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ABSTRACT 

This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying 
state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are 
stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction 
is given. The proposed technique is illustrated by means of numerical examples. 
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1. Introduction 

Over the last few decades, the study of time delay sys-
tems has received considerable attention in the context of 
control systems [1-3]. The presence of time delays leads 
to performance degradation and instability in many kinds 
of control systems like chemical, mechanical and bio-
logical systems [4,5]. Many publications relating to the 
issue of stability for time delay systems have appeared 
[6-13]. 

The problem of actuator saturation with or without 
time delay in the system has also received a lot of atten-
tion [14-18] in the past few years. The actuator saturation 
problem can be tackled using the anti-windup technique 
which augments the already existing linear controller 
with extra dynamics to minimize the adverse effect of 
saturation on the closed loop system. Several results are 
available where the anti-windup controller has been de-
signed for continuous time delay systems subject to input 
saturation [19-24]. A state feedback controller design 
method for a class of continuous linear time delay sys-
tems with actuator saturation with time varying delays 
has been presented in [23]. The design of anti-windup 
compensator gain for stability of actuator input con- 
strained state delay systems using constrained pole-posi- 
tion of the closed loop has been proposed in [24]. 

Several previous works [6-8,12,13] deal with the 
problem of global asymptotic stability of digital filters 
with state saturation. The nonlinearities considered in 
[6-8,12, 13] occur due to the implementation of the sys-
tem using finite wordlength. In contrast, much less atten-

tion has been paid for the stability analysis of discrete 
time-delay systems subjected to input saturation. 

The main objective of this paper is the study and cha-
racterization of regions of stability for discrete time delay 
systems subjected to input saturation through anti-windup 
strategies. The delay range dependent approach is adopted 
and the corresponding anti-windup compensator gain is 
obtained via LMIs formulation. Furthermore, the domain 
of attraction of the origin can be estimated for the under- 
lying systems with different time delay ranges. The paper 
is organized as follow. Section 2 presents a description of 
the system under consideration. A delay-dependent linear 
matrix inequality (LMI) condition for the design of anti- 
windup compensator gain for stability of actuator input 
constrained state delay systems is proposed in Section 3. 
An optimization procedure to maximize the domain of 
attraction is also stated in this section. The effectiveness 
of the derived condition is presented through the nu-
merical examples in Section 4. 

Notations: p qR  denotes the set of  real ma-
trices and the notation 

p q
pR  means the set of 1p  real 

matrices.  stands for the null matrix and  is an  0 I
identity matrix of an appropriate dimension.  max   is  

the maximum eigenvalue of any given matrix   and 
transpose of this matrix is denoted by . The symmet-
ric entries in a symmetric matrix are given by . 

T
*

2. Problem Statement 

Consider the discrete time linear system with a time va-
rying delay *Corresponding author. 
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        +1 = + dk k k d k x Ax A x Bu k      (1a) 

   =ky Cx k                (1b) 

where ,   nk x   mk u ,   pk  y  are the 
state, the input and measured output vectors respectively. 
Matrices A , d , ,  are constant matrices of ap-
propriate dimensions, and 

A B C
 d k  is a time varying delay 

satisfying 

 ld d k d  h                 (2) 

For the system (1) the dynamic output stabilizing con-
troller is considered as 

    1c c c ck k  x A x B y k

k

        (3a) 

     c c c ck k v C x D Cx

n

         (3b) 

where  is the controller state and   c
c k x  c kv  is 

the controller output. The controller (3) is to be designed 
to ensure the stability and the performance of the system 
in absence of the control saturation. 

The input vector  is subjected to the amplitude 
constraint as 

u

     0 i i 0u u u   i

m



0

i

i

              (4) 

where , denote the control amplitude 
bounds. Thus the actual control signal given into the 
plant is  

0( ) 0, 1, ,iu i  

        = c c c ck sat k sat k k u v C x D Cx .   (5) 

The saturation nonlinearities are given by 

   
     

       

     

0 0

0 0

0

if

if

if

i c i

c c i i c i ii

i c i

u v u

sat v k v u v u

u v u

  
  




    (6) 

Substituting (5) in (1), one obtains 

        1 dk k k d k sat    x Ax A x B v c k



  (7a) 

         d ck k d k k    Ax A x B v v c k   (7b) 

