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ABSTRACT 

We performed theoretical investigations on self-energy, screening charge density, screened potential and pair distribu- 
tion function for a doped single layer graphene. Random phase approximation density-density response function and 
graphene’s massless Dirac-fermions concept have been used in our calculations. Local field effects have been included 
using Hubbard approximation to go beyond random phase approximation. Ultraviolet wave vector cutoff has been used 
to exclude the effect of vacuum states. Our computed self energy of graphene though displays a behavour similar to that 
of 2DEG, its magnitude differs drastically from that of 2DEG. Freidel oscillations are seen in computed screened poten- 
tial and density of screening charge of graphene, which can be seen as a signature of Fermi liquid state in doped gra- 
phene. In agreement with experimental results, our computed pair distribution function, as a function of carrier density, 
suggests that exchange and correlation terms make negligible contribution to compressibility of graphene. Incorporation 
of LFC reduces the magnitude of self energy, screening charge density and screened potential. 
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1. Introduction 

Graphene has developed into one of the currently most 
active research in nano-scale physics and can be consid- 
ered as the building block of many carbon allotropes with 
vast potential for applications in future technology. Mo- 
nolayer Graphene (MLG) system has properties of chiral 
Dirac gas which leads to some important consequences 
for transport behavior. Graphene’s unique properties arise 
from the collective behavior of electrons. The interaction 
between electrons and the honeycomb lattice causes ele- 
ctrons to behave as if they have absolutely no mass. The 
spectrum of Fermions near intersection points is conical 
and they obey charge conjugation symmetry. Because of 
the linear energy dispersion, conduction electrons in gra- 
phene are governed by Dirac equation which describes 
relativistic Fermions. 

Knowledge of ground state properties of a system is 
essential in understanding its basic physics and to make 
use of it for device making. Single-particle spectral func- 
tion, associated mean free paths, quasiparticle properties, 
such as inelastic quasiparticle lifetimes quasiparticle de- 
cay, renormalization factor, and renormalization velocity 
can be studied by knowing electron self-energy [1,2]. Self- 
energy can also be used to obtain ARPES spectra which 
have been reported by a host of authors for graphene [3- 

5]. When a positive charge is placed in an electron gas, 
the electrons gather around the charge tries to compen-
sate for the electrostatic potential it has induced. The 
phenomenon is known as screening and it is one of the 
simplest and most important manifestations of electron- 
electron interaction [6]. Because of reduced dimensional- 
ity and especially because of the semi-metallic nature of 
graphene’s π-electron bands, the problem of screening of 
charged impurities remains open. In this context, various 
authors have reported calculations on screening, few of 
which include scattering treatment of Coulomb impuri- 
ties embedded within the graphene plane [7,8]. Calcula-
tions on charged impurity screening in graphene with the 
use of vacuum polarization has received a huge attention 
because of its importance for transport properties and a 
general understanding of the theory of graphene. Static 
screening determines transport properties through screened 
Coulomb carrier scattering by charged impurities [9,10]. 
The property of screening is also of interest for sensor 
applications of graphene in detecting atoms or molecules, 
which may be either absorbed on the upper surface of gra- 
phene or intercalated in the gap between the graphene sub-
strate. It has been shown that within the RPA approach, 
screening of external charges by intrinsic graphene at zero 
temperature is characterized merely by a renormalization 
of graphene’s background dielectric constant due to inter- 
band electron transitions [9-13]. The most common feature *Corresponding author. 
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observed in screened potential is Friedel oscillations, which 
arise because of derivative discontinuity. 

In an interacting electron system of uniform density, 
the inverse electronic compressibility is a fundamental 
physical quantity that is intimately related to the strength 
of inter-electron interactions. The compressibility of ele- 
ctron gas provides valuable information about the nature 
of the interacting ground state, particularly in the strong- 
coupling regime where (in addition to the exchange en- 
ergy) Coulomb interaction energy also plays a dominant 
role. It also provides information about the chemical po- 
tential, stability of the system and so on. Change of local 
electrostatic potential and thereby change in local chemi- 
cal potential of MLG was measured with the use of scan- 
ning single-electron transistor microscopy when the car- 
rier density was modulated [14]. Observed results on local 
inverse compressibility were found to be quantitatively 
described by kinetic energy alone with the electron velo- 
city renormalized by 10% - 15%. It has been speculated 
that the exchange and correlation energy contributions to 
compressibility either cancel each other out or are negli- 
gibly small. It has been argued that in MLG linear energy 
dispersion and chirality conspire to allow complete can-
cellation of exchange and correlation contributions just as 
was observed in the experiment [15]. This motivated us 
to compute pair distribution function as a function of ca- 
rrier density, n to study the n-dependence of compressi- 
bility of graphene. 

