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ABSTRACT 

In this paper, Homotopy perturbation method is used to find the approximate solution of the optimal control of linear 
systems. In this method the initial approximations are freely chosen, and a Homotopy is constructed with an embedding 
parameter  0,1p , which is considered as a “small parameter”. Some examples are given in order to find the ap-

proximate solution and verify the efficiency of the proposed method. 
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1. Introduction 

Optimal control problems arise in a wide variety of dis-
ciplines. optimal control theory has also been used with 
great success in areas as diverse as economics to biome- 
dicine [1]. Apart from traditional areas such as aerospace 
engineering [2], robotics [3] and chemical engineering. 
We know that generally optimal control problems are 
difficult to solve. particularly, their analytical solutions 
are in many cases are not questionable. Thus, the key to 
solve many of these real world problems are numerical 
methods. There is a new method proposed by some au- 
thors new for solving optimal control problem based on 
Pontryagin’s maximum principle or Hamilton-Jacobi- 
Bellman equation, such as the relaxed descent method, 
variation of extermal, quasilinearization, gradiant projec-
tion method [4-8]. An easy way that some author used 
for solving problem is to transform the problem to new 
problem. In [9] the problem is solved by converting the 
problem to differential inclusion form. In [10] the prob- 
lem is converted to measure space and then solved and in 
[11] the problem is solved by genetic algorithm, Others 
deal with the optimal control problem directly. For ex-
ample see [12-17]. 

In this paper we solve the optimal control problem by 
combine perturbation method. To this end, there are quite 
a few fundamentally diverse approaches, some of which 
can be found in [18,19]. The homotopy method is a pow-
erful numerical method for solving nonlinear algebraic 
and functional equations. The main advantage over clas-
sical methods is that the method enjoys global conver-
gence. However, it is not used as widely as these, mainly 
owing to being poorly covered in the Russian literature. 

The Belgian mathematician Lahaye was the first to use 
the homotopy method for the numerical solution of equa- 
tions. He considered the case of a single equation. He 
used discrete continuation by the Newton method. Later, 
Lahaye [20] also considered systems of equations. Davi-
denko [21,22] stated the method in the most effcient dif-
ferential form and applied it to a wide class of problems 
such as the inversion of matrices, the computation of de- 
terminants, the computation of matrix eigenvalues, and 
the solution of integral equations. Subsequently, in [23, 
24] the homotopy method was applied to boundary value 
problems and simplest variational problems. An essential 
contribution to the development of the method was made 
by Shalashilin, Grigolyuk, and Kuznetsov; their papers 
[25,26] are the most comprehensive publications on the 
homotopy method in Russian. The homotopy method has 
been developed for optimal control problems by Avva-
kumov [27], Since the 1980s. Allgower and Georg made 
an essential contribution to the popularization of the 
method. Their review [28] stimulated the development of 
the method. Of the recent publications, we note the mono- 
graph [28], where the homotopy method was combined 
with the Newton method or the gradient method in infi- 
nite-dimensional spaces. 

Consider the following optimal control problem 

     
0
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min d
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f f t
x t Sx t x Qx u Ru t    J
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R mu R n n, , and R  n mB R, x Awhere   are 
the time invariant given matrices. The control function 
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( )u t
,

 is an admissible control if it is piecewise continues 
in t for each t in the given interval 0 f

       
   

 

0, 1

[ 0,

0,1 , .

H v p p L v L u

p A v f r

p r

    
  

 

t t 

U R

  . It is assumed 
the control is bounded, that is, a closed, bounded, subset 

 of  exists, such that the control function takes its 
values form . The input U  u t  can be derived by mi- 
nimizing the quadratic performance index J , where  
and  are symmetric positive semi-definite and  is 
symmetric positive definite. By using Pontryaging’s maxi- 
mum principle, the optimal control law,  

 can be achieved for system (1.1) (see 
[34]). In this paper, we try to find an approximate value 
for  by means of the perturbation homotopy me- 
thod. Other numerical methods for approximating 

S
Q R

  k t 

 k t

u t  x t*

 k t

r

 
based on orthogonal functions are available in [29]. 

