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ABSTRACT 

In this paper we use filtering and maximum likelihood methods to solve a calibration problem for a stochastic dynami- 
cal system used to model spiky asset prices. The data used in the calibration problem are the observations at discrete 
times of the asset price. The model considered has been introduced by V. A. Kholodnyi in [1,2] and describes spiky 
asset prices as the product of two independent stochastic processes: the spike process and the process that represents the 
asset prices in absence of spikes. A Markov chain is used to regulate the transitions between presence and absence of 
spikes. As suggested in [3] in a different context the calibration problem for this model is translated in a maximum like- 
lihood problem with the likelihood function defined through the solution of a filtering problem. The estimated values of 
the model parameters are the coordinates of a constrained maximizer of the likelihood function. Furthermore, given the 
calibrated model, we develop a sort of tracking procedure able to forecast forward asset prices. Numerical examples 
using synthetic and real data of the solution of the calibration problem and of the performance of the tracking procedure 
are presented. The real data studied are electric power price data taken from the UK electricity market in the years 
2004-2009. After calibrating the model using the spot prices, the forward prices forecasted with the tracking procedure 
and the observed forward prices are compared. This comparison can be seen as a way to validate the model, the formu- 
lation and the solution of the calibration problem and the forecasting procedure. The result of the comparison is satis- 
factory. In the website: http://www.econ.univpm.it/recchioni/finance/w10 some auxiliary material including animations 
that helps the understanding of this paper is shown. A more general reference to the work of the authors and of their 
coauthors in mathematical finance is the website: http://www.econ.univpm.it/recchioni/finance. 
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1. Introduction 

A spike in an asset price is an abrupt movement of the 
price followed by an abrupt movement of approximately 
the same magnitude in the opposite direction. The modeling 
of spikes in asset prices is a key problem in finance. In 
fact spiky prices are encountered in several contexts such 
as, for example, in electric power prices and, more in 
general, in commodity prices. 

In this paper the model introduced by V. A. Kholodnyi 
in [1,2] to describe spiky prices is combined with some 

ideas introduced by the authors and some coauthors to 
study calibration problems in mathematical finance, see 
[3-9]. That is we introduce a stochastic dynamical system 
to model spikes in asset prices and we study a calibration 
problem for the dynamical system introduced. The method 
proposed to solve the calibration problem is tested doing 
the analysis of data time series. We consider synthetic 
and real data. The real data studied are electric power 
price data taken from the UK electricity market in the 
years 2004-2009. 

Following V. A. Kholodnyi (see [1,2]) we model spiky 
asset prices as a stochastic process that can be represented 
as the product of two independent stochastic processes: 
the spike process and the process that describes the asset 
prices in absence of spikes. The spike process models 
spikes in asset prices and it is either equal to the 
multiplicative amplitude of the spike during the spike 
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periods or equal to one during the regular periods, that is 
during the periods between spikes. The second stochastic 
process of the Kholodnyi model describes prices in ab- 
sence of spikes. This last process has been chosen as a 
diffusion process. Finally we use a two-state Markov chain 
in continuous time to determine whether asset prices are 
in the spike state, that is during a spike, or in the regular 
state, that is between spikes. 

The model for spiky asset prices studied depends on 
five real parameters. Two of them come from the process 
that describes the asset prices in absence of spikes, one of 
them comes from the spike process and the last two 
parameters come from the two-state Markov chain used 
to model the transitions between spike and regular states. 

The calibration problem studied consists in estimating 
these five parameters from the knowledge at discrete times 
of the asset prices (observations of the spiky prices). That 
is the calibration problem is a parameter identification 
problem or, more in general, is an inverse problem for 
the stochastic dynamical system that models the asset 
prices. This calibration problem is translated in a constrained 
optimization problem for a likelihood function (maximum 
likelihood problem) with the likelihood function defined 
through the solution of a filtering problem. The likelihood 
function is defined using the probability density function 
associated with the diffusion process modeling asset 
prices in absence of spikes. This formulation of the 
calibration problem is inspired to the one introduced in [3] 
in the study of the Heston stochastic volatility model that 
has been later extended to the study of several other 
calibration problems in mathematical finance (see [4,5,8, 
9]). 

