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ABSTRACT

This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying
state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are
stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction
is given. The proposed technique is illustrated by means of numerical examples.
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1. Introduction

Over the last few decades, the study of time delay sys-
tems has received considerable attention in the context of
control systems [1-3]. The presence of time delays leads
to performance degradation and instability in many kinds
of control systems like chemical, mechanical and bio-
logical systems [4,5]. Many publications relating to the
issue of stability for time delay systems have appeared
[6-13].

The problem of actuator saturation with or without
time delay in the system has also received a lot of atten-
tion [14-18] in the past few years. The actuator saturation
problem can be tackled using the anti-windup technique
which augments the already existing linear controller
with extra dynamics to minimize the adverse effect of
saturation on the closed loop system. Several results are
available where the anti-windup controller has been de-
signed for continuous time delay systems subject to input
saturation [19-24]. A state feedback controller design
method for a class of continuous linear time delay sys-
tems with actuator saturation with time varying delays
has been presented in [23]. The design of anti-windup
compensator gain for stability of actuator input con-
strained state delay systems using constrained pole-posi-
tion of the closed loop has been proposed in [24].

Several previous works [6-8,12,13] deal with the
problem of global asymptotic stability of digital filters
with state saturation. The nonlinearities considered in
[6-8,12, 13] occur due to the implementation of the sys-
tem using finite wordlength. In contrast, much less atten-
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tion has been paid for the stability analysis of discrete
time-delay systems subjected to input saturation.

The main objective of this paper is the study and cha-
racterization of regions of stability for discrete time delay
systems subjected to input saturation through anti-windup
strategies. The delay range dependent approach is adopted
and the corresponding anti-windup compensator gain is
obtained via LMIs formulation. Furthermore, the domain
of attraction of the origin can be estimated for the under-
lying systems with different time delay ranges. The paper
is organized as follow. Section 2 presents a description of
the system under consideration. A delay-dependent linear
matrix inequality (LMI) condition for the design of anti-
windup compensator gain for stability of actuator input
constrained state delay systems is proposed in Section 3.
An optimization procedure to maximize the domain of
attraction is also stated in this section. The effectiveness
of the derived condition is presented through the nu-
merical examples in Section 4.

Notations: R”* denotes the set of pxg real ma-
trices and the notation R” means the set of px1 real
matrices. 0 stands for the null matrix and I is an

identity matrix of an appropriate dimension. A, (©) is
the maximum eigenvalue of any given matrix ® and
transpose of this matrix is denoted by ®” . The symmet-
ric entries in a symmetric matrix are given by *.

2. Problem Statement

Consider the discrete time linear system with a time va-
rying delay
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x(k+1)=Ax(k)+4,x(k—d(k))+Bu(k) (1a)
y(k)=Cx(k) (1b)

where x(k)eR", u(k)eR”, y(k)eR” are the
state, the input and measured output vectors respectively.
Matrices A, A,, B, C are constant matrices of ap-
propriate dimensions, and d (k) is a time varying delay
satisfying

d <d(k)<d, @

For the system (1) the dynamic output stabilizing con-
troller is considered as

x, (k+1)=A.x, (k)+B,y(k) (3a)

v.(k)=C.x (k)+D,Cx(k) (3b)

where x,(k)eR™ is the controller state and v_ (k) is
the controller output. The controller (3) is to be designed
to ensure the stability and the performance of the system
in absence of the control saturation.

The input vector u is subjected to the amplitude
constraint as

Uy <u

“

where u,, >0,i=1,---,m, denote the control amplitude
bounds. Thus the actual control signal given into the
plant is

(i) = Mot

u(k)=sat(v,(k))=sat(C,x,(k)+D,Cx(k)). (5
The saturation nonlinearities are given by
oy 1T Yy <t
sat(vc (k))() =1 Ve) if —Uys) < Vo S Uy (6)
oy 1T Yy > oy
Substituting (5) in (1), one obtains
x(k+1)=Ax(k)+ A,x(k—d(k))+Bsat(v,(k)) (7a)
= Ax(k)+ A, x(k—d (k))+B(v,(k)-w(v.(k))) (7b)

