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ABSTRACT 

A new formulation of quantum mechanics based on differential commutator brackets is developed. We have found a 
wave equation representing the fermionic particle. In this formalism, the continuity equation mixes the Klein-Gordon 
and Schrodinger probability density while keeping the Klein-Gordon and Schrodinger current unaltered. We have found 
time and space transformations under which Dirac’s equation is invariant. The invariance of Maxwell’s equations under 
these transformations shows that the electric and magnetic fields of a moving charged particle are perpendicular to the 
velocity of the propagating particle. This formulation agrees with the quaternionic formulation recently developed by 
Arbab. 
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1. Introduction 

Schrodinger’s equation was used to explain and describe 
all phenomena in atomic physics. However, after the 
development of the theory of special relativity by Ein- 
stein, there was a need to unify quantum mechanics and 
special relativity into a single Relativistic Quantum The- 
ory. Despite the success of Schrodinger’s equation in 
describing quite accurately the Hydrogen spectrum and 
giving correct predictions for a large amount of spectral 
data, this equation is not invariant under Lorenz trans- 
formations. In other words Schrodinger’s equation is not 
relativistic and is only an approximation valid at the 
non-relativistic limit when the velocities of the particles 
involved are much smaller than the speed of light. 

Quantum mechanics has been formulated by assigning 
an operator for any dynamical observable. In Heisenberg 
formalism, the operator is governed by a commutator 
bracket. The fundamental commutator bracket relates to 
the position, and momentum is given by  , =xx p i . 
The commutator bracket generalizes the Poisson bracket 
of classical mechanics. If an operator commutes with Ha- 
miltonian of the system, then the dynamical variable cor- 
responding to that operator is said to be conserved. An 
equation compatible with Lorentz transformation guar- 
antees its applicability to any inertial frame. Such an 
equation is symmetric in space-time. Thus a symmetric 
space-time formulation of any theory will generally guar- 
antee the universality of the theory. However, Schrod- 
inger equations doesn’t exhibit this feature because it is 
not symmetric in space and time. To remedy this prob- 
lem, Klein and Gordon looked for an equation which is 

second order in space and time and consequently ob- 
tained the Klein-Gordon equation (KG). The probability 
density in this theory is found to be non-positive definite. 
Consequently, Dirac thought for a linear equation in space 
and time that has no such a problem. He obtained the 
familiar Dirac equation with a positive definite probabil- 
ity. However, the probability in KG formalism is later on 
(from a theoretic field point of view) interpreted as a 
charge density rather than a probability density which 
could be positive or negative [1-3]. 

With these motivation, we adopt a differential com- 
mutator bracket involving first order space and time de- 
rivative operators to formulate the Maxwell equations and 
quantum mechanics. This is in addition to our recent 
quarternionic formulation of physical laws, where we have 
shown that many physical equations are found to emerge 
from a unified form of physical variables [4]. Moreover, 
using quaternions, we have recently shown that quantum 
mechanics can be formulated in a set of three equations 
[5]. In such a formulation, the Dirac and Klein-Gordon 
equations emerge from a set of three equations obtained 
from the application of an eigen-value problem of the 
linear momentum. 

We aim in this paper to derive the equation of motion 
of the quantum system by applying the vanishing differ- 
ential commutator brackets. It is interesting to note that 
these commutator brackets are Lorentz invariant. More- 

   , = ,t x t x    t, where  is time, over, 

ˆˆ ˆ= i j k

x y z

 
 

  
 2 1=, x x x ,t x  and  are the 
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moving time and space coordinates. We know that the 
second order partial derivatives commute for space-space 
variables. We don’t assume here that this property is a 
priori for space and time. To guarantee this, we eliminate 
the time derivative of a quantity that is acted by a space 
( ) derivative followed by a time derivative, and vice 
versa. In expanding the differential commutator brackets, 
we don’t commute time and space derivative, but rather 
eliminate the time derivative by the space derivative, and 
vice versa. These linear differential commutator brackets 
may enlighten us to quantize these physical quantities. 
By employing the differential commutator brackets of the 
vector A and scalar potential  , we have derived Max- 
well equations without invoking any a priori physical law 
[6]. We would like here to apply the differential commu- 
tator brackets to explore quantum mechanics. 

