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ABSTRACT 

Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, 
engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency 
features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant 
speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate 
non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify 
the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier 
transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal 
features do not change with speed, and are thus effective in identifying faults in mechanical components under 
non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum 
methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear- 
rotor systems. 
 
Keywords: Non-Stationary Signal; Short-Time Fourier Transform; Back Propagation Neural Network; Time Frequency 

Order Spectrum 

1. Introduction 

Fast Fourier transform can be used to analyze the fre- 
quency features of stationary signals, but it cannot clearly 
render signal characteristics of non-stationary signals 
with time variations. Time frequency analysis simulta- 
neously considers time and frequency analysis methods, 
and can be used to analyze various frequencies at diffe- 
rent times [1]. Dennis Gabor [2] proposed the short-time 
Fourier transform which can be seen as a fixed time fre- 
quency window transform with variable time frequenies, 
to show time and frequency variability in signals. Using 
the STFT to analyze non-stationary signals, Fadi et al. [3] 
obtained results superior to those obtained through FFT. 
Wang et al. [4] obtained feature extraction of time-fre- 
quency distribution images by using first-order time squ- 
are and frequency square methods. Bie et al. [5] obtained 
the first-order grey square by thresholding in time-frequency 
gray-scale images. This method extracts time-frequency 
distribution image information, but easily captures excess 
noise and is thus unable to effectively obtain signal fea- 
ture information. 

Neural networks have superior learning and classifica- 
tion capabilities. In recent years, these methods have gra-  

dually replaced traditional diagnostic methods and ob- 
tained good diagnosis results. Rumelhart et al. [6] de- 
veloped the learning ability of back-propagation neural 
networks to establish them as the most widely-used algo- 
rithm. For marine propulsion shaft systems, Kuo et al. [7] 
established a troubleshooting system taking fault types 
and spectral characteristics as the training samples for 
neural networks. The vibration acceleration spectrum is 
used as the neural network inputs and an increase in cal- 
culated output values for the trained neural network cor- 
responds to a greater likelihood of failure. Wang et al. [8] 
used the different values of regression coefficients with 
neural networks to diagnose failures in rotating machi- 
nery. 

This study proposes a method for mechanical fault di- 
agnosis which combines the time-frequency order spec- 
trum and back-propagation neural networks. A gear-rotor 
experimental platform was used to verify that this method 
could obtain superior diagnosis results for non-stationary 
signals.  

2. Short-Time Fourier Transform 

The short-time Fourier transform was used in this study *Corresponding author. 
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for the feature extraction of non-stationary signals. The 
STFT provides a window function for movement along 
the time axis and obtains 2D function signals in the time 
and frequency domains. The partition FFTs were ob- 
tained at different times by fast Fourier transform of 2D 
function signals. The phase and energy of time-domain 
and frequency-domain were obtained by calculating the 
energy density spectrum of the partition FFTs. 

To resolve the localization problem in the time domain, 
the time signal captured in the fast Fourier transform has 
a limited window function of time. When the signal is 
non-stationary, the analysis window is assumed to be 
stable over a short period of time, given the window 
function  for the sectional processing in signal 
function 

 t
 f t



. Through the movement of the short-term 
window along the time axis, the local spectrum of the 
signal could be obtained. The signal is mapped into a 
two-dimensional function of time and frequency. In other 
words, at different times, the local spectrum can obtain 
time-varying characteristics in non-stationary signals. 
For signal f t  in the period t, the STFT was defined 
as: 

     
-

STFT , dj tt f t t t e  
 


  t      (1) 

where  f t  is a continuous function. Thus, the energy 
density of t can be defined as:  

     
2

-
, j tSPE t f t t t e t 

 


  d     (2) 

In the calculation process, the above equation must be 
discrete. Assuming  z k

FT ,t
 is the k-th discrete signal, the 

discrete form of ST   is: 

      -2πSTFT , jnk L
z

k

m n z k k m e




      (3) 

where  and  respectively represent the indicators 
of time and frequency in the discrete samples. The signal 

 is the length in the window function . 

m n

L  t

    2
, STFT ,z zSPE m n = m n           (4) 