The filtering and the maximum likelihood problems 
mentioned above are solved numerically. The resulting 
numerical solution of the calibration problem determines 
the values of the (unknown) parameters that make most 
likely the observations actually made. Note that in the 
processing of numerical data to improve the robustness 
and the quality of the solution of the calibration problem 
some preliminary steps are introduced in the optimization 
procedure used to solve the calibration problem and the 
results obtained in these preliminary steps are used to 
penalize the likelihood function obtained from the filtering 
problem. That is the maximum likelihood problem 
originally formulated in analogy to [3] is reformulated 
adding penalization terms to the likelihood function and 
choosing an ad hoc initial guess for the optimization 
procedure to improve the robustness and the quality of its 
solution. This reformulated optimization problem is 
solved numerically using a method based on a variable 
metric steepest ascent method. 

Furthermore, as a byproduct of the solution of the 
filtering problem, we develop a tracking procedure that, 
given the calibrated model, is able to forecast forward 

asset prices. 
The method used to solve the calibration problem and 

the tracking procedure are used to analyze data time 
series. Numerical examples of the solution of the calibration 
problem and of the performance of the tracking pro- 
cedure using synthetic and real data are presented. The 
synthetic data are obtained computing one trajectory of 
the stochastic dynamical system that models spiky asset 
prices. We generate daily synthetic data for a period of 
two years. The first year of data is generated with one 
choice of the model parameters, the second year of data 
is generated with a different choice of the model para- 
meters. The second year of data is generated using as 
initial point of the trajectory the last point of the first year 
of data. In the solution of the calibration problem we 
choose as observation period a period of one year, that is 
we use as data the daily observations corresponding to a 
time period of one year, and we move one day at the time 
this observation period through the two years of data. 
The calibration problem is solved for each choice of the 
observation period. The two choices of the model para- 
meters used to generate the data and the time when the 
model parameters change value are reconstructed satis- 
factorily by the calibration procedure. The real data 
studied are daily electric power price data taken from the 
UK. electricity market. These electric power price data 
are spiky data. We choose the data of the calibration 
problems considered as done above in the study of synthetic 
data extracting the observation periods from a time series 
of five years (i.e. the years 2004-2009) of daily electric 
power (spot) price data taken from the UK market. The 
results obtained show that the model is able to establish a 
stable relationship between the data time series and the 
estimated model parameter values. Note that in the real 
data time series for each observation day we have the 
electric power spot price and the associated forward 
prices observed that day for a variety of delivery periods. 
That is for each spot price there is a set of forward prices 
associated to it corresponding to different delivery periods. 
Moreover in the calibration problem only spot prices are 
used as data. To exploit this fact we proceed as follows. 
After calibrating the model using as data the spot prices 
observed in the first three years of the data time series, 
we use the calibrated model, the tracking procedure and 
the spot prices not used in the calibration to forecast the 
forward prices associated to these last spot prices. We 
compare the forward prices forecasted with the tracking 
procedure with the observed forward prices. The 
comparison is satisfactory and establishes the effectiveness 
of the model, the validity of the proposed formulation 
and solution of the calibration problem and the quality of 
the forecasted prices. 

We note that the model studied is too simplistic to be 
of practical value in electricity markets. In fact our model 
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is able to capture only one property of the electric power 
prices: the presence of spikes. It does not consider, for 
example, the mean-reverting property and the presence 
of weekly and season cycles in electricity prices. This 
study aims to be a first attempt to solve, with the strategy 
presented in Section 3, calibration problems involving 
stochastic dynamical systems that can be used to describe 
electric power prices. That is the methodology discussed 
in this paper can be applied in the calibration of more 
sophisticated stochastic dynamical models that can be 
used in electricity markets (see for example [10]). 

The website: http://www.econ.univpm.it/recchioni/fi- 
nance/w10 contains some auxiliary material including some 
animations that helps the understanding of this paper. A 
general reference to the work of the authors and of their 
coauthors in mathematical finance is the website: 
http://www.econ.univpm.it/recchioni/finance. 

The paper is organized as follows. In Section 2 we 
describe the model for spiky asset prices. In Section 3 we 
formulate and we solve the filtering and the calibration 
problems for the model presented in Section 2 and we 
introduce the tracking procedure used to forecast forward 
prices. In Section 4 some numerical examples of the 
solution of the calibration problem and of the performance 
of the tracking procedure introduced in Section 3 using 
synthetic and real data are presented. 

2. The Stochastic Dynamical System for  
Spiky Asset Prices 

Let us introduce a stochastic dynamical system used to 
model spiky asset prices, see [1,2]. In this model the 
spiky prices are defined as the product of two stochastic 
processes: the spike process and the process that describes 
asset prices in absence of spikes. As said in the Intro- 
duction the transitions between spike and regular states 
are regulated through a two state Markov chain in 
continuous time. 