Many-body effects in MLG with zero gap and doping 
at zero temperature have been the subject of great inter- 
ests [10,11]. Aim of this paper is to study the ground 
state properties of doped MLG with the use of modified 
RPA density-density response function and a wave vec-
tor cutoff method, at zero temperature. We have numeri-
cally calculated self energy, density of screening charge, 
screened potential, pair distribution function of doped gra- 
phene, using static polarization function with and without 
local field corrections (LFC). To best of our knowledge 
these properties have not yet been reported using wave 
vector cut-off method, which is essential to exclude the 
contributions from vacuum states. This is in continuation 
with our earlier work on static and dynamic structure 
factor of undoped and doped graphene and pair correla-
tion function [16]. The RPA polarization function for low 
energy excitation involves graphene’s π-electron energy 
bands that have linear energy dispersion. We have calcu-
lated Screening charge density for different values of 
coupling constant and carrier density. Friedel oscillations 
are observed in the case of screening charge density and 
screened potential, which can be used to gain insight into 
microscopic range of disorder. The computed self energy 
is found to be greater than that for 2D electron gas. We 
computed pair distribution function as a function of car-
rier density n to study the n-dependence of compressibility 

of graphene. The RPA is a many body theoretical method 
by which quantitative predictions beyond the Hartree- 
Fock model can be made. And, though it is very suc- 
cessful in describing many properties nevertheless it has 
its shortcoming, one of which is that it misses to accom- 
modate the local field effects due to electronic exchange 
and correlation. The electron-electron correlation and 
exchange effect beyond the RPA is taken into account by 
incorporating a term containing the local field corrections 
in the effective potential. The paper is organized as fol- 
lows: Formalism is presented in Section 2, numerical 
results are discussed in Section 3 and the work is con- 
cluded in Section 4. 

2. Essential Formalism 

For a 2D system, self-energy, , density of screen- 
ing charge, 

 slE k
 sn r  and Screened potential,  SCRV r  can 

be given, respectively, by the following Equation [17]; 
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The static dielectric function  is defined as;  q

     0 01q V q   q              (4) 

 0 22V q e q   is the Fourier transform of 2D bare 
Coulomb interaction potential, κ is the background di- 
electric constant and kf is Fermi momentum. q is replaced 
by 'k k , in obtaining Equation (1).  is the static 
polarization function, which for graphene is given by [10]: 
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where,  
1

2
0 πsD g g n   is the density of states at 

Fermi energy, sg  and g  are the spin and valley de- 
generacy, and   is the band parameter. The charge carri- 
ers in graphene behave like massless chiral Dirac Fer- 
mions. The low energy quasiparticle dynamics of the non- 
interacting electrons on the hexagonal graphene sheet close 
to the Fermi energy is described by the spin-independent 
mass less Dirac-Weyl Hamiltonian, Fv k ħ  , where 
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 , x y  

K'

 denote the two Pauli matrices that act on 
the graphene’s pseudo spin degrees of freedom and k is 
2D wave-vector measured from the two-degenerate K 
and  points. This Hamiltonian leads to the linear en-
ergy dispersion relation ' ,Fs v k ħ  where 1s    
indicate the conduction (+1) and valence band (–1), Fv  
is the Fermi velocity, which is density independent and 
about 300 times smaller than velocity of light in vacuum. 
Integration over entire q-range (0 to ) in Equations (2) 
and (3) gives unphysical results because the polarizability 
response function of graphene includes the vacuum fluc-
tuations of the infinite sea of negative particles. The non- 
zero vacuum weight is a relativistic signature of graphene 
and it is a conesquence of particle-antiparticle pair crea-
tion or the Dirac sea. To overcome this we introduce an 
ultraviolet wave vector cut off a , which becomes nece- 
ssary to make quantitative predictions for the peculiar ca- 
se of graphene [18]. The upper limit of q-integration is 
therefore taken a  in place of 



k

k   in Equations (2) and (3). 

a  is determined in a way so as to keep the number of 
states in Brillouin zone fixed, that is, 
k