2. Differential Commutators Algebra 

Define the three linear differential commutator brackets 
as follows [6]; 

, = 0, , = 0,
t t

    
       

  , = 0,
t

    




  (1) 

where  and 
t




 are the space and time derivatives. 

For a scalar   and a vector A, one finds that: 

 , =
t t

,
t

      


  
   

              (2) 

and 

 

 

, =

, =

t t

t t

      
      

A A

A A

 

 

,

.

t

t

    
    

A

A




       (3) 

Moreover, one can show that: 

 

 

 

, = ,

, = ,

, = ,

t t

t t

t t

 

 

                       
                     
                  

A A

A A

, ,

, ,

, .

t

t

t





    
     
         

A

A

A B B A A

 

 

  B







ˆ ˆ ˆ ˆ, ,

  

(4) 

The differential commutator bracket satisfies the dis- 
tribution rule: 

ˆ ˆ ˆˆ ˆ, = ,AB C A B C 
  A C B      

ˆ ˆˆ, ,

          (5) 

where A B C  stand for either  or 
t






. 

It is evident that the differential commutator brackets 
identities follow the same ordinary vector identities. We 
call the three differential commutator brackets in Equa- 
tion (1) the grad-commutator bracket, the dot- commuta- 
tor bracket, and the cross-commutator bracket, respect- 
tively. The prime idea here is to replace the time deriva-
tive of a quantity by the space derivative  of another 
quantity, and vice versa, so that the time derivative of a 
quantity is followed by a time derivative with which it 
commutes. We assume here that space and time deriva- 
tives don’t commute. With this minimal assumption, we 
have shown here that all physical laws are determined by 
vanishing differential commutator bracket. 

3. The Continuity Equation 

Using quaternionic algebra [7-9], we have recently found 
that generalized continuity equations can be written as 
[5]. 

= 0,
t


 


J

 

              (6) 

2 = 0,c
t

 


J



= 0,

           (7) 

and 
J                  (8) 

where , c   and J  are the speed of light, current den- 
sity, and probability density, respectively. Now consider 
the dot-commutator bracket of J . 

     , = = 0.
t t t


 

             

J
J J     (9) 

Using Equations (6-8), and the vector identities 

     
    2

= ,

=

     

   

G G G

G G G

  

   
             (10) 

one obtains 

 
2

2 2 2
2 2 2 2

  ,

1 1
= = 0.

t

c
c t c t



 

   
            

J

J
J J



  (11) 

For arbitrary   and J , Equation (11) yields the two 
wave equations 

2
2

2 2

1
= 0,

c t

 



           (12) 

and 

2
2 2

1
= 0

c t





J

J .             (13) 

Equations (12) and (13) are also obtained utilizing the 
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quaternionic formulation following reference [5]. Hence, 
the wave equations of   and J , in our present brack- 
ets formulation, are equivalent to 

 , = 0.   
J

t




               (14) 

Equations (12) and (13) show that the charge and cur- 
rent densities satisfy a wave traveling at the speed of 
light in vacuum. It is remarkable to know that these two 
equations are already obtained in reference [5]. 

4. Quantum Mechanics 

Consider a particle described by the four vector 

0= ,
i

c
 

 
 

  . This is equivalent to spinor representa- 

tion of ordinary quantum mechanics. We have recently 
developed a quaternionic quantum mechanics dealing with 
such a four vector [7-9]. The evolution of this four vector 
is given by the three equations [7-9] 

0 0
0 = 0,

m


2

1

tc


 


        (15) 

2
0 = 0,

m c




= 0,

0 t
 

 



          (16) 

and 


m 

                     (17) 

where 0  and  are the quasi-particle mass and Plan- 
ck constant, respectively. Equations (15-17) yield the two 
wave equations [5]. 

2

0 = 0,
m m c  

 
  

 
2

2 0
2 2

1
2

tc t

        

     (18) 

and 
2

0 0
0 = 0.

c


  
 
  

2
20 0

02 2

1
2

m m

tc t




        
 (19) 

Using the transformation, 
2

0= ,
m c

t

 


  
                          (20) 

so that Equations (15) and (16) become, 

0
2

1
= ,

c


0 = .