= Ax(k)+A,x(k—d(k))+B(C x, (k)+D,Cx(k))

-By(C x,(k)+D,Cx(k)) )
where
w(v)=v-sat(v) 8)
Adding an anti-windup term of the form
E, (sat(v(, (k))-v, (k)) to the controller we get
x, (k+1)=A.x, (k)+B.Cx(k) ©

—Ecy/(chc (k)+ DCCx(k))

Now define an extended state vector

Copyright © 2012 SciRes.
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x(k+1)
k+1)= R 10
§(k+1) {xc(kﬂ)}e (10)
and the following matrices
- |A+BDC BC. | - |4, 0| - |B
A = 5 Ad = B B = 9
BC A, 0 0 0
an

R

0 K=[DC C
1| =[P 2

Using (1)-(11), the closed loop system can be ex-
pressed as

E(k+1)=A&(k)+AE(k—d(k))
~(B+RE, )y (K& ()

Let the solution of closed loop system given by (12)
with the initial condition

S :¢5 (k)’k:_dh’_dh +1,-,0 be (P(ksfo)

Then the domain of attraction of the origin of system
by (12) is

ré{¢§(k),k=—dh,—dh+1,.--,0:m¢(k,§0)=0}(13)

(12)

The main aim of this paper is to determine the anti-
windup gain matrix E, and a scalar o, as large as
possible, such that the asymptotic stability of the closed
loop system given by (12) is ensured for all time varying
delays satisfying (2). Also, we are interested in obtaining
an estimate of domain of attraction X; c I' where

X, 2{g. (k). k==d,,—d, +1,---,0:max g, (k)| <5} (14)

3. Delay-Dependent Stability Analysis
3.1. LMI-Based Stability Conditions

Consider a matrix G eR™""") and define the polyhe-
dral set
Je Ee S:R(n“%); —Uy < (I_((l_) —G(i))ﬁ_,(k) < Uy()» (15)
i=1,2,m

In [25] it has been shown that
0=y" (K& (k))D{w (K& (k))-Gé (k) <0

where e/l and D eR™"
agonal matrix.

The main result may be stated as follows.

Theorem 1: For given positive integers d, and d,
with d, >d,, if there exist positive definite symmetric
matrices P e R o g glrtneprtne)

U e R g e U X mn) and q diagonal posi-
tive definite matrix LeR™", Q, = QiT >0 (i =1, 2,3) ,

(16)

is a positive definite di-
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z,=2">0 (i=12)

_ v, Y, >0 N= N, M= M, S = S,
oY, N, M, S,

G e R H e V™, such that (17)-(21) hold,

X N
Yy §
X+Y
>0 (20)
Z +Z,
P -G/
>0 (21)
Ki_Gi uO(i)
where
/111:_P+Q1+Q2+(dh_d1+1)Q3+N1 (22)
+N| +d, X11+(dh_d/)Yll
Jp=—N,+ NI +M,~S8,+d, X,,+(d,~d,)Y,, (23)
» =0 ~N,~N, +M,+M; -S,-S, (24)

+dh Xzz +(dh _dI)YZZ

then for the gain matrix E_ = HL, the closed loop sys-
tem given by (12) is asymptotically stable and an esti-
mate of the domain of attraction is given by

ET AL.

T =8 [Aax (P)+2d,(d), + 1) A (Z)
+2(dh dl)(dh Jrdl +1) ‘max (Z2)

+ dl max (Ql) + dh max (QZ)
+ Os(dh dl + 1)(dh + dl) max (Q3 )] <1

Proof: See the Appendix A.

Remark 1: To apply Theorem 1, initial guesses of the
positive definite matrices U,T,J are tested until
(17)-(21) have a feasible solution. Numerical experiences
from the examples in the Section 4 suggest that useful

initial choices canbe U =T = a(ATA +I)7l and

J:ﬂ(AdTAd—i-]) 1 , where o and S are positive
constants [27].

As a direct consequence of Theorem 1, we have the
following result.

