 1.81 MeV fm

We see that there are only negative energy bound state 
solutions in the pseudospin symmetry limit when the 
strength of external electric fields are  

11.90 MeV fm ,

. 
Nevertheless, as the field strength increases, i.e.,  

 

psC   11.5 MeVb

psC  

 the energies are noticed to become 
complex for all states. We conclude that when the external 

 
Table 2. Energy levels (in relativistic units) for different quantum numbers. 

10.3 MeVb   

n 0.0  0.1    0.5  1.0  1.5  0.0  0.1  0.5  1.0  1.5         

0 –1.635 –1.654 –2.120 –3.578 –6.037 –1.625 –1.644 –2.108 –3.562 –6.000 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

–1.912 

–2.202 

–2.507 

–2.829 

–3.173 

–3.547 

–3.960 

–4.437 

–5.032 

–6.195 

–1.932 

–2.223 

–2.528 

–2.851 

–3.196 

–3.571 

–3.986 

–4.466 

–5.068 

–2.408 

–2.711 

–3.032 

–3.374 

–3.746 

–4.157 

–4.631 

–5.224 

–3.910 

–4.267 

–4.662 

–5.111 

–5.660 

–6.541 

–6.540 

–7.287 

–1.880 

–2.144 

–2.417 

–2.702 

–3.000 

–3.314 

–3.648 

–4.005 

–4.396 

–4.834 

–1.900 

–2.164 

–2.438 

–2.723 

–3.022 

–3.336 

–3.671 

–4.030 

–4.422 

–4.862 

–2.372 

–2.645 

–2.930 

–3.228 

–3.542 

–3.876 

–4.234 

–4.626 

–5.067 

–5.587 

–3.857 

–1.494 

–4.497 

–4.851 

–5.239 

–5.676 

–6.195 

–6.909 

–6.390 

–6.834 

–7.381 

–8.343 

 

bPseudospin symmetric case. 
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electric field   strength exceeds the ionization limit then it 
provides imaginary spectrum (no bound states). Hence the 
strength of the electric field must be adjusted carefully to 
generate real positive/negative bound states. Also, the 
parameters M and ps  must be adjusted properly for real 
solutions of the transcendental energy Equation (33). 

C

Finally, we calculate the lower-spinor wave function 
which is the solution of (6) as 

 

 

2
2

22

2

,

br r

r b

  
  

   
   

,1 1

2

exp

               

n n

n

G r N i c

H i c



 

 

 

 



     (35) 

where 1 1 2M     and 2
2 1 12 .M    

0C

  

3. Conclusion 

The exact s-wave Dirac bound states (energy spectra and 
wave functions) of the potential (8) in the presence of the 
spin symmetry and pseudospin symmetry are obtained in 
closed form using the NU method. The wave functions 
are expressed in terms of the orthogonal Laguerre poly- 
nomials. For the exact spin symmetry (i.e., s  ), the 
relativistic solution can be readily reduced to the NR one 
by an appropriate mapping transformations. The presence 
of an external uniform electric field creates a shift at the 
energy spectrum and a translation on the wave functions 
for the HO. In case if the description of diatomic vibra- 
tion motion is NR, the relativistic model used seems 
quite justified since it can be easily reduced to the NR 
limits [18,19]. As numerical example, we take a set of 
physical parameter values to determine the bound state 
energy eigenvalues as shown in Tables 1 and 2 for the 
spin and pseudospin symmetry cases, respectively. It is 
worth to mention that the strength of the applied electric 
field   needs to be adjusted properly to provide us 
bound state energy spectrum for certain values of pa- 
rameters 0 ,  ,M  sC  and .psC  
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Appendix: The Solution of Cubic 
Energy Equation 

Let us solve the general cubic energy equation: 
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are real or complex numbers. We want to reduce the cu- 
bic equation (A1) to a “depressed” cubic (i.e., the quad-
ratic term disappears) via , 1 3 ,nE y B A  
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Further, the substitution 3y z d z   in (A3), we get 
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and multiplying throughout the above equation by  we 
obtain the quadratic form 
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This equation can be easily solved for real bound states: 
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Thus, the energy in the presence of electric field reads 
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and also in the absence of electric field, 
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