Let be a real variable that denotes time, ,tt  M  t  
 (continuous time) two-state (i.e. regular state, spike 

state) Markov chain and let  
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ˆ > 0tS  
et pric

m variable that describes 
the ass e in absence of spikes at time ,t  > 0,t  

,    are constants, ,tW  > 0,t  is the standard W  

0 = 0,W  d ,tW  t  tochastic differen- 
tial and the rand a is a given initial 
condition. For simplicity we assume th the random 
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> 0  is the volatility coefficient. 
Equation (5) def s the asset price namics of the 

celebrated Black les model. Note that the soluti
ine dy

-Scho on of 
(5), (6) is a Markov process known as geometric Brownian 
motion. Note that several other Markov processes 
different from the one defined in (5), (6) can be used to 
model asset price dynamics in absence of spikes. For 
example we can use one of the so called stochastic 
volatility models that have been introduced recently in 
mathematical finance to refine the Black-Scholes asset 
dynamics model. 
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Figure 1. The synthetic data. 
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be small. 
Using some heuristic rules to recognize spikes on the 

data time series considered thank to their relation with 
the spike duration and frequency a rough estimate of the 
parameters  and  can be obtained directly from 
observed s  pri arket data). For example, the 
relations ge at initial estimates  and  of 

 and  obtained as follows: 

a
piky
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3. The Filtering and the Calibration  
Problems 
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hat t

sociated to the spiky price model introduced in Section 
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Note that for simplicity we assume that the transitions 
from regular state to spike state or viceversa happen at 
the observation times. 

Let  ˆ, , ,tp S t   ˆ > 0,S  > 0,t  be the probability  

density function of the stochastic process t̂S  at time 
> 0t  conditioned to the observations t  and let  

   ˆ ˆ, = , , ,i ti
p S t p S t   ˆ > 0,S  t t t 1< ,i i  be the  

probability density function of the stochastic process t̂S  
conditioned to the observations made up to time = it t , 
when 1< ,i it t t   = 0,1, , ,i n  where for convenience 
we define 1 =nt   . 

The probability density functio  ˆ, ,ns i

1<i it t
Ŝ  0,  p S t   

t  , ,  = 0,1, , ,i n  are the solutions of 
the following initial va problems for the Fokker-Planck lue 

Copyright © 2012 SciRes.                                                                                 JMF 



L. FATONE  ET  AL. 6 

equation associated to the Black-Scholes model (5): 
for = 0,1, , ,i n   

2
2 2

2

1
ˆ 0, < , ,i i

S S

S t t t   

1 ˆ ˆ= ,
ˆ ˆ2

i i ip p p
S S

t
 

  


           (16) 

   ˆ, =i ip S t  ˆ ˆ; , 0, ,if S S     (17) 

where 

   *
0

ˆ ˆ ˆ ˆ; = , > 0, ,f S S S S       ( 18) 

     ˆ ˆ ˆ; = ( ) ,

ˆ , 2 ,

i r i i s if S p t S S p t S

S

 

> 0, = 1 , , ,

iS

i n










9

 and 


    

 




 (1 ) 

where  pr it  s i

lities defined through the time-homogeneous  

t

p t  are, respectively, the proba- 
bi  Markov
chain ,M  t 0,  of being in the regular a

 the initial value problem
be written as follows:  

 nd in the 
spike state at time = ,it t  = 0,1, ,i n  (see (3)). 

The probability density functions ip , = 0,1, , ,i n  
solutions of s for the Fokker- 
Planck Equations (16)-(19), can 

     0

1

ˆ ˆ ˆ ˆ ˆ, = d , , , ;

ˆ 0,  < ,  = 0,1, , ,  ,

i f i i

i i

p S t S p S t S t f S

S t t t i n





  

  


 

,

where 

   (20) 

fp  
q

is the fundamental solution of the Fokker- 
Planck E uation (16) associated to the Black-S

 
choles 

model (5), that is: 

 
 

 

 

2

2

2

ˆ 1
log

ˆ 2
 

2

1ˆ ˆ, , , =
ˆ 2π

                          e ,

ˆ ˆ0, 0,  ,  0,  > 0.S S t t t t     

In o ure the likelihood of the vector 

f

S
t t

S

t t

p S t S t
S t t

 





  
           



 
 

 
 
 

  (21) 

rder to meas   we 
introduce the following (log-)likelihood function:  