Corollary 1: For given positive integers d, and d,
with d, >d,, if there exist positive definite symmetric

W(ntn,)

(25)

matrices P e R"" T e R

U e R g e U)o matrix H € R

and a diagonal positive definite matrix LeR™", and

the appropriately dimensioned matrices
0=0'>0 (i=1,23), Z,=Z'>0 (i=12),

’T=|:‘Kll ‘K12:|>0 Y=|:Ill Y12:|>0 N=|:1 1j|
LD ‘¢ * oy |7 N, |’
22 22 2

Ml Sl
M = , = , such that
M, S,

A Ay S -M, G \Jd,(A-1) (d,~d,)(A-1) A’
* /122 Sz _Mz 0 \/de Z; (dh _dz )Z; A;
* 5 0 0 0 0 0 0
SR ) S | 0 0 0 <0 (17)
* o+ o+ x L —[d(BL+RH) _[(d,~d,)(BL+RH) —-(BL+RH)
ok xx x 2U+UZU 0 0
£ ox xx s * AT +TZ,T 0
i * * % % % * * 2J+JPJ
A Ay S -M, KT a4, (A-1)  (d,~d,) (4-1) ar
* A’zz Sz _Mz 0 \/Z Z; (dh _dz)_g Z;
* * -Q 0 0 0 0
oroor -0, 0 0 0 0 <0 (26)
* ox x 2L —[fd(BL+RH) —[(d,~d,)(BL+RH) —(BL+RH)
ok x x x QU +UZU 0 0
£k ks * OT+TZ,T 0
Copyright © 2012 SciRes. ICA



R.NEGI ET AL. 37

and (18)-(20) hold, for the gain matrix E,=HL", the
closed loop system given by (12) is globally asymptoti-
cally stable.

Proof: Consider G =K . It follows that (15) is veri-
fied for all £(k)eR"", then (17) corresponds to (26).

3.2. Maximization of the Estimate of Domain of
Attraction

The following theorem gives an optimization procedure
to maximize the estimate of domain of attraction.

Theorem 2: Consider the closed loop system (12) with
the initial conditions (13) then the maximized domain of
attraction can be estimated if the following convex opti-
mization problem minimize r where

r=w +2d,(d,+1)w,
+2(d, —d,)(d, +d, +1)w; +d,w,
+d,ws +0.5(d, +d,)(d, —d, +1)w,

27

subject to (17)-(21) and

wl-P20,w,I-Z 20,wI-Z,>20,w,I-0, 2 0(28)
wil -0, 20, w I -0, 20

has a feasible solution for the weighting parameters
w,>0,i=1,2,---,6, positive definite symmetric matri-
ces P e R , ,

U e R g e QU mn) - and a diagonal posi-
tive definite matrix LeR™", Q, = Ql.T >0 (i = 1,2,3) ,
Z,=2>0 (i=12)

X, X, Y, Y N,
X = 11 12 >0,Y = 11 12 >0, N = 1
{ Xy . N,

Ml _ Sl mx(n+n.) n.xm
s S - 5 G € E}{ 5 H S ER
M, S,

T c m(’1+l1c)><(l1+n(.)

M

In this situation, an anti-windup gain E_,=HL' pro-
vides a maximized estimate of domain of attraction given
by 5, = 1/\/X , Where

A=2, (P)+2d, (dh +1)/1max (Zl)
+2(d, —d,)(d, +d, +1) 0 (Z,)
+dlﬂ’max (Ql ) + dh )’max (QZ )
+0.5(d, +d,)(d), —d, +1)4,

29

o (05)

Proof: The satisfaction of relation (28) implies that
Ao (P)SWI A (Z])SWZI , A (ZZ)SW3I ,

max max max

i (QI)SW‘*I » i (QZ)SWSI > ]’max(Q3)SW6I'

r,
From (25), one has & =—2 . Thus, if we minimize

JA

(27), O is being maximized. In other words, the opti-
mization problem given in Theorem 2 orients the solu-

Copyright © 2012 SciRes.

tions of (17)-(21) in order to obtain the domain of attrac-
tion as large as possible.

