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ABSTRACT 

This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of classi-
cal coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is consid-
ered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non- 
Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform 
space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried 
numerically. The derived expressions are computed numerically for copper and the results are presented in graphical 
form. 
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1. Introduction 

Although thermomechanical phenomena in the majority 
of practical engineering applications are adequately si- 
mulated with the classical Fourier heat conduction equa- 
tion, there is an important body of problems that require 
due consideration of thermomechanical coupling: it is 
appropriate in these cases to apply the generalized theory 
of thermoelasticity. Serious attention has been paid to the 
generalized thermoelasticity theories in solving thermoe-
lastic problems in place of the classical uncoupled/cou- 
pled theory of thermoelasticity. 

The absence of any elasticity term in the heat conduc-
tion equation for uncoupled thermoelasticity appears to 
be unrealistic, since due to the mechanical loading of an 
elastic body, the strain so produced causes variation in 
the temperature field. Moreover, the parabolic type of the 
heat conduction equation results in an infinite velocity of 
thermal wave propagation, which also contradicts the 
actual physical phenomena. Introducing the strain-rate 
term in the uncoupled heat conduction equation, Biot 
extended the analysis to incorporate coupled thermoelas-
ticity [1]. In this way, although the first shortcoming was 
over, there remained the parabolic type partial differen-
tial equation of heat conduction, which leads to the pa-
radox of infinite velocity of the thermal wave. To elimi-
nate this paradox generalized thermoelasticity theory was 
developed subsequently.  Due to the advance- 

ment of pulsed lasers, fast burst nuclear reactors and par-
ticle accelerators, etc. which can supply heat pulses with 
a very fast time-rise [2,3]; generalized thermoelasticity 
theory is receiving serious attention. The development of 
the second sound effect has been nicely reviewed by 
Chandrasekharaiah [4]. At present mainly two different 
models of generalized thermoelasticity are being exten-
sively used-one proposed by Lord and Shulman [5] and 
the other proposed by Green and Lindsay [6]. L-S (Lord 
and Shulman theory) suggests one relaxation time and 
according to this theory, only Fourier’s heat conduction 
equation is modified; while G-L (Green and Lindsay 
theory) suggests two relaxation times and both the en-
ergy equation and the equation of motion are modified.  

The so-called ultra-short lasers are those with pulse 
duration ranging from nanoseconds to femtoseconds in 
general. In the case of ultra-short-pulsed laser heating, 
the high-intensity energy flux and ultra-short durationlaser 
beam, have introduced situations where very large ther- 
mal gradients or an ultra-high heating speed mayexist on 
the boundaries [7]. In such cases, as pointed out by many 
investigators, the classical Fourier model, whichleads to 
an infinite propagation speed of the thermal energy, is no 
longer valid [8]. The non-Fourier effect of heat conduc- 
tion takes intoaccount the effect of mean free time (ther- 
mal relaxation time) in the energy carrier’s collision pro- 
cess, which caneliminate this contradiction. By employ- 
ing the L-S model (Lord and Shulman) with one relaxa- 
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tion time,Sherief and Anwar [9] have obtained the dis-
tributions of thermal stresses and temperature for a gen-
eralizedthermoelastic problem in which an infinite elastic 
space was subjected to the influence of a continuous 
linesource of heat. The solution of the problem was ob-
tained by applying the Hankel and Laplace integral 
transformssuccessively. Wang and Xu have studied the 
stress wave induced by nanoseconds, picoseconds, and 
femtoseconds laser pulses in a semi-infinite solid [10]. 
The solution takes into account the non-Fourier effect in 
heatconduction and the coupling effect between tem-
perature and strain rate. It is known that characteristic 
elasticwaveforms are generated when a pulsed laser irra-
diates a metal surface. Point in case, McDonald hasstud-
ied the importance of thermal diffusion to the thermoe-
lastic wave generation [11]. Bagri and Eslami got the 
unified generalized thermoelasticity solution for cylinders 
and spheres [12]. 

The present investigation is devoted to a study of the 
induced temperature and stress fields in an elastic half 
space under the purview of classical coupled thermoelas- 
ticity and generalized thermoelasticity in a unified sys- 
tem of field equations. The half space continuum is con- 
sidered to be made of an isotropic homogeneous ther- 
moelastic material, the bounding plane surface being sub- 
jected to a Non-Gaussian laser pulse. An exact solution 
of the problem is first obtained in Laplace transform 
space. Since the response is of more interest in the tran- 
sient state, the inversion of Laplace transforms have been 
carried numerically. The derived expressions are com- 
puted numerically for copper and the results are pre- 
sented in graphical form. 

2. Basic Equations and Formulation 

All the field equations represented by (CTE), (L-S) and 
(G-L) can be formulated in the following unified system 
[13] and [14]: 

 , , 1i i jj j ji iu u u F
t

     
 

       
 ,iT


 ,   (1) 

which constitute equation of motion where ,   are 
Lame’s constants, iu  is the displacement component, 
F  is the body force component, T i 3 2     and 

T  is the thermal expansion,   is relaxation time, T is 
the temperature of the body and   is the density. 

 

2

, 2

,             1 ,

ii E o

o o j j

K T C T
t t

n T u Q
t

 

  

  
    

 
    


     (2) 

which constitute equation of heat conduction where K is 
the thermal conductivity, CE is the specific heat at con-

stant strain, o  is relaxation time, oT  is the reference 
temperature, n is a parameter and Q is the heat source. 

  , , ,ij i j j i i i iju u u T T            
 .   (3) 

which is called constitutive equation where ij  is the 
stress tensor and ij  is the Kronecker function.  