   
1

1 1
=0

= log , , .
n

i i i
i

F p S t


           (22) 

It is worthwhile to note that definition (22) contains an 
important simplification. In fact a more correct d
of the (log-)likelihood function should be:  

efinition 

   1

1 1
=0

= log , , ,
n

i i i
i

F p S t


          (23) 

where  or1 1=i iS S 
   1

1 = i
i

S
S






  depending on whether  

at time the asset price is in the regular state or in the 

spike state respectively,  However, since 
when dealing with real decision about 
the character of the ke state) of the 
observed prices is dubi o adopt the de- 
finition (22) for the tion. In fact the 
choice made in (22), at oducing some 
inaccuracy, avoids the ng a (du
criterion to recognize re order to 
evaluate the (log-)likelihood function. The validity of 
th e

 intro- 
duced in (22) using 

1it   

= 0,1, , 1.i n 
financial data the 

state (regular or spi
ous, we prefer t

(log-)likelihood func
 the price of intr

necessity of defini
gular and spike states in 

1

bious) 

is choice is supported by the fact that in the num rical 
experience shown in Section 4 the simplification

iS 
  instead of 1,iS 

   
= 0,1, , 1,i n 

results. 
 n sis sufficient to obtai atisfactory 

The solution of the calibration problem is given by the 
vector   that solves the following optimization pro- 
blem:  

 .maxF





             

Problem (24) is aximum d problem. 
the vector 

  (24) 

 called m  likelihoo
In fact *

n

alg

  tion of (24) is the vector 
that ma made. 

  solu
kes “most likely” the 
 (2

ear inequal

e the maxi- 
mum likelihood p

steepest ascent method. T riable metric 
te

observations actually 

ity c

to s

he va

Problem 4) is an optimization problem with nonlinear 
objective function and li onstraints. 

Note that (22), (24) is one possible way of formulating 
the calibration problem considered using the maximum 
likelihood method. Many other formulations of the 
calibration problem are possible and legitimate. Moreover 
the formulation of the calibration problem (22), (24) can 
be easily extended to handle situations where we con- 
sider calibration problems associated to data set different 
from the one considered here, such as, for example, data 
set containing asset and option prices or only option 
prices. 

The optimization orithm used olv
roblem (22), (24) is based on a variable 

metric 
chnique is used to handle the constraints. 
Let   be the absolute value of ,  and   be the 

Euclidean norm  vector ning from an 
initial guess:  

 of the .  Begin

 0 T0 0 00 0= ,  ,  ,  ,  ,a b          (25) 

we update at every iteration the current approximation of 
the solution of the optimization problem (24) with a step 
in the direction of the gradient with respect to   com- 
puted in a suitable variable metric of the (log-)likelihood 
function (22). 

In particular let us fix a tolerance value > 0tol  and a 
maximum number of iterations > 0iter . Given  

0=    the optimization procedure can be sum- 
marized in the following steps: 

1) Set = 0k  and initialize 0= ;   
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2) Evaluate  .kF   If > 0k  and  

   1 < ,k kF F tol    go to item 7;  

3) Evaluate the gradient of the (log-)likelihood func- 
tion in = ,k   that is: 

   = ,  ,  ,  ,  .
T

k kF F F F F
F

a b  
     

        
   (26) 

If   <kF tol   go to item 7;  

4) Perform the steepest ascent step, evaluating  
 1 = ,k k k

k F      where k  
T

is a quantity that is 
used to define the the step made. he quantity k  can 
be chosen as a scalar or, more in ral, as a m trix of gene a
suitable dimensions. The choice of k  involves the use 
of the “variable metric”. When k  is chosen to be a 
scalar we have a “classical” steepest ascent method; 

5) If 1 < ,k k tol   go to item 7;  
6) Set =k k 1 ,  if  <k iter  go to item 2;  
7) Set * = k   and stop. 
The vector *  obtained in step  the (nume

proximation of the maximizer of the (log-) 
likelihood function. 