3. Feature Extraction Method for 
Non-Stationary Signals 

Although time-frequency analysis methods can be used 
to analyze non-stationary signals, the frequency features 
change with analysis time, making it difficult to mean- 
ingfully interpret frequency features. Therefore, this study 
proposes combining short-time Fourier transform with 
the speed frequency order method for feature extraction 
of non-stationary signals. Using the common vibration 
signals of rotating machinery as an example, the time- 
frequency spectrum of the vibration signal was obtained 
first by time-frequency analysis. The time-frequency 

order spectrum is obtained by dividing the instant time- 
frequency spectrum by the instant speed frequency. The 
magnitude variation of the time-frequency order spec- 
trum could detect the failures. Figure 1 shows the fol-
lowing steps: 

1) Acquire vibration signals of the rotating machinery. 
2) Acquire the speed signal of the rotating machinery. 
3) Obtain the time-frequency spectrum of the vibration 

signal by time-frequency analysis. 
4) Calculate the instant time-frequency spectrum. 
5) Calculate the instant speed frequency. 
6) Divide the time-frequency spectrum by the instant 

time-frequency spectrum to obtain the time-frequency 
order spectrum, as shown in Figure 2. 

Figure 3 shows the time-frequency analysis results; 
the simulated signal includes first and second order rota- 
tion frequencies. Although the figure shows the relation- 
ship between first and second order rotation frequencies 
as time changes, it cannot be qualitatively or quantita-
tively described. As shown in Figure 4, the proposed 
time-frequency order spectrum analysis can discern the 
first and second order rotation frequencies fixed on the 
time-frequency order spectrum, and also clearly show 
that the time-frequency characteristic frequencies do not 
change with time. 

4. Back-Propagation Neural Network 

Figure 5 shows a BPNN designed for fault diagnosis for 
non-stationary signals. It is composed of N nodes (S1 ~ SN) 
in the input layer, L nodes (H1 ~ HL) in the hidden layer 
and M nodes (O1 ~ OM) in the output layer. The input and 
output variables are arrayed into a vector as expressed by 

(S1, S2, ~SN, O1, O1 ~ OM)          (5) 

where N input elements denote S1 ~ SN which represent 
the first time-frequency order spectrum to Nth time-fre-
quency order spectrum, and M output elements denote O1 
to OM which represent normal state, gear fault state, rotor 
fault state, etc.  

The connections between the input and hidden layers, 
and between the hidden and output layers are weighting 
coefficients wij and wjk, respectively. The input of the j-th 
neuron in the hidden layer can be expressed by 

1

N

j ij i j
i

net w S 


             (6) 

where si is the i-th input, wij is the weighting coefficient 
between the i-th neuron in the input layer and the j-th 
neuron in the hidden layer. Thus, the output of the j-th 
neuron in the hidden layer can be obtained by 

    1 1 expj jO f net net    j          (7) 

where ( )f   is the sigmoid function adopted as the acti-
vation function. The output of BPNN can be expressed  
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Figure 1. Time-frequency order spectrum method. 
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Figure 2. Time-frequency order spectrum. 
 

 

Figure 3. Short-time Fourier spectrum of the simulated signal. 
 

 

Figure 4. Time-frequency order spectrum of the simulated signal. 
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Figure 5. Structure of back-propagation neural network. 
 
by 

 k
1

, 1, 2, ,
L

jk j k
j

net w O k M


         (8) 

where L is the neuron number in the hidden layer, wjk is 
the weighting coefficient between the j-th neuron in the 
hidden layer and the k-th neuron in the output layer. Then, 
the output Ok of the BPNN can be obtained by 

    1 1 expk kO f net net    k         (9) 

The BPNN is trained using the error between the ac-
tual output and the ideal output to modify wij and wjk until 
the output of BPNN is close to the ideal output with ac-
ceptable accuracy. Using the gradient descent method for 
error minimization, the correction increments of the 
weighting coefficients are defined as being proportional 
to the slope, related to the changes between the error es-
timator and the weighting coefficients as  

ij
ij

E
w

w
 

  


, jk
jk

E
w

w
 

  


        (10) 

where   is the learning rate used for adjusting the 
increments of weighting coefficients and controls the 
convergent speed of the weighting coefficients.  is 
the error estimator of the network and is defined by 

E

 2

1 1 1

1 1

2 2

Q Q N

p k k p
p p k

E E T O
  

          (11) 

where Q is the total number of training samples.  k p
T  

is the ideal output of the p-th sample and  k p
O  is the 

actual output of the p-th sample. Substituting Equation 
(11) into Equation (10) and executing derivations gives 
the increments of weighting coefficients as 

   Ojk k j k k k p
w f net T O         jO

O

   (12) 

for the output layer, and 

( )ij j i jk k jw O w f net             (13) 

where  is the first derivation of  f    f  . Therefore, 
in the training process, the weighting coefficients must 
be modified by  

,jk jk jk ij ijw w w w w w     

until the error estimator E converges to an acceptable 
accuracy.  