4. Examples

To illustrate the applicability of the presented results, we
now consider the following examples. The first one is
provided to check the validity of the results in the local
stability context, while the second one demonstrates the
global asymptotical stability.

Example 1. Consider the discrete time state delayed
system (1) and stabilizing controller (3) with

08 0 -0.1 -0.1
A = > Ad = 5
0 097 0 -0.1

1 10
B=| |,C=

0 0 1
_[0.0718  0.0389 _[-0.0213 0.0001
¢ 1-0.0502 —0.0012]" ¢ | 0.0621 0.008

C, =[0.0184 0.0213], D, =[-0.0228 ~0.0087]

The control signal injected into the plant is a saturated
one characterized by (6) where

~10<u, <10

Applying Theorem 2 and using Matlab (version 7.4)
LMI toolbox [28,29] the anti-windup controller gains and
the estimated domain of attraction for different delay
ranges for the present system are obtained as shown in
Table 1.

The state trajectories of the closed loop system for
d(k)=1 are depicted in Figures 1 and 2. As shown in
Figure 1, the states of plant given by x, (k) and x, (k)
converge to zero. The controller states represented by
x, (k) and x_ (k) also converge to zero (see Figure
2). Figure 3 shows the plot of the unconstrained control-
ler output v, (k) and the plant input u (k).

Example 2. Consider the discrete time state delayed
system (1) and stabilizing controller (3) with

Table 1. Computation results of Example 1.

d <d(k)<d, 5 (E.=HL")
1<d(k)<3 0.5151 ~00705]
= ' | 0.1375 |
1<d(k)<4 0.3852 00885
= ' | 0.1848 |
1<d(k)<5s 0.2918 0-1104]
= ' | 0.2408 |
1<d(k)<6 Infeasible Infeasible
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Figure 1. Trajectory of plant states.
<
W ol e
()
x
e
c
&
< TS
8 X, ()
-60 :
0 10 20 30

k

Figure 2. Trajectory of controller states.
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Figure 3. Plot of v.(k) and u(k).
08 0 —0.015 —0.01
A= A, = ,
0 07 0  -0.013
1 1 0
B=| |.C= J1<d(k)<8
0 0 1
- 0.0518  0.0389 B —0.0213  0.0001
¢ 1-0.0502 —0.0012|""° | 0.0621 0.008 |’

C, =[0.0184 0.0213], D, =[-0.0228 ~0.0087]

It is found that the conditions stated in Corollary 1 are
feasible for the present example. Therefore, Corollary 1
assures the global asymptotic stability of the system un-
der consideration and the anti-windup controller gain is
obtained as

[ 0.0937
E . =HL'=
-0.1176
5. Conclusions

The control problem for linear discrete time delay sys-
tems subjected to input saturation through anti-windup

Copyright © 2012 SciRes.

strategies is investigated in this paper. The time delay is
considered to be time varying. A delay range dependent
approach is used and the corresponding LMI based stabi-
lizing anti-windup compensator gain is obtained. An es-
timate of domain of attraction of the origin is also de-
rived for the given system with different time delay
ranges.

Recently, the delay-partitioning approach for the sta-
bility analysis of linear discrete time systems with time
varying delay has been reported in [30]. As demonstrated
in [30], the idea of delay-partitioning may lead to less
conservative stability results. By utilizing the idea of
delay-partitioning [30], the stability analysis of time de-
layed discrete systems subjected to input saturation ap-
pears to be an interesting problem and open for future
investigation.
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Appendix A
Proof of Theorem 1
Let
1 (k) =& (k+1)=&(k) (A1)
=(A-1)&(k)+ 4,8 (k—-d (k)
—(B+RE, )y (K&(K)) (A2)

Consider a quadratic Lyapunov function [26]

v(£(k)) = (£ (k))+v: (£(k))

+v3(§(k))+v4 (f(k)) (43
v (&(k))=£&" (k) P& (k) (A4)
n(ER)= 33 o (k+)znlk 1)
B (AS)
+€:§+11§1”T (k+l)Z2”(k+l)
W(EK)= 3 & (k+1)0E(k+1)
e (A6)