7 is rically 
computed) ap

 show  the (log-) 
likelihood function 

Numerical experiments have n that
 F   ed in (22)defin  is a flat func- 

tion. That is there are ma ve ors ny different ct   in 
that make likely the data. ization of obj
fu

epest as to solve the 
corresponding optimization problems (i.e.: (24)), special 
atten- tion must be paid to the choice of the init
of the optimization procedure. That is in actual computations
a “good” initial gue

  
ective 

 

In the optim
nctions with flat regions when local methods, such as 

the ste cent method, are used 

ial guess 

ss 0    iis mportant to 
“g  
sp ro m

find a 
More ood” solution of the optimization problem (24).

ecifically in the p ble  considered here the use of good 
initial guesses of the volatility   and of the drift   
improves substantially the quality of the estimates of all 
the parameters contained in the vector  . That is in the 
solution of problem (24) the parameters   and   are 
the most “sensitive” parameters of the vector  . 

hese d e e robustneFor t er to improv hreasons in or  
th on of pro  (24) that is obtained with the 
op ion meth is seful to 
in  a

t ss of 
e soluti blem

d above it utimizat od describe
troduce some d hoc steps that lead to a simple refor- 

mulation of the (log-)likelihood function (22), of the 
calibration problem (24) and of the method used to solve 
problem (24). First of all an ad hoc preliminary 
simplified optimization problem is solved to produce a 
high quality initial guess for the steepest ascent method 
summarized in steps 1) - 7). We proceed as follows. First 
we estimate two initial values of   and ,  let us 
say   and ,  directly from the data available, that is 
we com- pute the historical volatility and the historical 
drift of the data available (see, for example, [11]). These 

estimates are used as initial guesses to maximize the 
objective function (22) as a two variables function of the 
parameters   and ,   constraint > 0.with the   Note 
that in this preliminary step we consider as data used to 
define the (log-)likelihood function (22) only the “most 
regular portion of the input da ”. The most regul  
portion of the input data is chosen using elementary 
empirical rules that try to find one or mo  regular periods 
in the data considered. In this preliminar  optimi ation 
problem the remaining components of the vec r 

ta ar

re
y z

to   are 
initialized as follows 0 0= = = = 0a b a b  and 

0= = 1  and these initial values are kept constants in 
the optimization procedure with respect to   and  . 
Let  * *,   be the maximizer found at the end of this 
preliminary step. In order to keep memory in the 
maximum likelihood problem (24) of the values *  and 

*  found in the preliminary step we add to the objective 
function (22) the following penalization term:  

2 2* *
1 2 1 2,  > 0, > 0,k k k k         (27) 

where 1,k  2k  are positive penalizat n const s. That 
is we conside e following modified (log-)likelihood func- 
tion:  

io ant
r th

   

 

2 2* *
1 2

1

1 1
=0

2 2* *
1 2

1 2

=

       = og ,

              ,

> 0,  > 0,  .

n

i i i
i

F F k k

p S t

k k

k k

   l

   

   



 

     



   



 



 (28) 

The variable metric steepest ascent method 1) - 7) is 
now applied to solve problem (24) when the (five varia- 
bles) (log-)likelihood function F  defined in (28) re laces 
the (log-)likelihood function 

p
F  defined in (22) sta

from the in
rting 

itial guess:  

 0 * * 0 0 0= , , , , ,
T

a b           (29) 

where the initial values 0a  and 0b  are estimate irec- 
 from the input data through (11) and, finally, the ini- 

tial value 0

d d
tly

  is chosen as a rough estimate of the ave- 
rage am  of the s  appearing in the input data. 
That is prob  (24) is so ed rep  

plitude
lem

pikes
lv lacing F  with F  start- 

ing from n itial guess that uses the results obtained in 
the preliminary step of the optimization procedure and 
tries to exploit the data using the “physical” meaning of 
the model parameters. 

 a in

These ad hoc steps used to reformulate problem  
when applied to the analysis of synthetic data, lead t  
substantial improvement in the accuracy of the estim  
of the model parameters obtained when compared to  
estimates obtained solving directly (22), (24) and to a 
great saving in the computational cost of solving the ca- 

 (24),
o a

ates
 the
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libration problem. This reformulation of problem (24) is 
used to analyze the data considered in Section 4. 

As a byproduct of the solution of the calibration pro- 
blem we obtain a technique to forecast forward
prices. Let us consider a filtering problem. We assume 
that the vector 

 asset 


to the data 

 solution of the calibration problem 
associated  = :t i iS t t  , = > 0nt t  is 
known. From the knowledge of  = ,  ,  ,  ,  a b

T    at 
time = nt t  we can forecast the forward asset prices with 
delivery period > 0t  deep in the future and delivery 
time =n nt t    as follows:  

   , =ti n i
S    

     

ˆ

ˆ                     = 1

,

i

r i s i

S

p p S



    



   e ,
ti i

ti

  
  

                     = = ,i it t i n  
(30) 

where    denotes the expected value of  . 
In the numerical experiments presented in Section 4 

we use the following approximation:  

 
9

=0

1ˆ , = .
10t i ki

k

S S i n          (31) 

Note that using formula (31) we have implicitly assumed 
> 9n . In fact in the data time series considered in Sec- 

tion 4 the average in time of the (spiky) observations 
appearing in (31) gives a better approximation of the 
“spatial” average  ˆ

ti
S  of the price without spikes than 

the individual observation iS  made at time = it t  of the 
spiky price. However the average in time of the obser- 
vations approximates the “spatial” average only if short 
tim

s 
) an average of piky price

ted value of non spi
. 