2 2
0k A(2 )  a

which 
, in 

23 30 0  is the area of the unit cell in the 
honeycomb lattice and is the carbon-carbon 
distance [16]. 
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A
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We have computed pair distribution function as a fun- 
ction of n to study the n-dependence of compressibility 
of graphene. The compressibility can be defined by 

1 2k     2n , where energy per particle functional,   

can be expressed in terms of kinetic energy per particle, 
t0, Coulomb potential, Vcoul, pair correlation function, g(r) 
as follows [19]; 
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 , g r z  for graphene can be given by: 
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where n = z × 1014 cm–2. 
 ,S q z   is static structure factor, which has been de- 

fined elsewhere for graphene [16]. To go beyond RPA in 
calculating ,  slE k  sn r  and , bare coulomb 
interaction is replaced by effective electron-electron in-
teraction,  that includes local field effects can 
be given by [17]; 

 SCRV r

 effV q

    0 1effV q V q G q           (9) 

where  is the static local field correction (LFC) 
term, which in simplest manner can be defined within 
Hubbard approximation (HA) to give 

 G q

     0 0' /G q V q V q , with 2 2' fq q k  . 

3. Results and Discussions 

We computed Equations (1), (2), (3) and (8) numerically 
for MLG in terms of dimensional less quantities fx q k  
and fy E  and the dimensionless coupling constant 

2
s v fg g e v   , where κ varies between 1 and 2 for 

SiC and SiO2 substrate. The coupling constant is a ratio 
of coulomb energy to kinetic energy and it is independent 
of the electronic density. It depends only on material pro- 
perties and environmental conditions and it is the meas- 
ure of the strength of the Columbic attraction.   is also 
used to characterize the ratio of coulomb interaction and 
band energy scales in graphene. 

The self-energy is the central quantity for determining 
the many Fermi liquid parameters. Our computed 2sl

fE e k  
from Equation (1) is plotted as a function of x in Figure 
1(a) without LFC and in Figure 1(b) with the inclusion 

 

 
(a) 

 
(b) 

Figure 1. (a) Normalized screened self energy, Esl/e2kf is 
plotted against normalized wave vector k/kf Solid Curve 
displays Self energy of graphene while dashed curve is for 
2DEG, without LFC; (b) Normalized screened self energy, 
Esl/e2kf as a function of k/kf without LFC (solid line curve) 
with LFC (dashed line curve). 
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of LFC. We also computed self-energy of 2DEG to com- 
pare it with that of doped MLG. As is seen from Figure 
1(a), behavior of computed 2sl

fE e k  of MLG with x is 
very similar to that of 2DEG. However, magnitude of 

2sl
fE e k  of doped MLG is greater than of that of 2DEG. 

The differnce in magnitude of slE  of MLG and of 2DEG 
is because of different values of intrinsic parameters of 
two systems, which enter into self-energy through static 
dielectric function that can be described by 

  1q   q  for both MLG and 2DEG. Where   is 

equal to * 2 24 fm e k  which depends on n in case of 

2DEG, while for graphene it is independent of n. For 
computing slE  of 2DEG, we have used m* = 0.067 me 
and κ = 13. Further to see the effect of LFC on self-en-
ergy, we computed 2sl

fE e k  including LFC within HA 
for doped MLG. As is seen from Figure 1(b); 1) magni-
tude of self-energy reduces marginally; and 2) downward 
slope of slE  verses x enhances, especially for x > 1, on 
inclusion of LFC. This suggests that local fields does not 
play very important role in determination of self-energy 
in a doped MLG. 

Our computed  is plotted as a function of  sn r fk r  
in Figure 2(a) for two values of   (=2 & 4) at fix va- 
lue of n and in Figure 2(b) for two values of n (n = 4.77 
× 1014 cm–2 & 8.04 × 1014 cm–2) for  = 4. Computed 

 is finite for r tending to zero and it exhibits oscil- 
lations, which eventually decays for larger values of r. 
These oscillations are known as Friedel oscillations and 
are the result of the non-analyticity which occurs because 
of the discontinuity in second derivative, the first being 
continuous [11,20]. As is displayed in Figure 2(a), on 
increasing the value of 

 sn r

  for fixed value of n; 1) 
 substantially enhances for lower values of r (close 

to ; and 2) Friedel oscillations becomes more pro- 
nounced. The behaviour of our computed  is very 
similar to that observed in a Fermi liquid where many 
body effects influence the amplitude of oscillations which 
are characterized by power law decay and depend on the 
strength of the interactions [11]. Figure 2(b), shows that 
on increasing carrier density at fixed value of 

 sn r
r  0

 sn r

 , magni-
tude of  reduces specially for  rsn fk r  close to zero 
and the amplitude of Friedel oscillations decreases. In-
clusion of LFC reduces the magnitude of  sn r