 
 


 

                 (21) 

Employing Equation (20), Equations (18) and (19) are 
transformed into the wave equations 

2
2 2

2 2

1

c 


 


2=E E im c 
2 2 2=E p c

ˆ =p i 

2 2
0 = 0,   = 0 ,  =   .       (22) 

Equations (18) and (19) can be obtained from the Ein-
stein’s energy equation by setting 0 , where 

 and using the familiar quantum mechanical 

operator replacements, viz.,  and ˆ =E i
t


. 

=E cp


  is an equation for a massless particle. This is also 
evident from Equation (22). Thus, it is interesting that a 
massive particle can be transformed into a massless par-
ticle using Equation (20). Since energy is a real quantity, 
this equation is physically acceptable if it describes a par- 
ticle with imaginary mass. In this case the energy equa- 
tions split into two parts; one with 0  and the 
other with energy 0 . Such energies can des- 
cribe the state of a particle and antiparticle. A hypothetic- 
cal particle with an imaginary mass moving at a speed 
higher than the speed of light in vacuum is known as ta- 
chyon [10]. Hence, our above equation can be used to 
treat the motion of tachyons. This implies that our equa-
tions, Equations (24) and (27) can be applied to tachyons. 
Some scientists propose that neutrino can be a tachyonic 
fermion [11]. We know that the Cherenkov radiation is 
emitted from a particle moving in a medium with a speed 
larger than the speed of light in vacuum. When the speed 
exceeds the speed of light in a vacuum, the extra energy 
acquired by the particle is transformed in radiation. This 
can happen momentarily for a particle keeping its total 
energy conserved. Thus, the excess energy (speed) is 
such that it compensates the dissipations. 

2=E E m c 
2=E E m c 

0Now consider the cross-commutator bracket of   , 

      0
0 0, = = 0.

t t t


 

               


   

     = ,     G G G  

  

(23) 

Using Equations (15), (16), and (17), and the vector 
identities, 

               (24) 

yield the wave equation, 
22

2 0 0
2 2

1
2 = 0

m m c

tc t

              
  

0

.       (25) 

Similarly, the dot-commutator bracket of   , 

      0
0 0, = = 0

t t t


 

               


   

0

.  (26) 

Upon using Equations (10), (15), and (16), one obtains 
the wave equation of  , 

22
20 0 0 0

0 02 2

1
2 = 0.

m m c

tc t

 
 

                 (27) 

It is interesting to see that Equations (25), and (27) are 
the same as Equations (18), and (19) obtained from qua- 
ternionic manipulation. We thus write Equations (25), 
and (27) as, 

Copyright © 2012 SciRes.                                                                                 JMP 



A. I. ARBAB, F. A. YASSEIN 166 

   0, = 0. 
0, = 0 ,

t t

        
    (28) 

5. Dirac’s Equation 

Dirac’s equation can be written in the form [1-3], 

0 = 0.
im c

 


1

c t


  


               (29) 

Consider the differential commutator bracket 

   , =
t t

       
   = 0.

t


 


    (30) 

Using Equation (29), Equation (30) yields, 
2

02 = 0,
m c   

 
  

1 0
=

0 1


 
  

0 

2
2 0

2 2

1 m i

tc t

        
 (31) 

where we have used the fact that , 

= ,
0

  
 




2 2= = 1   and   are the Pauli matrices. 

Equation (31) can be obtained from Equation (29) by 
squaring it. This equation can be compared with the Klein- 
Gordon equation of spin-0 particles 

2

0 = 0.
m c

  
 
 

2
2

2 2

1

c t


 


 

Equation (31) is another form of Dirac’s equation ex-
hibiting the wave nature of spin-1/2 particles explicitly. 
Using the transformation, 

2
0= ,

m c
i

t



 
 




               (32) 

Equation (31) can be written as, 
21

c 



2
2 2

= 0.
                  (33) 

This is a wave equation for a massless particle. Thus, a 
particle annihilates (loses its mass) after a time interval 

of 
2

0

=t
m c




  2
0= 2E m c

 and then created (acquired a mass). It is 

interesting to notice that during such a period of time, 
energy can be violated as endorsed by the Heisenberg’s 

uncertainty relation ( )where . 