The first numerical experiment presented consists in 
solving the calibration problem discussed in Section 3 
using synthetic data. This experiment does the analysis
a time series of daily data of the spiky asset price duri
a period of two years. The time series studied is made of 
730 daily data of the spiky asset prices, that is the p

time a ave been 

ectory at time 

e periods are used. This is the reason why we limit the 
mean contained in (31) to the data corresponding to ten 
consecutive observation times, that is corresponding to a 
period of ten day when we process daily data as done in 
Section 4. Note that in (31  s s is 
used to approximate the expec ky 
prices

4. Numerical Results 

 of 
ng 

rices 

iS  at it , = 0,1, ,729.i   These dat  h
obtained computing one trajectory of the stochastic dy- 
namical system used to model spiky asset prices defined 
in Section 2 looking at the computed traj

= it t , = 0i ,1, ,729,  with 1 = 1 365,   i it t 

chosen  and 


 where we have =i 1, 2, , 729, 0 = 0t

*
0 0

ˆ ˆ= = = 20S S . We choose the vector S   that spe- 
the model used to generate the data equal to cifies 

   1= ,  ,  ,  ,  = = 0.03,  0.3,  70,  1,  2
T T

a b     in the 
first year of data (i.e. when = it t , = 0,  1,  ,  364i  ), and 
equal to    2= ,   = = 0.1,  0.8,  150,  5,  4

T T     
in the second year of data (i . when = ,it t   

= 365,  366,  ,  729i  ). The data are generated using as 
initial value of the second year the last datum of the first 
year. The synthetic data generated in this way are shown 
in Figure 1. These data are spiky data and the fact that 
the first year of data is generated using a different choice 
of 

,  ,  ,a b
.e

  than the choice made in the second year of data 
can be seen simply looking at Figure 1. 

We solve problem (24) with the ad hoc procedure 
described in Section 3 using the data associated to a time 
window made of 365 consecutive es, that 

we m ss 
ding t ding 

observation tim
ove this window acro
he datum correspon

is 365 days (one year), and 
the two years of data discar
to the first observation time of the window and inserting 
the datum corresponding to the next observation time 
after the window. Note that numerical experiments sug- 
gest that it is necessary to take a large window of obser- 
vations to obtain a good estimate the parameters ,a  b  
and  . The calibration problem is solved for each 
choice of the data time window applying the procedure 
described in Section 3, that is it is solved 365 times. The 
365 vectors   constructed in this way are compared to 
the two choices of the model parameters   used to 

ta. Moreover the time wgenerate the da  hen   changes 
fr  om being 1  to being 2  is reconstructe  

To represent the 365 vectors obtained solving t
ata time 

windows considered, we a ate ucted 
vector 

d.

he ca- 
 problem in correspondence 365 d

ssoci  t reconstr
libration  to the 

o each 
5R . 

Let us explain how this correspond
vectors 

  a point on a straight  Figure 2)
ce is established. 

We rst represent the 

line (see
en

 fi 1  and 2  that generate 
the data as two points on the straight line mentioned above 
having a distance proportional to 

*

1 2   measured 
in 

*

1  units, where 
 

 

Figure 2. Reconstruction of the parameter vectors 1  and 

.2  
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 * 5

=1

1
=

5 i
i   and  

       5= 1 , 2 , , 5
T

R     . We choose the origin 
of the straight line to be the mid point of the segment that 
joins 1  and 2.  In Figure 2 the diamond epresents 
the vector 

 r

1  and the square represents the ctor ve 2.  
The unit length is 

*

1 . he vectors (points)  T solution 
of the 365 calibration problems are represented as (green 
or red) stars. A point =P   is plotted around 1  when 

the quan

 

tity 
*

1

*

1




 is smaller than the quantity  

*

2

*

2




, otherwise the point P  is plotted around 2.   