With network training complete, the values of time- 
frequency order spectrum are used to compute the trained 
weighting coefficients wij and wjk and obtain the net- 
work’s output values. Each output neuron represents a 
kind of state and the output value represents the degree 
of certainty for the corresponding state. A value is close 
to 1 indicates a higher probability for the given state. 

5. Case Study 

This study used a gear-rotor experimental platform with 
varying speeds to simulate different types of gear and rotor 
conditions including: gear normal, worn, broken teeth, 
gear unbalanced, normal state, misaligned, unbalanced 
and looseness (Table 1). The non-stationary signals were 
obtained from the experimental platform for use in fail- 
ure diagnosis. 

5.1. Varying Time Experiments on the 
Gear-Rotor Platform 

As shown in Figure 6, the experiments simulate the vib- 
ration signal from a gear-rotor experimental platform (51 
and 23 tooth gears) operating at different speeds. The 
LabView NI9401 DI/O was used as the interface for in- 
put signals to the circuit board, which dynamically con- 
trols the frequency to achieve the automation of speed 
variation. The operating process was as follows: The 
speed was dropped from 1600 rpm to 800 rpm within 
two seconds, and then increased to the final value of 
1500 rpm. The non-stationary speed curve is shown in 
Figure 7. The NI9234 DAQ simultaneously acquired the 
vibration signals and speed signals at a sampling fre- 
quency of 6400 Hz. 

In this experiment, non-stationary signals are measured 
under 8 different kinds of conditions, with 20 samples 
taken for each condition for a total of 160 samples. In the 
time-domain, the signals of all samples were subjected to 
STFT. Thus, the first 200 orders of the total signal char- 
acteristics in the time-frequency order spectrum are ob- 
tained through the non-stationary time-frequency extrac- ij        (14) 
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Table 1. Gear-rotor experimental platform failure conditions. 

Condition A B C D 

Gear normal Broken teeth Gear wear Gear unbalanced 

Failure type 

 
Condition E F G H 

Normal state Misaligned Looseness Unbalanced 

Failure type 

  

 

 

Figure 6. Gear speed change simulation platform. 
 

 

Figure 7. Non-stationary speed curve. 
 
tion technique. 

5.2. Non-Stationary Signal Feature Extraction 

Table 1 shows the conditions of eight different vibration 
signals used in the experiment. Figures 8(a) and (e) re-
spectively show conditions A and B of the platform of 
the gear-rotor signal in the time domain for all conditions. 
Figures 8(b) and (f) respectively show the spectra of  

the fast Fourier transform frequency, and Figures 8(c) 
and (g) respectively show the frequency of spectrum im-
ages obtained from STFT. The spectrum images were 
taken every 0.1 second so that the time-frequency order 
spectrum is obtained by dividing the instant time-frequency 
spectrum by the instant speed frequency. All instant 
time-frequency order spectra were superimposed and 
then averaged to obtain the time-frequency order spec- 
trum, represented respectively in Figures 8(d) and (h). 
The operational statuses for signals C ~ H were similarly 
measured and analyzed, and are respectively depicted in 
Figures 9-11. For the eight calculated time-frequency 
order spectra, the conditions of B and C at the 23th order 
display significant amplitude, respectively indicating 
broken teeth and wear on the gear. Condition D at the 
51th order shows significant amplitude, indicating sig-
nificant gear imbalance. Lastly, the rotor conditions E to 
H generate varying amplitudes in order 1st ~ 3rd.  

5.3. Back-Propagation Neural Network 
Diagnosis Results 

This study used STFT with non-stationary signal extrac-
tion techniques to obtain the time-frequency order spec-
trum. Next, the value of the extracted features was input-
ted to the back-propagating neural networks to obtain the 
failure diagnosis as follows: 

1) Figure 12 illustrates the structure of back-propagating 
neural networks used in this study. The time-frequency 
order spectrum is used as input, and the input neuron 
count a is defined as 200 while the hidden level neuron 
count is 250. 