This also applies to the particles as defined by Equation 
(20). Equation (31) describes the behavior of a particle of 

a definite mass . After a time of 

t E  

0m
2

0m c



=E pc

t

=t  the par- 

ticle becomes a wave with energy  governed by 
Equation (33). The particle interacts with the vacuum in 
such a way that when the particle becomes a wave (anni- 

hilates) gives its mass energy to the vacuum, and restores 
it after a time of   as defined before becoming a par- 
ticle once again. This is the essence of the oscillatory 
motion as known as zitterbewegung motion [1-3]. This 
result supports the fact that there is a vacuum fluctuation 
associated with the particle. This means when a particle 
becomes a wave it gives its mass to the vacuum and re- 
stores it when becomes a corpuscule. Thus, the corpus- 
cular and wave nature (duality) of a particle is concomi-
tant with the particle motion. Since   is a four compo- 
nents spinor, we can write it in terms of two components dou- 

blets, viz., =


 
 
 

. Substituting these decomposed 

spinors in Equation (31), one obtains the two equations, 
 

22
2 0 0

2 2

1
2 = 0,

m i m c

tc t

 
  

 

              
  (34) 

and 
22

2 0 0
2 2

1
2 = 0,

m i m c

tc t

 
  

 

              

2=E E m c 
2=E E m c 

2 2 2 2 4=E p c m c

  (35) 

Equations (34) and (35) imply two energy solutions, 
one with 0  and the other with energy 

0 . This is also evident from using the Ein- 
stein energy-momentum equation ( 0 ). The 
two energy states may define a particle and an antiparti- 
cle. Since the time factor in the wavefunction is of the 
form  exp iEt  , the new wavefunction with the new 
time (  ) will become exp iE  , where 

2
0= ,

m c
t i 



m 0im

              (36) 

is a complex time, as evident from Equation (33). It can 
be seen as a rotation of the real time by a phase into a 
complex plane. Such an effect arises from the very nature 
of the particle when propagating in space-time. The third 
term in Equation (31) represents a dissipation that may 
result from the motion of the particle in space (ether). Hence, 
any massive particle should exhibit this sort of propaga- 
tion when travels in space-time. This term is vanishingly 
small compared with the mass term in Equation (31) but 
very fundamental. Moreover, Our Equations (25) and (27) 
are equivalent to Dirac equations, Equations (34) and 
(35), if we replace  by  . 0

Consider now the case when   is space independent 
so that Equation (31) becomes, 

22 22
0 0

2

d d
2 = 0.

dd

m c i m c

tt

  
   

    
    

=

   (37) 

with 


 
 
 

 this yields the two equations 
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22 2
0 = 0,
c



 
 
 

2
0

2

d d
2

dd

m c i m

tt

   
  

  
    (38) 

and 
22 2

0 = 0.
c



 
 
 

 = exp ,t A i t

2
0

2

d d
2

dd

m c i m

tt

   
  

  
     (39) 

These two equations have an oscillatory behavior, i.e., 

     = exp ,t A i t       (40) 

where 
2

0m c
 ,=


 and A A   are constants. This means 

that the particle with the wavefunction   has two energy 
eigen states, one for a particle and the other one for an 
antiparticle. Hence, Equation (40) reveals that the par- 
ticle is described by a standing wave having positive and 
negative energy. This is the essence of Dirac’s theory. 
The two states are separated by an amount of energy, 

. 2= 2E m c 0

Using Equation (29), Equation (31) can be written in 
the form, 

2

0 = 0,
m c

  
 
  

2
2 0

2 2

1
2

m ci

c t

          
   (41) 

this can be written as 
2

2 2

1

c t




2 = 0,              (42) 

where 

0 .
m c

i' =





                (43) 

Equation (42) is a wave equation in the new coordinate 
defined by Equation (43). Equation (43) can be written as 