The distance of the point P  from 1  is plotted 
ro

 P when
und a 1  (or from  when  is plotted around  2  P

) is 
*

1   measured in 
*

1  units (or 2
*

2   measured in 
*

1  units). The point =P   
plotted around 1  is plotted to the right or to the left of 

1  according to the sign of the second component of 

1  (negative second component of 1  is 
plotted to the left of 1 ). Remind that the second com- 
ponent of   is the volatility coefficient .  A similar 
statement holds for the points plotted around 2.  The 
results obtained in this experiment are show Figure 2. 
In this figure the green stars represent the solutions of the
calibration problems associated to the first data tim

while the red stars represen  
second “half” of the data time windows  is the 
second 182 time win  shows that the points 
(vectors) obtained solving the calibration 

n in 

183 

t those associated to the
 (that

 
e 

windows, that is the first “half” of data time windows, 

dows). Figure 2
problems are 

concentrated on two disjoint segments one to the left and 
one to the right of the origin and that they form two 
disjoint clusters around 1  and 2.  That is, the 
solution of th  365 calibration problems corresponding to 
the 365 time windo scribed previously shows that 
two sets of parameters seems to generate the data studied. 
This is really the case over, as expected,  points 

e
ws de

. More the
 around of the cluster 2  are in majority red stars, t

is they are in the points obtained by the analy
 hat 

 majority sis 
of data time windows containing a majority servations 
made in th data
time windo ints

 of ob
e second year (the second “half” of the  
ws), and a similar statement holds for the po  

of the cluster around 1  ajority green stars). 
The second numerical experiment is performed using 

real dat The real da studied are electric power pri

(in m

a. ta ce 
data taken from th  ma data are 
“spiky” a data  made

n 
he 

ere 
MWh), ed 

e for

o  o 

 

e UK electricity rket. These 
sset prices. The  time series studied is  

of the observatio times  

0 1 2< < < < = 1395 < ,nt t t t   (days), and of t
set price iS  observed at time it , wh  is 

Day-Ahead price, = , , .i n  Excluding week-end days 
and holidays this data time series corresponds to more 
than 5 years of daily observations going from January 5, 
2004 to July 10, 2009. Remind that GBP means Great 
Britain Pound and that MWh means Mega-Watt/hour. 

Moreover the data time series studied in correspondence 
of each spot price contains a series of forward prices 
associated to it for a variety of delivery periods. These 
prices include: forward price 1 month deep in the future 
(Month-Ahead price), forward price 3 months deep in the 
future (Quarter-Ahead price), forward price 4 months 
deep in the future (Season-Ahead price), forward price 1 
year deep in the future (One Year-Ahead price). These 
forward prices are observed each day it  and the forward 
prices observed at time it  are associated to the spot 
price ,iS  = 0,1, ,1395.i   The spot and the forward 
prices contained in the data time series mentioned above 
are shown in Figure 3. 

The observed electric power prices generate data time 
series with a complicated structure. The stochastic dyna- 
mical system studied in this paper does not pretend to 
fully describe the properties of the electric power prices. 
Indeed it is able to model only one property of these 
pr

0 =
spiky as
the daily electric power spot price (GBP/

iS
nam

0,1

, se
o

the first ob

ices: the presence of spikes. In addition the electricity 
prices have many other properties, for example, they are 
mean reverting and have well defined periodicity, that is 
they have diurnal, weekly and seasonal cycles. A lot of 
specific models incorporating (some of) these features 
are discussed in the literature  example [10]. 

Let us begin perf rming the analysis of the data using 
the model introduced in Section 2. The first question to 
answer is: the model for spiky prices presented in Section 
2 is an adequate model to analyze the time series of the 
spot prices? We answer to this question analyzing the 
relationship between the data and the model parameters 
established through the solution of the calibration problem. 
Let us begin showing that the relation between the data 
and the model parameters established through the 
calibration problem is a stable relationship. We proceed 
as follows. We have more than 5 years of daily obser- 
vations. We apply the calibration procedure to the data 
corresponding to a window of 257 consecutive observation 
times. Note that 257 is approximately the number of 
working days contained in a year and remind that we 
have data only in the working days. We move this window 
through the data time series discarding the datum 
corresp nding t servation time of the window 
and adding the datum corresponding to the next obser- 
vation time after the window. In this way we have 1396 − 
257 = 1139 data windows and for each one of these data 
windows we solve the corresponding calibration problem. 
The calibration problems are solved using the optimization 
procedure (including the ad hoc steps) described in 
Section 3. The reconstructions of the parameters obtained 
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Figure 3. The UK electric power price data. 
 
