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ABSTRACT

For a satellite in an orbit of more than 1600 km in altitude, the effects of Sun and Moon on the orbit can’t be negligible.
Working with mean orbital elements, the secular drift of the longitude of the ascending node and the sum of the argu-
ment of perigee and mean anomaly are set equal between two neighboring orbits to negate the separation over time due
to the potential of the Earth and the third body effect. The expressions for the second order conditions that guarantee
that the drift rates of two neighboring orbits are equal on the average are derived. To this end, the Hamiltonian was de-
veloped. The expressions for the non-vanishing time rate of change of canonical elements are obtained.
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1. Introduction

Formation flying is a key technology enabling a number
of missions which a single satellite cannot accomplish:
from remote sensing to astronomy. The relative motion,
which shows no drift even in presence of a large distur-
bance, could be a very attractive solution. To maintain
the formation and constellation, the relative drifts due to
the perturbation between the spacecraft should be care-
fully considered. Invariant Relative Orbits shows no drift
between the spacecraft due to the perturbation even if in
presence of a large disturbance.

The literature is wealth with works dealing with design-
ing certain invariant relative orbits for spacecraft flying
formations, and it seems worth to sketch some of the
most relevant works. Schaub and Alfriend [1] presented a
method to establish J, invariant relative orbits for space-
craft formation flying applications. They designed rela-
tive orbit geometry using differences in mean orbit ele-
ments. Two constraints on the three momenta element
differences are derived. Zhang and Dai [2] removed the
drifts by adjusting the semi-axis of the follower satellite
and obtained a similar conclusion. By means of Routh
transformation and dynamical system theory, Koon and
Marsden [3] developed a method to find the J, invari-
ant orbit. Then Li and Li [4] and Meng et al. [5] con-
cluded, from the point of view of relative orbital ele-
ments, that the drifts of relative orbit result from the or-
bital inclination and right ascension of ascending node of
the two satellites. Biggs and Becerra [6] proposed a me-
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thod to determinate the J, invariant orbit with the leader’s
orbit of zero inclination based on the targeting method in
chaos dynamics. Abd El-Salam et al. [7] used the Ham-
iltonian framework to construct an analytical method to
design invariant relative constellation orbits due to the
zonal harmonics J,; J,; J, up to the second order,
assuming J, being of order 1.

Our propose was to extend Schaub and Alfriend [1]
and Abd El-Salam et al. [7] model by adding the effect
of the third body which have important at high altitude.
Using the Hamiltonian framework, the perturbations can
be easily added. The Hamiltonian of the problem was
constructed by considering the effect of the third body of
O(JZ2 . The expressions for the time rate of change of
the secular elements are obtained, second order condi-
tions are established between the differences in momenta
elements (semi-major axis, eccentricity and inclination
angle) that guarantee that the drift rates of two neighbor-
ing orbits are equal on the average.

2. Hamiltonian Approach

There are several ways to derive the equations of motion
for any such system. We emphasized on the Hamiltonian
structure for this system. The Hamiltonian formulation
allows for additional conservative forces to be added to
the Hamiltonian, thus the addition of complexity to the
model can be incorporated with ease. Non-conservative
forces can be added in the momenta equations of motion.
The Hamiltonian equations of motion allows us to directly
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use control and simulation techniques.

Notations in the whole text, we use the well-known
keplerian elements: the semi-major axis a, the eccentric-
ity e, the inclination i, the right ascension of ascending
node Q, the argument of perigee @, and the mean
anomaly M. We also use the true anomaly f and an in-
termediary variable 7 =+1-¢” .

The Hamiltonian in the present framework can be
written in the form

H:%pz—u@wt (1)

where U, is the force function due to the Earth’s gra-
vitational potential, and p is the canonical momentum

vector and U, the disturbing function due to the effect
of perturbing body.

2.1. Influence of Oblateness Perturbations

The actual shape of the Earth is that of an eggplant. The
center of mass does not lie on the spin axis and neither
the meridian nor the latitudinal contours are circles. The
net result of this irregular shape is to produce a variation
in the gravitational acceleration to that predicted using a
point mass distribution. The Earth’s gravitational poten-
tial is usually expressed by the following expression
(Vinti’s potential)

Uy = _Eii (%) P (sin&)[C,, cOSMA+S,, sinmA]

r n=0m=0

where R, is the equatorial radius of the Earth,
pn=g'm, isthe Earth’s gravitational parameter where
is the gravitational constant;
(r,A,6) are the geocentric coordinates of the satellite
with 4 measured east of Greenwich;
C,, and S . are harmonic coefficients;

nm

!

g

P (sins) are associated Legendre Polynomials.