0m c' = .p p                  (44) 

This can be compared with the covariant derivative 
that results from the interaction of a particle with a pho- 
ton field A , viz., . Equation (32) can be 
written as 

' = ep p A

2
0= .E E m c                    (45) 

Equations (32) and (43) can be combined into a single 
equation as 

 = , .
0= ,

m c
D i     

D

 


  (46) 

We call here the derivative 

= ,P i D

 the spinor derivative. 
With this derivative the Dirac equation takes the simple 
forms, 

= 0, whereP  

α
P

      (47) 

It is interesting to notice that Equations (47) looks like 
massless Dirac equation. The second term in Equation 

(44) represents a self interaction of the particle due to its 
spin. Since the vector potential is a gauge field, the spin 
of the particle will accordingly become a gauge quantity. 
In present case, the electron interacts with its spin that is 
related to . This effect represents a self interaction of 
the particle. The algebra of the  ’s commutator bracket 
is 

0, = 2 ,   = , .
2

i
P P m ci                (48) 

Thus, unlike partial derivative, spinor derivatives do 
not commute. The momenta commute for a massless par- 
ticle. Equation (41) describes a particle with definite 

mass which after a characteristic distance of 
0

=
m c

  

becomes a wave as described by Equation (42). Hence, 
the corpuscular nature of the particle is exhibited after a 

distance of 0
0

2
=X

m c


, and the wave nature after a time 

of 0 2
0

2
=T

m c



= cv α

T

. The particle’s velocity must be in such a 

way to reach the next point in the same time required to 
be in the other state. This requires its velocity to be 

. Thus, the particle remains in a continuous dual 
state (particle + wave). This duality is manifested during 
a time of 0  at a distance of 0X . This may usher into a 
quantization of space and time in units of  and 00T X  as 
fundamental units. With the definition , Dirac’s 
equation can be written as 

= cv α

2
0 d

= =
d

im c
v

t t


  
 

             (49) 

which implies that 

2
0

d
=

d
i m c

t


.                    (50) 

Hence, Equation (50) is a variant form of Dirac’s equa-
tion. But since   can be written as two-components 

column, viz., =


 
 
 

, the above equation implies that 

2 2
0 0

d d
= , = .

d d
i m c i m c

t t

 
  

     (51) 

This shows that the operator 
dˆ =
d

A i
t

  is the rest mass 

energy operator of the individual spinor components. 

The Continuity Equation 

Taking the complex conjugate of Equation (31) and mul- 
tiplying it by   once from right, and subtract it from 
Equation (31) after multiplying it by *  from left, we 
obtain the continuity equation, 
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= 0,T  J
t




                (52) 

where 

 

*

*

* *

= ,

= ,

.

S

t t

 

 

 

  
   

 

*
2

0

0

= ,

2

=
2

T S KG

KG

i

m c

m i

   

 

 








J

    (53) 

It is understood here that   is a spinor, 
T

  is the 
charge density and J  is the current density. It is inter- 
esting that Equation (31), obtained from Dirac’s equation 
using the differential operator bracket in Equation (30), 
yields a continuity equation sharing both the Dirac and 
Klein-Gordon features of the charge (probability) density. 
This interplay exists despite the fact that Dirac’s equation 
represents a fermionic particle while Klein-Gordon equa- 
tion represents a bosonic particle. 

6. The Space and Time Invariance 
of Dirac’s Equation 

If we apply the transformations in Equations (32) and (43) 
to Equation (29), Dirac’s equation will be invariant. Thus, 
the space and time transformation represented by Equa- 
tions (32) and (43) ushers into a new transformation of 
Dirac’s equation that were never known before. With some 
scrutiny, we know from the theory of relativity that the 
kinetic energy ( )KE

2
0m c

 is related to the total energy (E) by 
. In quantum mechanics, =KE E

E i
t





 , so that 

2
0 = .

m c
i2

0
ˆ = =KE i m c i i

t t 
  


 




ˆ ˆ=KE c α p

2
0= .KE E m c

2=E E m c

=E E 2
0= KE E m c

 
 

 
   (54) 

This is the relativistic kinetic energy operator. Alterna- 
tively, using Equation (29), this can be written as 

.                             (55) 

This equation implies that Dirac’s equation can be ob- 
tained from the relativistic energy equation 

                        (56) 

This equation suggests that there are two possible en- 
ergy equations. These are 0K . Hence, a Di- 
rac’s particle has in principle two energies, 

2
0K m c   and . 