0
 at all r- 

values and makes it better behaved for , as is seen 
from Figure 2(c). Our computed screened potential with 
the use of Equation (3) is plotted in Figure 3. Friedel 
Oscillations are clearly observed in the potential images 
which are in good agreement with the experimental work 
conducted on 2D electron gas, using low temperature 
Scanning tunneling microscope [21]. Inclusion of LFC re-
duces the magnitude of 

r

 rSCRV  too and makes it better 
behaved as is displayed in Figure 3. Under the RPA ap-
proximation, which assumes that the induced charge 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Density of screening charge plotted against kfr 
for n = 4.77 × 1014 cm–2 at  = 2 (Curve-A) and for  = 4 
(curve-B); (b) Density of screening charge plotted agains kfr 
for  = 4 at n = 8.04 × 1014 cm–2 (curve-B) and n = 4.77 × 
1014 cm–2 (curve-A); (c) Screening charge density with LFC 
(dashed line) and without LFC (solid line) for  = 4 at n = 
8.04 × 1014 cm–2. 
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Figure 3. Screened potential   SCR fV r k r ; with LFC 

(dashed line), without LFC (solid line). 
 

density is proportional to the total potential, the screened 
potential oscillates spatially. The observation of Friedel 
oscillations in screened potential and screening charge 
density can be seen as a signature of Fermi liquid state in 
graphene [22]. The Friedel oscillations can be used to 
gain insight into the microscopic nature of disorder. We 
compared our computed  and  of doped 
MLG with that of 2DEG. It is found that the overall be- 
havior of  and SCRV  of doped MLG is not very 
different from that of 2DEG, though the nature of charge 
carriers in two systems is very different [17]. It therefore 
can be inferred that the linear energy dispersion and 
chirality of MLG does not significantly influence gross 
many particle properties. 

 sn r

 r

 SCRV r

 sn r

The pair distribution function gives the probability that 
another electron is a distance r away from the first [23]. 
We computed  g r  as a function of carrier density at 
different  -values. To study the pair distribution func- 
tion as a function of carrier density we took n = z × 1014 
cm–2 at a fixed r = 1 × 10–7 cm Further for computation 
we take dimensional less quantity 0q q , where q0 = 1 × 
107 cm–1 Our computed results are displayed in Figure 4 
for different values of  . For all values of  , com- 
puted g (r, z) as a function of carrier density saturates at 
higher values of z, as is exhibited in the Figure 4, clearly 
suggests that the variation of g (r, z) with n is roughly 
zero over the experimentally observed range of n in 
doped MLG. Looking at Figure 4 and Equation (7), we 
can conclude that exchange and correlation terms make 
negligible contribution to compressibility in MLG, as has 
been observed in experimental results on compressibility 
of MLG [14]. 

4. Conclusion 

In summary, we studied the self energy, density of screen- 

 

Figure 4. Pair distribution function  , g r z z  for  = 1 

(soild line),  = 2 (dotted line) and  = 3 (dashed line). 
 

ing charge and screened potential within and beyond RPA. 
Local field corrections were incorporated in the Hubbard 
approximation to go beyond RPA. Ultraviolet cutoff for 
wave vector integral has been used to exclude the effect 
of vacuum states in MLG. Self energy, density of screen- 
ing charge and screened potential of MLG are found to 
behave similar to that of 2DEG since the dielectric func- 
tion is almost similar upto q < 2kf . Freidel oscillations 
have been observed in screened potential and density of 
screening charge. With increase in the value of   for a 
fixed value of carrier density, Friedel oscillations enhance, 
whereas on keeping   fixed and increasing carrier den- 
sity reduces the amplitude of the oscillations. The obser- 
vation of Friedel oscillations in screened potential and 
screening charge density can be seen as a signature of 
Fermi liquid state in graphene. Pair distribution function 
is calculated as a function of carrier density suggests that 
exchange and correlation terms make negligible contribu- 
tion to compressibility of graphene. Incorporation of LFC 
reduces the magnitude of self energy, screening charge 
density and screened potential. 
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