         
    
d c c

c c c

k k d k k

k k

    

 

Ax A x B C x D Cx

B C x D Cx
c k

(7c) 

where 

   sat v v v              (8) 

Adding an anti-windup term of the form  
    c c c sat k kE v v

 1 x A

 to the controller we get  

   
    

c c c c

c c c c

k k k

k k



 

x B Cx

E C x D Cx
      (9) 

Now define an extended state vector  

   
 

1
1

1
cn n

c

k
k

k
 

    

x

x
         (10) 

and the following matrices 

 

+
, ,

,
c

c c d
d

c c

c c
n

    
    
   

 
 
 

0

0 0 0

0

A BD C BC
,




A B
A = A B =

B C A

R = K = D C C
I

 (11) 

Using (1)-(11), the closed loop system can be ex-
pressed as 

      
    

1 = d

c

k + k k d k

k

 

 

A A

B RE K

  

 
      (12) 

Let the solution of closed loop system given by (12) 
with the initial condition 

 0 , , 1,h hk k d d      , 0  be  0,k   

Then the domain of attraction of the origin of system 
by (12) is 

    0, , 1, , 0 : lim ,h h
k

k k d d k 


0        (13) 

The main aim of this paper is to determine the anti- 
windup gain matrix cE  and a scalar  , as large as 
possible, such that the asymptotic stability of the closed 
loop system given by (12) is ensured for all time varying 
delays satisfying (2). Also, we are interested in obtaining 
an estimate of domain of attraction  where X 

    , , 1, ,0 : maxh hX k k d d k          (14) 

3. Delay-Dependent Stability Analysis 

3.1. LMI-Based Stability Conditions 

Consider a matrix  and define the polyhe-
dral set 

 cm n n G 

 
       0 0; ( ) ( )

1, 2, ,

cn n
i i i iu k

i m

 ,u      
 

  

ξ ξ
 



K G
 (15) 

In [25] it has been shown that 

         0Τ k k k  ψ ψKξ D Kξ Gξ     (16) 

where ξ  and m mD  is a positive definite di-
agonal matrix. 

The main result may be stated as follows. 
Theorem 1: For given positive integers l  and h  

with h , if there exist positive definite symmetric 
matrices , ,  

d

c

d

l    c cn+n n+n
c cn n+

d d
P

  n+n n+

  cn+n n+nT
   c cn+nU , , and a diagonal posi-  nJ

tive definite matrix m mL ,  1, 2,3Τ
i i i  0Q Q , 
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Τ
i i  0Z Z

11 12

22*

Y Y
Y =

Y

   

   

 1, 2i 

1

2

 
 
 

N
N

=
N

11 12

22*

 
 

 
0

X X
X =

X

1

2

 
 
 

M

M
1

2

 
 

 
0 M =

 
 
 

S
S =

S   
( )cm n+nG

11

Τ

   

 

12 1   

22 3

22

   

2
max max 1

max 2

max 1 max 2

max 3

[ ( ) 2 ( 1) ( )

2( )( + +1) ( )

( ) ( )

0.5( 1)( ) ( )] 1

h h

h l h l

l h

h l h l

d d

d d d d

d d

d d d d

   


 


   

 

 

    

P Z

Z

Q Q

Q

   (25) 

, , such that (17)-(21) hold, cn m

1

 
 
 

X N

* Z

2

 
 
 

Y S

* Z




X Y

i i u



P K

K G

2

1 11h h

d d

d d

 

 

Q

1 1 M S

 
2 2

22ld

 



N M

X Y

H

1φ

2φ

3φ

1 P Q

N X

2
ΤN N

2

h hd d



 

Q N





1 2

 
 
 

0
M

Z

 


  
0

G

3 1

11

Q N

Y

 12 12h h ld d d X Y

2 2
Τ S S

1

 0

 0



0 ( )

Τ Τ
i i

i



 +1

ld

2
Τ ΤM



Proof: See the Appendix A. 
Remark 1: To apply Theorem 1, initial guesses of the 

positive definite matrices  are tested until 
(17)-(21) have a feasible solution. Numerical experiences 
from the examples in the Section 4 suggest that useful  

, ,U T J
               (18) 

               (19) 

initial choices can be  and   1TU T I


  A A 
 1T

d dJ I


 A A , where         (20)   and   are positive 
constants [27]. * Z

2

 
h l





As a direct consequence of Theorem 1, we have the 
following result.           (21) 