2. Homotopy Perturbation 

Non-linear techniques for solving linear and non-linear 
problems have been dominated by the perturbation me- 
thods, which have found wide applications in engineer- 
ing. But, like other non-linear analytical techniques, per- 
turbation methods have their own limitations, Firstly, 
almost all perturbation methods are based on small pa- 
rameters so that the approximate solutions can be ex- 
pressed in a series of small parameters. This so called 
small parameter assumption greatly restricts applications 
of perturbation techniques, as is well known, an hefty 
gigantic of linear and non-linear problems have no small 
parameters at all. Secondly, the determination of small 
parameters seems to be a special art requiring special 
techniques. An appropriate choice of small parameters 
leads to ideal results, however, an unsuitable choice of 
small parameters results in bad effects. In 1997, Liu [30] 
proposed a new perturbation technique which is not 
based upon small parameters but upon artificial parame-
ters, which are built in the equations. 

One may consider the following nonlinear differential 
equation (see [31-36]) 

   f r  0, ,A u              (2.1) 

with natural boundary conditions or tangentiality condi-
tions as: 

, 0,
u

r
n

  ,B u


  
 

           (2.2) 

where A is a general differential operator, B is a bound-
ary operator,  f r  is a known analytic function and   
is the boundary of the domain  . 

The operator A  can, generally, be divided into two 
parts L and N, where L is Linear, while N is nonlinear, so 
that (2.1) may written as: 

 L u

 

   u r



0.N f             (2.3) 

By homotopy perturbation technique, we construct a 
homotopy , :v r p 0, R 1   which satisfies 

      (2.4) 

or 

       
   

0 0,

0,

H v p L v L u pL u

p N v f r

  

    
     (2.5) 

 where 0,1p 0u is an embedding parameter, and  is 
an initial approximate solution of Equation (2.1). 

Obviously from Equation (2.5) 

     0,0 0,H v L v L u            (2.6) 

     ,1 0.H v A v f r  

p
 ,v r p

          (2.7) 

By changing continuously  from zero to unity the 
Equations (2.6) and (2.7) show that  will change 
from  u r0  to  u r . In topology, this changing is 
called deformation, and       0 ,L v L u A v f r 

p

p
2

0 1 2v v pv p v

 are 
called homotopy functions. 

In this method, using the homotopy parameter , we 
assume that the solution of Equation (2.5) is a power 
series of : 

   

1p 

1 0 1 2lim pv v v v v

           (2.8) 

Letting  results in the approximate solution of 
Equation (2.1) as: 

       (2.9)     

 

Series (2.9) is convergent for most cases, the conver-
gent rate depends upon the nonlinear operator A(v). 

3. Solution of the Optimal Control System 

In this section, we apply the homotopy perturbation me- 
thod to solve the optimal control system (1.1). 

Consider Hamiltonian of the control system (1.1) as: 

   1
, , , ,

2
T T TH x u t x Qx u Ru Ax Bu    

nR

  (3.1) 

where  is known as the costate variable. By Pon-
tryagin’s maximum principle, the optimal control must 
satisfy the following equation: 

H
0TRu B

u
              (3.2) 



where   is a solution of the adjoint equation 

H
,TQx A

x
         (3.3)      



with the terminal condition 

    ,f ft Sx t                (3.4) 

Thus, from Equation (3.2), the optimal control law is 
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 *u t  1 .TR B t 

1

.
T

T

            (3.5) 

From control system (1.1) and adjoint Equation (3.3) 
one have: 

x xR B

Q A

A B

 

  
     

  , .ft p t S

 
  

 


         (3.6) 

Implementing the optimal control as a closed loop if 
the solution to the adjoint Equation (3.3) is assumed like 
Equation (3.4) as a linear function of the states in the 
form( see [29]), 

    t p t x          (3.7) 

By using Equations (3.3), (3.6) and (3.7), we have 

        ,T1x t Ax t BR  B p t x t  

         
     

   

1

,T

t p t x t p t x t

p t p t A p t BR

Q A p t x t




 

  

    

  

    TB p t x t    

where the first equality follows from Equation (3.7) and 
the second one from Equation (3.6). Hence 

     
    0.

p t

p t x t 

( )

  1

T

T

p t p t A A

Q p t BR B

  

 


          (3.8) 

Since the above equation must hold for all nonzero 
x t ( )p t,  must satisfy the following matrix Riccati 
equation 

         1 ,T TBR B p t

    ,TB p t x t

  .f

p t p t A A p t Q p t

p t S

    




 (3.9) 

Considering Equations (3.5) and (3.7), we can see that 
the optimal control law is given as 

 * 1u t R 

 p t

         (3.10) 

and  can be computed using the following relation 

     1 ,w t v t

 

p t 

   v t x t

              (3.11) 

where ,  w t t

 
 

1 T

T

v tR B

w t

   
  

  

  ,f fS v t I  
w t

 1 TR B p t

 and 

 v t 
 

A B

w t Q A


 

  

   p t w t

 

with conditions,  and 
 

1
f f v t

  .f S

4. Numerical Examples 

In this section, we present some examples to show the 
reliability and efficiency of the method described in the 
previous section. In the following examples, we assume 

.  k t

Example 4.1. Consider a single-input scalar system as 
follows (see [29]): 

     

     

1
2 2 2

0

1 1
min 1 d ,

2 2

2 .

