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ABSTRACT 

There are many problems in science and engineering where the solution shows a boundary layer character. Near the 
boundary the gradient is large in contrast with the smooth behaviour in the central core. A uniform grid is, therefore, not 
suitable for a numerical solution. MHD flow problems belong to this category where a velocity and induced magnetic 
field profiles get flattened in a transverse flow. In the present paper an optimized grid has been generated using interpo-
lating wavelets. The results are compared with those obtained using uniform grid, the finite element method and also 
from the analytical solution. 
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1. Introduction 

Study of MHD flows is important due to a number of 
applications in science and engineering. Since blood is 
electrically conducting several papers have appeared in 
literature on the blood flow control and measurements [1,2]. 
Other applications are in MHD flowmetry, MHD power 
generation. The study of generation and maintenance of 
magnetic field in steller bodies like the Sun and the Earth 
is owing to the constant motion of conducting material 
inside these bodies [3]. Some of these are cited in the 
references [4-8]. These are the problems where we study 
the effect of the transverse magnetic field on the flow of 
electrically conducting fluid. There is, therefore, a com-
plex interaction of the equations of electrodynamics and 
fluid mechanics. The magnetic lines of force act like 
stretched rubber bands which try to reduce the flow rate. 
Therefore, a component of magnetic field is generated in 
the direction of the fluid flow. This is called the induced 
magnetic field. The main aim of all the MHD flow stu- 
dies is to compute the modified flow pattern and the in- 
duced magnetic field. In our earlier paper [9] we solved 
an MHD flow problem which involved solving a singular 
integral equation. Haar wavelets with special integration 
formulae over boxes with singularities were used. 

In the present paper we solve a different problem using 
wavelet optimized adaptive mesh. This method has been 
developed very recently and has become a very popular 
numerical tool to solve the boundary value problems 

where the rates of variation of the dependent variable 
significantly vary in the domain of interest. Of particular 
interest are the problems where there is a boundary layer 
in which the gradients are very steep as compared with 
the core where the variations are negligible. While ap-
plying finite difference or finite element method one has, 
therefore, to take a variable mesh—a finer one in the 
boundary layer and a coarser one in the core region. The 
main question is how to choose the size. There are sev-
eral methods to choose a variable mesh a priori. One 
method frequently used is the “geometric mesh” in which 
the mesh size decreases in the geometric progression. We 
can control it by taking common ratio as a parameter. 
The other well known way is to use the chebyshev mesh. 
None of these is of adaptive nature since we choose it 
beforehand. In the wavelet method the mesh size is au-
tomatically adjusted keeping in view the rates of varia-
tion. For this we compute and test the magnitudes of the 
wavelet coefficients in the wavelet approximation. We 
stop reducing the mesh size when these coefficients be-
come smaller than a prescribed quantity. Once the mesh 
size is decided we discretize the governing equations and 
solve the resulting system of algebraic equations. Some 
important references where this technique has been suc-
cessfully used are [10-16]. 

2. Basic Equations 

The basic equations of MHD are very well-known [4,8, 
17,18]. We do not go into their derivation and the neces-*Corresponding author. 
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sary physics involved in it. Figure 1 shows the section of 
the straight rectangular pipe of uniform cross-section and 
non-conducting walls. The flow of the electrically con-
ducting fluid is axial i.e. along z-axis taken out of paper. 
The applied transverse magnetic field is along x-axis. 
The induced magnetic field is created along the flow di-
rection. The final equations is a coupled system in the 
induced magnetic field  and the axial velocity 

 in non-dimensional form 
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Here  and  are the velocity and the 
induced magnetic field along z-axis at the point 
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The non-dimensional parameter M  is called the 
Hartmann number. It is a measure of the intensity of the 
applied magnetic field. The analytical solution of (1) and 
(2) with boundary conditions (3) is known in [4-6]. It can 
be expressed as [7]. 
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Figure 1. Section of the channel. 
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From (4) and (5) and  can be computed for a 
given 

V B
M  at any point  ,x y  of the cross-section. But 

there are difficulties when M  is large. The boundary 
layer character of the problem can be easily recognized 
from (1) and (2) when M  is large. One can separately 
solve in the boundary layer and core region and match 
the two solutions at the interface. Another approach is to 
use finite difference or finite element methods (FEM) 
with finer mesh near the walls and a coarser mesh in the 
core region. Singh and Lal in [7] have used the FEM for 
various Hartmann numbers. 