Corollary 1: For given positive integers l  and h  
with , if there exist positive definite symmetric 

d



d

hd dwhere l
  c cn n n+n Pmatrices , , 

 

  c cn+n n+nT
        (22)   c cn+n n+nU , , a matrix   c cn+n n+nJ cn mH

m m

 

and a diagonal positive definite matrix L , and  
  (23) the appropriately dimensioned matrices 

 1, 2,3Τ
i i i  0Q Q

 X X
, ,  1, 2Τ

i i i  0Z Z
 Y Y11 12

22*
 

 
0X =

X
, , 11 12

22*
 

 
0Y =

Y
1

2

 
 
 

N
N =

N
, 

1

2

 
 
 

M
M =

M
1

2

, 
 
 
 

S
S =

S
, such that 

       (24) 

then for the gain matrix cE HL , the closed loop sys-
tem given by (12) is asymptotically stable and an esti- 
mate of the domain of attraction is given by 
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h

Τ
h d

h

d

d

d

2

ΤΤ T
h l

Τ Τ
h l d d

T T T

h l

d d

d d

d d
















 

 


 


      


 




 

 






 



0

0 0

G

0

0 0

A

L B

U UZ

0 0

0 0 0

0 0

0

A I AI
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L RH BL RH BL RH

U

Τ ΤZ T

* J + JPJ

S M

S M

Q

Q        (17)

 

 

   
 

     
1

2

2

* 2

* *

* *

ΤΤ TΤ
h lh

Τ ΤΤ
h l d dh d

T T T
h h l

d dd

d dd

d d d
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and (18)-(20) hold, for the gain matrix 1

c
E HL , the 

closed loop system given by (12) is globally asymptoti-
cally stable. 

Proof: Consider G = K . It follows that (15) is veri-
fied for all , then (17) corresponds to (26).   cn nk 

3.2. Maximization of the Estimate of Domain of 
Attraction 

The following theorem gives an optimization procedure 
to maximize the estimate of domain of attraction. 

Theorem 2: Consider the closed loop system (12) with 
the initial conditions (13) then the maximized domain of 
attraction can be estimated if the following convex opti-
mization problem minimize r where 

  
  

1 2

3 4

5 6

+ 2 ( +1)

+2 + +1 +

+ + 0.5 +1

h h

h l h l l

h h l h l

r = w d d w

d d d d w d w

d w d d d d w



 

     (27) 

subject to (17)-(21) and 

1 2 1 3 2 4

5 2 6 3

0, 0, 0, 0

0, 0

w w w w

w w

       

   

I P I Z I Z I Q

I Q I Q
1



 







(28) 

has a feasible solution for the weighting parameters 
, positive definite symmetric matri-  > 0 , 1,2, ,6iw i  

   n+n n+nces , , c cP   c cn+n n+nT
  c cn+n n+nU

Τ

, , and a diagonal posi-

tive definite matrix , ,  

  c cn+n n+nJ
m mL  1, 2,3Τ

i i i  0Q Q

 1, 2i i i  0Z Z  

11 12 11 12 1

22 22 2

1 1 ( )

2 2

, ,
* *

, , ,c cm n+n n m 

    
     

    
   

    
   

0 0
X X Y Y

X = Y = N =
N

X Y N

M S
M = S = G H

M S

 

In this situation, an anti-windup gain 1
c

E HL  pro- 
vides a maximized estimate of domain of attraction given 
by maxδ = 1 Λ  , where 

   
    

   
 

max max 1

max 2

max 1 max 2

max 3

( ) 2 +1

2 + +1

+ +

+0.5( )( +1)

h h

h l h l

l h

h l h l

d d

d d d d

d d

d d d d

 



 



  

 

 

P Z

Z

Q Q

Q

      (29) 

Proof: The satisfaction of relation (28) implies that  

 max 1w P I ,  ,  ,   max 1 2w Z I  max 2 3w Z I

 max 1 4w Q I ,  ,  .   max 2 5w Q I  max 3 6w Q I

From (25), one has =
Λ



. Thus, if we minimize 

(27),   is being maximized. In other words, the opti-
mization problem given in Theorem 2 orients the solu-

tions of (17)-(21) in order to obtain the domain of attrac-
tion as large as possible.  