moving the window along the data are shown in Figures 
4 and 5. In Figures 4 and 5 the abscissa represents the 
data windows used to reconstruct the model parameters 
numbered in ascending order according to the order in 
time of the first day of the window. Figures 4 and 5 
show that the model parameters, with the exception of 

,  are approximately constant functions of the data 
ow. The parameter wind   reconstructed shown in 

Figure 5 is a piecewise constant function. These findings 
support the idea that the model and the formulation of the 
calibration problem presented respectively in Sections 2 
and 3 are adequate to interpret the data. In fact they 

establish a stable relationship between the data and the 
model parameters as shown in Figures 4 and 5. 

In the analysis of the real data time series the second 
question to answer is: the solution of the calibration 
problem and the tracking procedure introduced in Section 
3 can be used to forecast forward prices? To answer this 
question we compare the observed and the forecasted for- 
ward prices. We apply the calibration procedure to a data 
window made of the first three years of consecutive 
observations of the spot price taken from the data time 
series shown in Figure 3 and we use the solution of the 
calibration problem found and formulae (30), (31) to 
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Figure 4. Reconstruction of the parameters of the Black- 
Scholes model: μ, σ. 

 

 

Figure 5. Reconstruction of the parame
e spikes: a, b, λ. 

ele
ia

titatively the results shown in Figures 6-8 and gives the 

ters used to model 
th

 
calculate the forecasted forward prices associated to the 
spot prices of the data time series not included in the data 
window mentioned above used in the calibration problem. 
In Figures 6-8 the forward electric power prices fore- 
casted are shown and compared to the observed forward 

ctric power prices. In Figures 6-8 the abscissa is the 
day of the spot price assoc ted to the forward prices 
computed. The abscissa of Figures 6-8 is coherent with 
the abscissa of Figure 3. Table 1 summarizes quan- 

 

Figure 6. Month-ahead prices. 
 

 

Figure 7. Quarter-ahead prices. 

ices with 
th

formulation of the calibration problem and its numerical 

 
average relative error forward pricese  committed using the 
forecasted forward prices, that is the average relative error 
committed approximating the observed forward pr

e forecasted forward prices. Table 1 and Figures 6-8 
show the high quality of the forecasted forward prices 
answering the second question posed about the analysis 
of the data time series in the affirmative. 

We can conclude that the data analysis presented shows 
that the model introduced to describe spiky prices, the 
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doi:10.1016/j.nahs.2006.05.002 

[3] F. Mariani, G. Pacelli and F. Zirilli, “Maximum Likeli-
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“The Calibration of the Heston Stochastic Volatility Model 
Using Filtering and Maximum Likelihood Methods,” G. S. 
Ladde, N. G. Medhin, C. Peng and M. Sambandham, Eds., 
Proceedings of Dynamic Systems and Applications, Dy- 
namic Publishers, Atlanta, Vol. 5, 2008, pp. 170-181. 

[6] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, 
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Figure 8. One year-ahead prices. 
 
Table 1. Average relative errors of the forecasted forward 
electric power prices when compared to the observed for

e future 

- 
 ward prices. 

Number of days in th
 Solvable Multi-Scale Stochastic Volat
n Pricing and Calibration,” Jourforward pricese  

30 (Month-Ahead prices) 0.0796  

[8] L. Fatone, F. Mariani, M. C. Recchioni and F. Zirilli, 
“The Analysis of Real Data Using a Multiscale Stochastic 
Volatility Model,” European Financial Management, 2012, 
in press. 

[9] P. Capelli, F. Mariani, M. C. Recchioni, F. Spinelli and F. 
Zirilli, “Determining a Stable Relationship between He- 
dge Fund Index HFRI-Equity and S&P 500 Behaviour, 
Using Filtering and Maximum Likelihood,” Inverse Pro- 
blems in Science and Engineering, Vol. 18, No. 1, 2010, 
pp. 93-109. 

[10] C. R. Knittel and M. R. Roberts, “An Empirical Examina-
tion of Restructured Electricity Prices,” Energy Econom-
ics, Vol. 27, No. 5, 2005, pp. 791-817.  
doi:10.1016/j.eneco.2004.11.005

90 (Quarter-Ahead prices) 0.1160 

365 (One Year-Ahead prices) 0.2183 

 
solution presented in this paper have the potential of be- 
ing tools of practical value in the analysis of data time 
series of spiky prices.  
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