2) In the experiment, conditions A ~ H (Table 1) can 
be used in the neural network, with different respective 
assembled outputs as follows: [1 0 0 0 0 0 0 0], [0 1 0 0 0 
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Figure 8. Non-stationary signal feature extraction for conditions A and B. (a) Time-domain signal (condition A); (b) Fre- 
quency spectrum (condition A); (c) STFT time-frequency spectrum (condition A); (d) STFT time-frequency order spectrum 
(condition A); (e) Time-domain signal (condition B); (f) Frequency spectrum (condition B); (g) STFT time-frequency spec-
trum (condition B); (h) STFT time-frequency order spectrum (condition B). 
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Figure 9. Non-stationary signal feature extraction for conditions C and D. (a) Time-domain signal (condition C); (b) Fre-
quency spectrum (condition C); (c) STFT time-frequency spectrum (condition C); (d) STFT time-frequency order spectrum 
(condition C); (e) Time-domain signal (condition D); (f) Frequency spectrum (condition D); (g) STFT time-frequency spec-
trum (condition D); (h) STFT time-frequency order spectrum (condition D). 
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Figure 10. Non-stationary signal feature extraction for conditions E and F. (a) Time-domain signal (condition E); (b) Fre-
quency spectrum (condition E); (c) STFT time-frequency spectrum (condition E); (d) STFT time-frequency order spectrum 
(condition E); (e) Time-domain signal (condition F); (f) Frequency spectrum (condition F); (g) STFT time-frequency spec-
trum (condition F); (h) STFT time-frequency order spectrum (condition F). 
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Figure 11. Non-stationary signal feature extraction for conditions G and H. (a) Time-domain signal (condition G); (b) Fre-
quency spectrum (condition G); (c) STFT time-frequency spectrum (condition G); (d) STFT time-frequency order spectrum 
(condition G); (e) Time-domain signal (condition H); (f) Frequency spectrum (condition H); (g) STFT time-frequency spec-
trum (condition H); (h) STFT time-frequency order spectrum (condition H). 
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Figure 12. Time-frequency order spectrum neural network 
training. 
 
Table 2. STFT time-frequency order spectrum + BPNN 
recognition accuracy. 

  Threshold 
 

Sample 
0.7 0.8 0.9 Time Deviation

Test: 20%  
Train: 80% 

100% 99.38% 97.81% 528 s 8.01e–4

Test: 40%  
Train: 60% 

97.66% 97.34% 94.69% 396 s 9.4e–4

Test: 60%  
Train: 40% 

98.33% 97.19% 93.75% 298 s 1.03e–3

Test: 80%  
Train: 20% 

95.55% 93.83% 88.75% 196 s 8.03e–4

 
0 0 0], [0 0 1 0 0 0 0 0], [0 0 0 1 0 0 0 0], [0 0 0 0 1 0 00], 
[0 0 0 0 0 1 0 0], [0 0 0 0 0 0 0 0 1 0] and [0 0 0 0 0 0 0 0 
0 1]. 

3) Of the 20 samples each for A ~ H (160 samples to-
tal), sample assemblies were randomly chosen for train-
ing and testing, with the four assemblies as follows: First, 
20% training and 80% testing (32 training samples, 128 
test samples); second, 40% training and 60% testing (64 
training samples, 96 test samples); third, 60% training 
and 40% testing (96 training samples, 65 test samples) 
and finally, 80% training samples and 20% testing sam- 
ples (128 training samples, 32 test samples). 

4) Diagnosis results: To verify the STFT time-frequency 
order spectrum network output values, this study took the 
values of 0.7, 0.8 and 0.9 as the criteria for the determi- 
nation value, as shown in Table 2. Among all these 
numbers, if the threshold value of 0.7 is correct, the ac- 
curacy is high but the low threshold would make it prone 
to error. The threshold of 0.9 is too high, resulting in low 
accuracy. Therefore, this study recommends the setting 
threshold value as 0.8. 

6. Conclusions 

Combining the time-frequency order spectrum with neu- 

ral networks obtains good recognition results for all types 
of non-stationary signals. The conclusions as follows: 

1) In the proposed method, the time-frequency order 
2) Under different conditions, the proposed time-fre- 

quency order spectrum can fix features such that speed 
will not change during the time period. Thus, the magni- 
tude of changes in feature order can be observed in non- 
stationary signals, allowing for the recognition of anoma- 
lies. 

3) The proposed combination of the time-frequency 
order spectrum and back-propagation neural networks 
diagnoses failures with an accuracy rate of 93% or higher 
using a ratio of 20:80 for training to test samples. All the 
testing samples reduce the required training time to 196 
seconds. 
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