4. Examples 

To illustrate the applicability of the presented results, we 
now consider the following examples. The first one is 
provided to check the validity of the results in the local 
stability context, while the second one demonstrates the 
global asymptotical stability. 

Example 1. Consider the discrete time state delayed 
system (1) and stabilizing controller (3) with 

0.8 0 0.1 0.1
, ,

0 0.97 0 0.1

1 1 0
, 

0 0 1

d

   
 


    
  
   

    
   

A A

B C





 

  

0.0718 0.0389 0.0213 0.0001
,

0.0502 0.0012 0.0621 0.008

0.0184 0.0213 , 0.0228 0.0087

c c

c c

  
 


    
  

   

A B

C D

  

The control signal injected into the plant is a saturated 
one characterized by (6) where  

( )10 10iu    

Applying Theorem 2 and using Matlab (version 7.4) 
LMI toolbox [28,29] the anti-windup controller gains and 
the estimated domain of attraction for different delay 
ranges for the present system are obtained as shown in 
Table 1. 

The state trajectories of the closed loop system for 
  1d k   are depicted in Figures 1 and 2. As shown in 

Figure 1, the states of plant given by  1x k  and  2x k  
converge to zero. The controller states represented by 

 
1c

x k  and  
2cx k  also converge to zero (see Figure 

2). Figure 3 shows the plot of the unconstrained control-
ler output  cv k  and the plant input  u k . 

Example 2. Consider the discrete time state delayed 
system (1) and stabilizing controller (3) with  
 

Table 1. Computation results of Example 1. 

 l hd d k d   max  ( 1

c

E = HL ) 

 1 3d k   0.5151 
0.0705

0.1375

 
 
 

 

 1 4d k   0.3852 
0.0885

0.1848

 
 
 

 

 1 5d k   0.2918 
0.1104

0.2408

 
 
 

 

 1 6d k   Infeasible Infeasible 
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Figure 1. Trajectory of plant states. 
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Figure 2. Trajectory of controller states. 
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Figure 3. Plot of vc(k) and u(k). 
 

 

0.8 0 0.015 0.01
,

0 0.7 0 0.013

1 1 0
, , 1 8

0 0 1

d

d k

   
      
   

      
   

A A

B C

,






,




 

  

0.0518 0.0389 0.0213 0.0001
,

0.0502 0.0012 0.0621 0.008

0.0184 0.0213 , 0.0228 0.0087

c c

c c

  
      
   

A B

C D

 

It is found that the conditions stated in Corollary 1 are 
feasible for the present example. Therefore, Corollary 1 
assures the global asymptotic stability of the system un-
der consideration and the anti-windup controller gain is 
obtained as  

1 0.0937

0.1176c
  
   

E = HL  

5. Conclusions 

The control problem for linear discrete time delay sys-
tems subjected to input saturation through anti-windup 

strategies is investigated in this paper. The time delay is 
considered to be time varying. A delay range dependent 
approach is used and the corresponding LMI based stabi-
lizing anti-windup compensator gain is obtained. An es-
timate of domain of attraction of the origin is also de-
rived for the given system with different time delay 
ranges. 

Recently, the delay-partitioning approach for the sta-
bility analysis of linear discrete time systems with time 
varying delay has been reported in [30]. As demonstrated 
in [30], the idea of delay-partitioning may lead to less 
conservative stability results. By utilizing the idea of 
delay-partitioning [30], the stability analysis of time de-
layed discrete systems subjected to input saturation ap-
pears to be an interesting problem and open for future 
investigation. 
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Appendix A 

Proof of Theorem 1 

Let 
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Consider a quadratic Lyapunov function [26] 
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Using (A9)-(A14) and (A18)-(A23), we have the fol-
lowing inequality 
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In view of (18)-(20), it follows from (A24a) that  
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Using (A31)-(A33), it is easy to see that (A27) is im-
plied by (17). 

The satisfaction of relation (21) shows that the set 
   ,1 ; 1cn n P   


P  is included in the po- 
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Hence, if the set   1  , then 1Τ P   is also 
verified. Therefore, all the trajectories of  k  that 
start from   1   remain in domain of attraction 
provided (21) is satisfied ensuring the asymptotic stabil-
ity of the closed loop system (12). 

This completes the proof. 
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