£ 3 E (k+1)Q.E(k+1)

I=—d,,

—dj+l

vi(€(k))= 225 (k+1)QE(k+1) (A7)
Defining
M(ER) =V (ER+))-v(EW) A9
gives
av (k) =€ <k+1)P5(k+1) £ (k) PE(K)
=[A&(k)+ A, (k—d (k) (A9)
~(B+ K&(k)] P
[Zg( +Ad§(k d(k))
~(B+R k))] (A10)
&' (k Pc’(k)
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"(KE(k))(B+RE,) PAE(k)

v
" (K&(k))(B+RE,) PA,E(k—d(k))
+y" (K&(k))(B+RE,) P(B+RE,) (AlD)
w(KE(k))-&" (k) P& (k)
Av,y (& (k) =d, " (k) Zn ()
-3 0 (07l 0) <y~ ) () Zan (k)
dz "(k+6)Zy(k+6)

A, (k=d (k)

v (K& (k))(B+RE,)
(dz+<d ~d,)Z,)4,&(k—d (K))

y' (KE(k))(B+RE.) (d, 2,+(d,~d)Z,)
(B+RE Jw(KE(k))

- Z n' (k+6)Zy(k+0)

6=—d (k)

- Z n' (k+6)Zy(k+6)

6=—d (k)
—d(k)-1

- > n' (k+0)(Z,+Z,)n(k+0)

0=-d,

(A12)

Avy (§(K))=&" (k)(Qi+0,)& (k)
~£" (k—d))Q&(k~d,)
& (k—d,)Q.£(k~d,)

Av, (&(k))=(d, —d, +1)&" (k) Q.&(k)

—d

- 3 & (k0 +0)

(A13)
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<{(d,~d, +1)¢" (k) Q£ (k)

(Al4)
¢ (k=d (1))@ (k-d (k)]
From (A1), we obtain
0=¢(k)—&(k—d(k))- i n(k+1) (A15)
I=—d (k)
0:§(k—d(k))—§(k—dh)—ﬂizkfiln(kﬂ) (A16)
0=¢(k—d,)—&(k—d(k))- dzl n(k+1) (A17)
I=—d (k)

which, in turn, implies

- i q(k+l)}(A18)

I=—d (k)

0=2§{(k)N{f(k)—§(k—d(k))
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=d& (K)Xg (k)= Y & (k)X (k)
e I=k—d (k) (A22)
- 2 G ()X (k)]
0= 3 G (0VE(0)= 3 & (k) Y5, (k)
—(d,—d,) T OYG ()= 3 ¢ (k) VG, (k)
k—d(k)-1 e (A23)
- 3 WL

Using (A9)-(A14) and (A18)-(A23), we have the fol-
lowing inequality

Av (& (k)) <65 (k) 76, (k)

k=1

—d(k)-1
0-27 (1M k- a()-£(e-)- o) -5 Gknes k)
(A19) k—d;~1 (A24a)
-3 dWes(®)
T —f—
0=2(] (k)S{cf(k—d,)—5(k—d(k))—1_§k)n(k+l)} e
- k k)—-20
0 2 W0 k)
Where here 0 is given by (16) and
T where & is given by an
& (k)=[&" (k) & (k-d(k))] (A21) ) ]
Let X=X">0 and Y=Y" >0 be any matrices of n: Ty S My
appropriate dimensions, then the following equations Ty Sy M, my
hold =] * * -0, 0 0 (A24b)
e e * * * -0, 0
0= 2§ (k)X (k)— pIR (k)X (£)] * % * *
I=k—d,, I=k—d), L Tss
n,=A"PA+(A-1) (d, Z,+(d,~d,)Z) (A-1)-P+0,+0, (A2
+(d,—d, +1)Q;+ N, + N| +d, X,,+(d, -d,)Y,,
n,=A"PA,+(A-1) (d, Z,+(d,~d,) Z,) A, ~ N, + N + M, - S, +d, X, +(d, ~d,)¥,, (A24d)
n;=—A"P(B+RE,)-(A-1)'(d, Z +(d,~d,)Z,)(B+RE,)+G'D (A24e)

ny,=APA,+ A (d, Z,+(d,~d))Z,) A, ~Q,~ N, ~ N, + M, + M; -8, -8, +d, Xp, +(d,—d,)Y,, (A24f)

ny=-A,P(B+RE,)-A,(d, Z+(d,~d,)Z,)(B+RE,)
n,=-2D+(B+RE,) P(B+RE,)+(B+RE,) (d, Z,+(d,~d,)Z,)(B+RE,)