J x x t u t t

x t x t u t

    

  




2, 1,A B

 

According to system (1.1), we have   
1, 1, 1S Q R

 
  1,f and t   by using (3.12), we have 

     
     

2 0

2 0,

v t v t w t

w t v t w t

  

  




 

thus 

       
   

0 0 0 0, , , , ( ,

, 0.

H v w p L v w L u S pL u S

p N v w f r

  

    
 

So 
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      
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2
0 1 2 ,v v pv p v   

2
0 1 2 ,w w pw p w   

 

by using (2.8), let  and  
so, 

       
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2
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2
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from equating the terms with identical power of p, 

           
           

0 0 0 0 0 00

0 0 0 0 0 0

2 2 0
:

2 2 0.

v t v t w t u t u t S t
p

w t v t w t S t u t S t

     
      

 


(4.1) 

           
           

1 1 1 0 0 01
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2 2 0
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:

.

v t v t w t u t u t S t
p

w t v t w t S t u t S t

     
      

 


 

(4.2) 

     
     

2 2 22

2 2 2

2 0
:

2 0.

v t v t w t
p

w t v t w t

  
   




1, 1w S v u

         (4.3) 

where 0 0 0 0     are considered as initial 
approximations, and imposing boundary condition, so 
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         5 15
1te  5 1 5 1 5 1

1

3 5 3

5 5
t t tv t e e e         

         5 1 1t te  5 1 5 1 5 1
1

5 5

5 5
t tw t e e e       

by using (4.3), we have 

   2 2 0.w t v t  

From (2.9), we have 
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 
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 1 ( )TR B w t w t   
 

Figures 1 and 2 show the approximated value of  x t
 u t

 
and , respectively. 

Example 4.2. Consider a single-input scalar system as 
follows (see [29]): 

   

 

1 21
d

   
0

min
2

J x t u t t

u t

   

1, 1,A B  
0,S  1, 1,Q R  ft 

x t x t  




 

According to system (1.1), we have  
and , by using (3.12), we have 1

 

 

Figure 1. Approximate state x(t) for Example 4.1. 

 

Figure 2. Approximate control u(t) for Example 4.1. 
 

     
     
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thus 
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So 
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by using (2.8), we have 
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   
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from equating the terms with identical power of p, 
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where 0 0  are considered as initial approxima-
tions, Setting  and imposing boundary con-
dition, so 
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by using (4.3), we have 
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Figures 3 and 4 show the approximated value of x(t) 
and u(t), respectively. 

Example 4.3. Consider a single-input scalar system as 
follows: 
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Figure 3. Approximate state x(t) for Example 4.2. 
 

 

Figure 4. Approximate control u(t) for Example 4.2. 
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by using (2.8), we have 
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from equating the terms with identical power of p, 
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 x t  u t and obtained from this algo-
rithm in this following form 

  0.50.4121803177 tu t e   where, 0 0  are considered 
as initial approximations, Setting 0 0  and im-
posing boundary condition, the approximate and exact 
value for J  is 0.10   the  73926143,

Figure 5 compare the exact and approximate solution 
of x(t), and Figure 6 shows the residual function. 0.03303197895,

 
5. Conclusions 

In this paper, we solve the optimal control problems us- 
 

 
 Figure 5. Approximate and exact solution x(t) for Example 

4.3. Figure 6. Residual function for Example 4.3. 
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ing Homotopy perturbation method. Embedding parame-
ter  0,1p  can be taken into account as a perturbation 
parameter. Full advantage of the traditional perturbation 
techniques can be taken by the novel method. The initial 
approximation can be freely chosen with unknown con-
stants, which can be identified via various methods [35]. 

At last, Homotopy perturbation method is applicable 
method which calculates the approximate solution of 
linear and nonlinear problems, particularly optimal con-
trol problems. 
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