3. Present Method—The Wavelet Optimized  
Adaptive Mesh (WOAM) 

Wavelets can be used to obtain the optimum size of the 
mesh in the flow region for different Hartmann numbers 
and specified precision. As M  increases the mesh be-
comes finer and finer near the boundary. In the present 
problem the boundary layers are more pronounced at 

1x    as compared to y m  . As a result of this dif-
ferent mesh sizes are obtained along x and y-directions. 
This is further compounded by the fact that there are two 
dependent variables V  and  and at a time we can 
optimize with respect to one of them only. Fortunately, 
both the variables depict similar behaviour as 

B

M  in-
creases. So we have optimized with respect to  only. 
To get an idea about the boundary layers, we have plot-
ted velocity profiles along x-axis (Figure 2) for different 
Hartmann numbers. The case , corresponds to the 
hydrodynamic case. It can be seen that as 

V

0M
M  increases 

the core profile becomes more and more flat in the core 
region. This is further confirmed by Figure 3 which 
shows contours of  y,V x . 

To get the optimized mesh we have constructed inter-
polating wavelets of [10,11] in both the x and y-direc- 
tions for a given Hartmann number. After having gener-
ated the mesh the derivatives at the non-uniform mesh 
are approximated as described by Jameson [12]. We ob-
tain the interpolating wavelets on the dyadic grid jG  
along x-axis defined by 
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Figure 2. Velocity profiles along x-axis for M = 0, 2, 4, 10, 
20, 40 and 100 (M = 0 is at the top and M = 100 at the bot-
tom). 
 

 

Figure 3. Contour lines for M = 10. 
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where Z  is the set of integers with  as the level of 
resolution. The algorithm proceeds from the level  to 
level  by interpolating at the additional points of 

j
j
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kf x  defined at jG . 
For this purpose the nearest  points are used. This 
gives 

2N

  1
2 1

1

,
N

j j j j
k k l

l N

f x w f x
 

 

  k l         (8) 

where j
k lw  are weights. Note that the weights do not 

change with  for evenly spaced grid. However, we can 
easily extend them to a non-uniform grid. Generalization 
of the above procedure to intervals is also straightfor-
ward. A suitable modification is to be made near the ends 
of the interval. The interpolating function 

l

 j
k x  can be 

defined by setting 

   , Kronecker delta ,j
k k lf x           (9) 

and applying the algorithm upto a high level J  of res-
olution. This will result in the scaling function sampled 
at the locations j

kx . Using linear superposition we have 

  ,j j j
k k

k

 f x c x             (10) 

with 

 .j
k kc f x j                 (11) 

Figures 4 and 5 depict the graphs of scaling functions 
 x  for 2N   and 3 respectively. 
Proceeding as in [13,14], we define the wavelet coef-

ficients 
 

 

Figure 4. Scaling function  for N = 2.   x

 

 

Figure 5. Scaling function  for N = 3.   x
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To generate the adaptive mesh we, therefore, proceed 
as follows: 

1) Obtain the solution at the coarser mesh to get the 
initial profile. 

2) Apply wavelet transform to get the wavelet coeffi-
cients .j

kd  These are expected to be large where the 
gradient is high i.e. boundary layers and small where 
solution is smooth, i.e. core region. 

3) Remove the mesh points where j
kd  , where   

is the specified tolerance. Retain the additional points 
where .j

kd   
4) Continue modifying the mesh till (3) is satisfied 

everywhere. 
The above procedure will result in a finer mesh in the 

boundary layers but coarser in the core region. 

4. Numerical Results, Convergence and  
Discussion 

We have applied the above procedure for the pipe of 
square cross-section  for different Hartmann 
numbers. The initial mesh size is taken as 0.1 and 

( 1m 

 

Figure 6. Adaptive mesh for M = 10, N = 2. 
 
duced. Upto 0.2x   the condition j

kd   is satisfied 
if mesh size is 0.1 (or less). For having optimum size we 
take it as 0.1. When x  is further increased the condition  

j
kd   is not satisfied so size is reduced by a factor of  

half. With this size the condition remains satisfied upto 
0.5.x   After that it is further reduced and so on. 