C(k)=[&7 (k) & (k=d(k) & (k-d) & (k-d,) v’ (K&(k)]
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(A24g)

(A24h)

(A24i)
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& (k1) =[e (k) o' (1)]

R. NEGI

(A24j)

In view of (18)-(20), it follows from (A24a) that

— — T
T, ®m, S -M, GD
* = _
T,, S, M, 0
* *
0 0 0
* * * 0, 0
sk * * *
% * * * E3
k * * * %
% * * * E3

n,=-P+0,+0, +(dh _dz +1)Q3

Jir (a-1)

e
0

0

2D -Jd,(B+RE,) -

-1
_Z1
*

E3

(A26b)

+N,+ N/ +d, X,,+(d,—d,)Y,

12 :_N1+N2T+M1_S1+dh X,
+(dh_d1)Y12

Ty, =—0,—N,— N, + M, + M, —
_S2T+dh X22+(dh _dI)YZZ

Pre and post multiplying (A26a) by

Ay Ay S M, G'
* /122 sz -M 2 0
* * _Q1 0
* * * _Q2
* * * * 2L
* * * * *

* * * * *
* * * % %

where D™'=L and E,=HL"
and J >0, we have

(/-P)(-P)(J-P)<0
(U-2")(-2,)(U-2")<0
(T-2,")(-2,)(T-2,")<0

Therefore,
—-P'<-2J+JPJ
~-Z[' < 2U+UZU
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(A26c¢)

S2
(A26d)

Vi (i-1y
g
0

0

. For all U>0, T>0

(A28)
(A29)

(A30)

(A31)
(A32)

ET AL.

Av(&(k)) <0 if

<0 (A25)

Using Schur complement [29], (A25) is equivalent to

f@-ay@a-r 7
J(d, —d,)4; A
0 0
0 0 <0 (A26a)
(d,~d,)(B+RE,) —(B+RE,)
0 0
-z, 0
* —_p!
T 00 0 0 0 0 O]
0700 0 000
007 0 0 00O
0007 0 00O
0000 D" 0 OO
0000 0 I 00
0000 0 010
0000 0 0 0 I]
yields
Jd, )(A- A
\/ ) A
0 0
0 0 <0 (A27)
T — T
\)(BL+RH) —(BL+RH)
0 0
-z, 0
* _p!
-Z,' <-2T+TZ,T (A33)
Using (A31)-(A33), it is easy to see that (A27) is im-

plied by (17).
The satisfaction of relation (21) shows that the set
e(P,1)% {§ eR™ ETPES 1} is included in the po-
lyhedral set ¢ defined as in (15). Hence,
vé(k)ee(P,1) it follows that,
W(I?.f(k)) = K&(k) —sat(l_(é‘(k)) satisfies the sector con-
dition (16).
Then, if (17) is verified one gets Av(§ (k))

for a sufficiently small e >0 and accordingly,
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§TPE<v(&,)<v(&)
<, max 16(0)" [ (P)
+2d, (d, +1) A0 (Z))
+2(d, —d,)(d, +d, +1) 4, (Z,)
) A (1) + A (©2)
+0.5(d, —d, +1)(d, +d,) A0, (03) ]

:F(¢5)
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(A34)

Hence, if the set F(¢§)Sl, then &'PE<1 is also
verified. Therefore, all the trajectories of &(k) that
start from T (¢5) <1 remain in domain of attraction
provided (21) is satisfied ensuring the asymptotic stabil-
ity of the closed loop system (12).

This completes the proof.
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