Using Equation (32), Dirac’s equation Equation (29), 
becomes 

Thus, in the time coordinate  , Dirac’s equation re- 
presents a continuity-like equation. However, in the real 
time, the continuity equation in Dirac’s formalism, is de- 
fined as 

  = 0.c   α






                       (57) 

= 0,
t


 


J

=

              (58) 

  = c and where   J α . Using Equation (43), 
Dirac’s equation is transformed into a continuity-like 
equation in the new space coordinate, viz., 

 ' = 0.c
t

 
 


 α          (59) 

Notice here that J  has the same form in both coordi- 
nates. 

7. Space and Time Invariance of 
Maxwell’s Equations 

We would like here to apply the space and time transfor- 
mations in Equations (32) and (43) to explore their im-
plications in Maxwell’s equations. These transformations 
leave Dirac’s equation invariant. We know that quantum 
electrodynamics incorporates the interaction of an elec- 
tron with a photon. Quantum electrodynamics becomes 
invariant under gauge transformation, if we replace the 
partial derivative with a covariant derivative incorporate- 
ing the photon field. Analogously, we assume here that 
Maxwell’s equations are invariant under the new space 
and time transformations in Equations (32) and (43). Ap- 
plying Equations (32) and (43) to the Ampere’s and 
Faraday’s equations [12]. 

= ,
t


 




Β
Ε               (60) 

and 

0 2

1
= ,

tc
 

 



Ε

Β J         (61) 

yield 

2
= , = ,c

c

v Ε
Β v α

= , = .c

          (62) 

and 
 Ε v Β v α          (63) 

The remaining two Maxwell’s equations 

0

= , = 0



  Ε Β

= 0, = 0, = c

.         (64) 

yield 
. v Ε v Β v α     (65) 

It is interesting to notice that Equation (65) is com- 
patible with Equations (62) and (63). Moreover, Equa- 
tions (62) and (63) define the relations between the elec- 
tric and magnetic fields produced by the moving charge. 
If the electric (magnetic) field is known, one can obtain 
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v

the corresponding magnetic (electric) field. Equation (63) 
shows that the charge moving with constant velocity ex-
periences no net force. The electric field lines of a mov-
ing charge crowded in the direction perpendicular to  
and are given by [13] 

 
 

2

20 2 2

11
=

4
1 sin

q 


 







3 3

, = ,
cr

r v
    (66) 

and 

 
 

2

0

2 2 2

1
3 3

= , =
4π

1 sin

q

cr




 

 



v r v
Β

= 0

.     (67) 

Equation (66) shows that the electric and magnetic 
fields of a moving charge in the forward direction ( ) 
are less than the electric field of stationary charge. How- 
ever, the electric and magnetic fields in the perpendicular 
direction ( = 2 

v
= cv α

  = 0q  v v Β

= , = .c c  v v α

> 0

) are bigger than the electric field of 
stationary charge. Equations (66) and (67) give the rela- 
tions between the electric and magnetic fields produced 
by a moving charged particle with constant velocity . 
This velocity is given by . This coincides with 
the quantum mechanics definition of the particle velocity 
[1-3]. Equation (65) shows that the electric and magnetic 
fields produced by the charged particle are always per-
pendicular to the particle’s direction of motion. Equation 
(67) gives, at low velocity, the Biot-Savart law. The po- 
wer delivered by the fermionic charged particle by its 
electric and magnetic fields is given by 

= =P q F v v Ε  

The application of the transformations (32) and (43) in 
the generalized continuity Equations (6) and (8) yields 

2= , v J J         (68) 

Since in Dirac formalism  , the current ushers in 
a direction opposite to the velocity direction. Moreover, 
for a constant velocity, one has . Equation 
(68) is very interesting since it defines the charge density 
(scalar) in terms of the current density (vector). Accord- 
ingly, one can define the four vectors in terms of vecto- 
rial quantities only. 