Fortunately, the following symmetric considerations 
permit the equations to be solved in the positive quadrant 
only 

       , , , ,V x y V x y V x y V x y       ,  (20) 

      , , , ,B x y B x y B x y B x y         .  (21) 

The solution is found at the internal nodes 

 , , 1: , 1:i j .x y i I j J   

where ,I J  depend on the Hartmann number. 
Tables 1 and 2 give the velocity and induced magnetic 

field for  5 33, 22M I J    and  
 39, 22I J 10  at the selected common points of 

the mesh. The exact values as computed from the ana-
lytical solution are also given for comparison. Figures 7 
and 8 give the three dimensional profiles of  ,V x y  
and  , yB x  over the entire section for 20.M   Ta-
ble 3 gives the values of  at the centre of the section. 
Values as obtained using the uniform mesh with the same 
number of nodes are also given as uV  (Velocity for 
uniform mesh). Comparison is also made with the values 
obtained using FEM. Comparison at points other than 
centre was not possible because there are no other com-
mon points. It is clear from the tables that the results 
from the adaptive mesh are consistently better than those 
obtained using uniform mesh and the FEM. 

V

)
  is 

taken as  for all Hartmann numbers. The value 
of  has been chosen to be 2. The final mesh will ob-
viously depend on 

1.0e 6
N

M  and also  . For example, for 
 we obtained the mesh as shown in Figure 6. In 

the region 
10 ,M

0.2,x   the mesh size is 0.1. It falls to 0.05 
and remains so upto  After that it gets reduced 
to 0.025 and so on. As 

0.5.x 
x  increases the rate of change of 

 increases and, therefore, the mesh size has to be re- V

The pointwise convergence of results with varying ,  
for different Hartmann numbers is clear from the Table 4 
which gives errors in the computed values at the centre  
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Table 1. Velocity and induced magnetic field at selected points for M = 5. 

 V  eV  110B    
110eB    V  eV  110B    

110eB    

x  0y   0.2y   

0.0000 0.17158 0.17160 0.00000 0.00000 0.16726 0.16728 0.00000 0.00000 

0.1000 0.17109 0.17111 0.13815 0.13794 0.16678 0.16679 0.13238 0.13227 

0.2000 0.16958 0.16958 0.27394 0.27370 0.16528 0.16529 0.26275 0.26251 

0.3000 0.16684 0.16682 0.40483 0.40439 0.16259 0.16258 0.38848 0.38805 

0.5000 0.15586 0.15579 0.63080 0.62988 0.15185 0.15178 0.60628 0.60538 

0.6500 0.13874 0.13865 0.72630 0.72528 0.13514 0.13505 0.69929 0.69830 

0.8000 0.10524 0.10513 0.66886 0.66777 0.10249 0.10239 0.64543 0.64437 

0.9000 0.06533 0.06524 0.45992 0.45893 0.06363 0.06354 0.44458 0.44362 

0.9875 0.01008 0.01004 0.07645 0.07609 0.00982 0.00978 0.07402 0.07367 

 0.5y   0.7y   

0.0000 0.14118 0.14121 0.00000 0.00000 0.10426 0.10428 0.00000 0.00000 

0.1000 0.14078 0.14079 0.10200 0.10190 0.10397 0.10399 0.06728 0.06720 

0.2000 0.13950 0.13951 0.20274 0.20252 0.10307 0.10307 0.13389 0.13373 

0.3000 0.13721 0.13721 0.30047 0.30009 0.10143 0.10143 0.19888 0.19860 

0.5000 0.12809 0.12805 0.47279 0.47203 0.09492 0.09489 0.31549 0.31494 

0.6500 0.11399 0.11394 0.55063 0.54981 0.08478 0.08474 0.37144 0.37083 

0.8000 0.08656 0.08648 0.51500 0.51413 0.06480 0.06476 0.35345 0.35280 

0.9000 0.05384 0.05377 0.35862 0.35783 0.04059 0.04055 0.25023 0.24965 

0.9875 0.00833 0.00830 0.06036 0.06007 0.00634 0.00631 0.04291 0.04268 

 0.85y   0.975y   

0.0000 0.06108 0.06108 0.00000 0.00000 0.01163 0.01162 0.00000 0.00000 

0.1000 0.06093 0.06092 0.03509 0.03505 0.01159 0.01159 0.00592 0.00592 

0.2000 0.06043 0.06043 0.06988 0.06980 0.01151 0.01150 0.01180 0.01180 

0.3000 0.05955 0.05953 0.10393 0.10380 0.01136 0.01135 0.01756 0.01756 

0.5000 0.05599 0.05596 0.16574 0.16547 0.01075 0.01074 0.02806 0.02805 

0.6500 0.05039 0.05037 0.19668 0.19636 0.00979 0.00977 0.03340 0.03339 

0.8000 0.03913 0.03911 0.19009 0.18972 0.00782 0.00779 0.03252 0.03252 

0.9000 0.02500 0.02497 0.13726 0.13690 0.00526 0.00524 0.02382 0.02380 

0.9875 0.00400 0.00399 0.02425 0.02409 0.00098 0.00098 0.00443 0.00438 

 