Equations (1)-(3) reduce to coupled thermoelasticity 
(CTE) when 0o   . Putting , 1n  0   and 

0o  , the equations reduce to Lord-Shulman (L-S) 
model, while when 0n  , 0o   and 0  , the eq-
uations reduce to Green-Lindsay (G-L) model [13,14]. 

3. The Non-Gaussian Laser Pulse 

We will consider the medium is heated uniformly by a 
laser pulse with non-Gaussian form temporal profile [7]. 

  0
2

exp
pp

L t t
L t

tt

 
 

 
 ,           (4) 

where 2pspt   is a characteristic time of the laser- 
pulse (the time duration of a laser pulse), L0 is the laser 
intensity which is defined as the total energy carried by a 
laser pulse per unit area of the laser beam, see Figure 1, 
[7]. 

The conduction heat transfer in the medium can be 
modeled as a one-dimensional problem with an energy 
source  ,Q x t  near the surface, i.e. 

   

0
2

1 / 2
, exp

/ 2
exp ,a

pp

R x h
Q x t I t

R L x h t
t

tt

 



    
 
 

   
 

      (5) 

where   is the absorption depth of heating energy and 
Ra is the surface reflectivity [7]. 

When we consider the laser pulse lie on the surface of 
the mediumwhen 0x   (see Figure 1), we get the en-
ergy source in the form 
 

 

Figure 1. Temporal profile of laser power L/L0. 
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  0
2

exp
2

a

pp

R L h t
Q t t

tt 

 
 

 
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

.        (6) 

4. Formulation of the Problem 

We consider half-space ( ) with the x-axis pointing 
into the medium with initial temperature distribution To. 
This half-space is irradiated uniformly the bounding 
plane (x = 0) by a laser pulse with non-Gaussian tempo-
ral profile as in (6). We assume that there is no body 
forces affecting the medium and all the state functions 
initially are equal to zero. 

0x 

The displacement vector has the components: 

 , , 0u u x t v w  .           (7) 

Hence, the governing Equations (1)-(3) in one-dimen- 
sional will take the following forms: 

The equation of motion 

 
2

2
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u
u

x tx
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 ,   (8) 

where oT T    is the temperature increment. 
The heat equation: 
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where 

u
e

x





.                 (10) 

The constitute equation: 

 2 1xx e
t

    
 
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

 .     (11) 

For simplicity, we will use the following non-dimen- 
sional variables Youssef (2006): 
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where
2

oc
 




  is the longitudinal wave speed 

and EC

K


   is the thermal viscosity.  

Hence, we have the following system of equations (we 

have dropped the prime for convenient) 
2 2

2 2
1
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where 
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lastic coupling constant, and 0
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5. The Exact Solution of the Problem in the  
Laplace Transform Domain 

Applying the Laplace transform for Equations (13)-(15) 
defined by the formula  

     
0

e dstf s L f t f t t


     . 

Hence, we obtain the following system of differential 
equations 

   2 2 2e 1xD s s Dx    ,         (17) 
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where all the state functions initially are equal to zero,  
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Eliminating e  between the Equations (17) and (18), 
we get 
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where    2 2 2
1 1o oL s s s s n s s          and  

 2 2
oM s s s  . 

The solution of Equation (20) takes the following 
form: 

      
2

2 2
2
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, ei i i
io
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where 1 and 2    are the roots of the characteristic 

Copyright © 2012 SciRes.                                                                                  AM 



H. M. YOUSSEF  ET  AL. 145

equation 
4 2 0L M    ,             (22) 

and 
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2
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1

, 1 expi i i
i

e x s s A x  


   .      (23) 

To get the value of the parameters 1A  and 2A  we 
have to apply the boundary conditions on the bounding 
plane  of the assumed half space as follows: 0x 

   0, 0, 0t e t   ,            (24) 

which gives after applying Laplace transform 
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After applying the above boundary conditions, we get  
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Finally, we can write the solution in the Laplace 
transform domain as follows: 
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By using Equations (19), (26) and (27), we get 
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We get the displacement form Equations (10) and (27) 
in the form 

    
   
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(29) 

6. Numerical Results 

In order to get the inversion of the Laplace transform, the 
Riemann-sum approximation method is used. In this me- 
thod, any function in Laplace domain can be inverted to 
the time domain as  

     
1

e 1 π
1

2

t N
n

n

i n
g t g Re g

t t


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 ,  (30) 

where Re is the real part and  is imaginary number 
unit. For faster convergence, numerous numerical expe- 
riments have shown that the value of  satisfies the re- 
lation 

i


κ 4.7t   [8]. 

With a view to illustrating the analytical procedure 
presented earlier, we now consider a numerical example 
for which computational results are given. For this pur-
pose, copper is taken as the thermoelastic material, [13]: 

1 3386 kg m k sK      , ,  5 11.78 10 kT
  293koT 

38954 kg m   EC, 2 1 2383.1 m k s   
10 1 286 10 kg m s 

, 
,11 2

0 1 10 J/mL   3.    
2

, 
10 17.76 10 kg m s      0.5aR  0.1,h , ,  0.01  , 

2.0pt  , 0.02o  , 0.08  , 1 0.0168  ,  
. 4

2 2.1 10  
The computations were carried out for t = 0.2 and the 

temperature, the stress, the strain and the displacement 
distributions are represented graphically at different posi-
tions of x. 

The Figures 2-5 show that, the laser pulse makes the 
difference between the results in the context of the three 
studied models CTE, L-S and G-L is very clear and we 
can differentiate between them, while it was very diffi-
cult previously when we used thermal loading by using 
thermal shock or ramp-type heating as in [13,14]. 
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Figure 5. The displacement distribution. 
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