  = 0 v

T

8. Concluding Remarks 

By introducing three vanishing differential commutator 
brackets for spinor fields, we have derived a variant form 
of Dirac’s and Klein-Gordon wave equations. Dirac’s 
equation yields a modified Klein-Gordon wave equation. 
This equation yields directly two energy states for the 
particle in question. Moreover, Dirac’s equation is found 
to be similar to the continuity equation. We have found 
time and space transformations under which Dirac’s and 
Maxwell’s equations are invariant. In terms of these co- 

rdinates, Dirac and Klein-Gordon equations describe a 

mass-less particle. The invariance of these transforma- 
tions under Maxwell’s equations shows that the electric 
and magnetic fields produced by a moving charge are 
perpendicular to velocity of the particle. Hence, there is 
no power associated with these fields. The space and 
time transformations show that space and time are quan- 
tized in terms of characteristic units of 0  and 0X . The 
fermionic charged particle exhibits its wave and corpus- 
cular nature on periodic space and time basis. 

9. Acknowledgements 

This work is supported by the university of Khartoum 
research fund. We gratefully acknowledge this support. The 
critical and useful comments by the anonymous referees 
are highly acknowledged. 

REFERENCES 
[1] J. D. Bjorken and S. D. Drell, “Relativistic Quantum Me- 

chanics,” McGraw-Hill, New York, 1964.  

[2] L. D. Landau and E. M. Liftshiz, “Quantum Mechanics,” 
3rd Edition, Pergamon Press, Oxford, 1977.  

[3] V. B. Berestetskii, L. P. Pitaevskii and E. M. Lifshitz, 
“Quantum Electrodynamics,” 2nd Edition, Vol. 4, El- 
sevier, Amsterdam, 1982. 

[4] A. I. Arbab and Z. Satti, “On the Generalized Maxwell 
Equations and Their Prediction of Electroscalar Wave,” 
Progress in Physics, Vol. 2, No. 8, 2009, pp. 8-13. 

[5] A. I. Arbab and H. M. Widatallah, “The Generalized Con- 
tinuity Equations,” Chinese Physics Letters, Vol. 27, No. 
8, 2010, Article ID 084703. 
doi:10.1088/0256-307X/27/8/084703 

[6] A. I. Arbab and F. A. Yassein, “A New Formulation of 
Electromagnetism,” Journal of Electromagnetic Analysis 
and Applications, Vol. 2, No. 8, 2010, p. 457.  
doi:10.4236/jemaa.2010.28060 

[7] A. I. Arbab, “A Quaternionic Quantum Mechanics,” Ap-
plied Physics Research, Vol. 3, No. 2, 2011, p. 160.  

[8] P. G. Tait, “An Elementary Treatise on Quaternions,” 2nd 
Edition, Cambridge University Press, Cambridge, 1873.  

[9] H. F. Harmuth, T. W. Barrett and B. Meffert, “Modified 
Maxwell Equations in Quantum Electrodynamics,” World 
Scientific, River Edge, 2001.  
doi:10.1142/9789812799654 

[10] G. Feinberg, “Possibility of Faster-Than-Light Particles,” 
Physical Reviews, Vol. 159, No. 5, 1967, pp. 1089-1105.  
doi:10.1103/PhysRev.159.1089 

[11] J. Ciborowski, “Hypothesis of Tachyonic Neutrinos,” Acta 
Physicsa Polonica B, Vol. 29, No. 1-2, 1998, pp. 113-121. 

[12] J. D. Jackson, “Classical Electrodynamics,” 2nd Edition, 
Wiley, New York, 1975. 

[13] F. Zbigniew, “Lecture Notes in Electromagnetic Theory,” 
University of Queensland, Brisbane, 2005.

o 

http://dx.doi.org/10.1088/0256-307X/27/8/084703
http://dx.doi.org/10.4236/jemaa.2010.28060
http://dx.doi.org/10.1142/9789812799654
http://dx.doi.org/10.1103/PhysRev.159.1089