  
Figure 8. Magnetic field profile for M = 20. Figure 7. Velocity profile for M = 20.  
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Table 2. Velocity and induced magnetic field at selected points for M = 10. 

 V  eV  110B    
110eB    V  eV  110B    

110eB    

x  0y   0.2y   

0.0000 0.097324 0.097343 0.00000 0.00000 0.096008 0.096031 0.00000 0.00000 

0.1000 0.097250 0.097268 0.09233 0.09233 0.095923 0.095946 0.08960 0.08961 

0.2000 0.097025 0.097039 0.18448 0.18448 0.095667 0.095686 0.17906 0.17906 

0.3000 0.096632 0.096642 0.27614 0.27613 0.095222 0.095237 0.26812 0.26811 

0.5000 0.095074 0.095053 0.45478 0.45450 0.093511 0.093494 0.44202 0.44176 

0.6500 0.091926 0.091870 0.57098 0.57039 0.090248 0.090196 0.55554 0.55497 

0.8000 0.081256 0.081126 0.61311 0.61180 0.079631 0.079506 0.59732 0.59605 

0.9000 0.059169 0.059048 0.49187 0.49065 0.057938 0.057821 0.47971 0.47854 

0.9875 0.011006 0.010959 0.09758 0.09711 0.010774 0.010729 0.09527 0.09481 

 0.5y   0.7y   

0.0000 0.086156 0.086194 0.00000 0.00000 0.067909 0.067939 0.00000 0.00000 

0.1000 0.086038 0.086075 0.07276 0.07277 0.067800 0.067892 0.04997 0.04997 

0.2000 0.085682 0.085715 0.14561 0.14561 0.067469 0.067494 0.10014 0.10013 

0.3000 0.085070 0.085098 0.21853 0.21851 0.066895 0.066918 0.15070 0.15066 

0.5000 0.082850 0.082849 0.36282 0.36259 0.064815 0.064818 0.25257 0.25235 

0.6500 0.079261 0.079228 0.45956 0.45908 0.061610 0.061592 0.32369 0.32328 

0.8000 0.069304 0.069206 0.49915 0.49810 0.053465 0.053400 0.35781 0.35700 

0.9000 0.050209 0.050115 0.40416 0.40320 0.038605 0.038541 0.29436 0.29364 

0.9875 0.009325 0.009287 0.08093 0.08054 0.007173 0.007145 0.05994 0.05965 

 0.85y   0.975y   

0.0000 0.042109 0.042113 0.00000 0.00000 0.008421 0.008409 0.00000 0.00000 

0.1000 0.042042 0.042045 0.02662 0.02663 0.008409 0.008397 0.00453 0.00453 

0.2000 0.041839 0.041840 0.05341 0.05341 0.008373 0.008360 0.00909 0.00910 

0.3000 0.041485 0.041485 0.08053 0.08051 0.008310 0.008297 0.01371 0.01373 

0.5000 0.040187 0.040177 0.13591 0.13580 0.008078 0.008061 0.02320 0.02322 

0.6500 0.038182 0.038162 0.17595 0.17572 0.007716 0.007696 0.03016 0.03019 

0.8000 0.033164 0.033122 0.19823 0.19775 0.006805 0.006777 0.03432 0.03433 

0.9000 0.024063 0.024025 0.16681 0.16637 0.005108 0.005077 0.02943 0.02942 

0.9875 0.004521 0.004503 0.03505 0.03486 0.001075 0.001061 0.00656 0.00651 

 
Table 3. Comparison of velocity at the centre by different methods. 

M  V  FEMV  eV  uV  err _V  err _ uV  

1 0.28442 - 0.28451 0.28441 0.975e−4 0.104e−3 

2 0.25887 0.2560 0.25891 0.25884 0.366e−4 0.648e−4 

5 0.17158 0.1649 0.17160 0.17156 0.199e−4 0.391e−4 

10 0.09732 - 0.09734 0.09732 0.189e−4 0.223e−4 

20 0.04992 - 0.04992 0.04991 0.124e−5 0.433e−5 

40 0.02500 - 0.02500 0.02500 0.432e−7 0.719e−7 

50 0.02000  0.02000 0.02000 0.999 e−8 0.108 e−7 
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of the channel. This point has been chosen because it is 
common to all the meshes. It is seen that as   is in-
creased the error also increases. Interestingly, errors are 
lower for large Hartmann numbers clearly demonstrating 
the suitability of the present method to the situations 
where variations in the central core are far less than in 
the boundary region. 

The overall convergence in the entire section is clear 
from Table 5 which gives the mean absolute error (MAE) 
and root mean square error (RMSE) for various Hart-
mann numbers and  . It is clear that as   is reduced 
the errors both MAE and RMSE get reduced. Again the 
results are more encouraging for large .M  From these 
observations we can conclude that the present method is 
ideally suited to problems depicting the boundary layer 
character. 

5. Observation, Conclusion and Future  
Scope 

As pointed out in the introduction, the basic aim of the 
present study was to solve the problem numerically using 
wavelet optimized adaptive mesh. This method is of re-
cent origin and has been successively applied in many 
other applications. As explained above the method is 
suitable to the MHD flow problems also due to their 
boundary layer character. The uniform mesh is not ap-
propriate near the boundaries and to use a fine mesh in 
the entire domain leads to excessive computation time. 
The adaptive mesh using wavelets gives good accuracy 
even with moderate size of the mesh. A mesh where size 

is pre-decided such as the “geometric mesh” or “cheby-
shev mesh” also do not serve the complete purpose be-
cause the rate of variation of  may not be consistent 
with the rate of variation of the mesh size. The adaptive 
mesh on the other hand adapts its size according to the 
rate at which  varies. For a given 

V

V   it is also opti-
mum since we reduce the size by a factor of half only 
when the specified tolerance is not satisfied. 

In future we intend to extend the method to other ge-
ometries such as circular and elliptic. All the problems 
which have come to our notice in literature where wave-
let adaptive mesh has been applied are one dimensional. 
The present paper extends it to two dimensions. The rates 
of variations near the boundary have been very fast along 
x-axis but comparatively not that fast along y-axis. Ac-
cordingly, the adaptive meshes are different along both 
directions. When we take a circular geometry, many un-
expected problems arise. One of them is the choice of 
grid-rectangular or polar. Each has its advantages and 
disadvantages. Near the boundaries the finite difference 
approximations become very poor. We are trying to 
overcome these problems. We are also trying to examine 
whether the method in the present form is suitable for 
complex geometries. A suitable combination of it with 
FEM and the Boundary Integral Equation Methods (BIEM) 
may be a better alternative. We are currently working in 
this direction. 
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Table 4. Convergence of results for velocity V at the centre of section (N = 2 starting mesh size h = 0.1). 

M 
eps 

0 2 5 10 20 

1.0e−6 0.246e−3 0.037e−3 0.020e−3 0.019e−3 0.001e−3 

1.0e−5 0.424e−3 0.058e−3 0.052e−3 0.076e−3 0.010e−3 

1.0e−4 0.579e−3 0.215e−3 0.101e−3 0.077e−3 0.013e−3 

1.0e−3 0.579e−3 0.282e−3 0.127e−3 0.101e−3 0.017e−3 

Exact 0.294685 0.258907 0.171602 0.097343 0.049919 

 
Table 5. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in computed values of V over the section (mul-
tiply by 10−3). 

 0M   2M   5M   10M   20M   

eps MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1.0e−6 0.1507 0.0087 0.0308 0.0018 0.0425 0.0019 0.0487 0.0021 0.0442 0.0020 

1.0e−5 0.1657 0.0194 0.1407 0.0143 0.2016 0.0162 0.1906 0.0143 0.1292 0.0093 

1.0e−4 0.3447 0.0372 0.1355 0.0149 0.5112 0.0633 0.4891 0.0552 0.2797 0.0290 

1.0e−3 0.3447 0.0372 0.1583 0.0178 0.2607 0.0371 0.9338 0.1560 0.6262 0.0921 
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