In the potential function, the terms with m=0,
O<m<n and m=n correspond respectively to zonal,
tesseral and sectorial harmonics. The Earth gravitational
potential can be rewritten, up to second order in J,,
truncating the seriesat n =4, as, Abd El-Salam et al. [7]

U, :_E{l_lJz[%T [(332 ~2)-38%cos2( f +a))J

r 4

—%Js [RTJ [(1533 ~128)sin( f +@)-5S°sin3(f + a))] @)

64

where S =sini and J,,J,,J, is the zonal harmonic
coefficients.

2.2. Third Body Perturbation

The effect of the third body in the motion of an artificial
satellite have became particularly interesting now, when
space debris imposes a serious threat to space activities.
These perturbations are the most important mechanism of
delivering major Earth orbiting objects into the regions
where the atmosphere can start their decay.

If it is assumed that the main body; Earth; with mass
m, is fixed in the center of the reference system x-y.
The perturbing body, with mass m’ is in an elliptic orbit
with semi-major axis, a’, eccentricity €', and mean mo-

4
_i34(%j [(24—12052 +1058*)+(1208° ~140S* ) +355* cos 4 f +a))]}

tion n’, given by the expression n'’a”®=g’(m,+m’),
r and r' are the radius vectors of the satellite and m’
(assuming r'>r, ),and ¥ is the angle between these
radius vectors. The disturbing function (using the tradi-
tion expansion in Legendre polynomials) due to the third
body is given by, Domingos et al. [8],

m2a?(a N (rY )
o, -4 (_j (Ej [3c0s2(¥)-1] (3

r

!

where u' = and

m, +m’
cos(W)=acos(f)+psin(f)
with

a=coswcos(Q- f'—w')-cosisinwsin(Q- f'- ')

B=-sinwcos(Q— f'—w")—cosicoswsin(Q-f'-w')
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Using the Delaunay canonical-variables (1,9,h,L,G,H)
defined by

| =M, Mean anomaly L =./ua

g =, Argument of the Perigee G =L+1-¢* =Ly
h =9, Longitude of ascending node H =G cosi

Considering J, as a small parameter of the problem,
the orders of magnitude, up to the second order, of the
involved parameters are defined as follows:
J,;n"'=0(1),3;;3,=0(2), and let us define the di-
mensionless parameters as

’]_[0_

N

2,°R3,
J;

ZluﬁR:‘]4 /.l’n’z
1 = L K =
A24 J22

J;
The Hamiltonian, Equation (1) up to the second order,
can now be expressed as a power series in J, as fol-
lows

A, = 'R, Ay =

T3 (@

where H, represents the unperturbed part of the prob-
lem, H, isthe perturbation:

2

LZ

M, = A&z( j[(gsz—z)—3820032(f+w)],

8L8( MlssS ~128)sin( f +©)-58°sin3(f +w)]|

64 Llo

( j 24 1208 +1055°)+ (12052-14054)cosz(f+a>)+3554cos4(f+a))]

+Ka? (aja(;j |:3(a cos (f)+2aﬁcos(f)sin(f)+ﬁzsin2(f))—1]

r

Now we need to eliminate the short as well as the long
periodic terms of the satellite motion in addition to the
short periodic terms of the distance perturbing body. Us-
ing the perturbation technique based on Lie series and

Lie transform, Kamel [9], the transformed Hamiltonian,
==
- Ay
T 413G

~_ 3A;
T 64’ °GT
2 4
) 1 15— 150H—+175H—
128 L G*

where
= a2 ]
8u 2 8

Using the Hamiltonian canonical equations of the mo-
tion, to write @, argument of mean latitude (&) is the
sum of the mean anomaly and the argument of perigee
(ie. 6=1+9g),as
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for different orders 0, 1, 2 can be written as, Abd El- Sa-
lam et al. [7] and Domingos et al. [8].
2 n

- oo
H =H, +Zn—2|Hn ®)
n=1 .
with
”
212

H2
3{1_3?}

2 2 4 2
BT (N PPV L (PO BT L
G* G* G? G* G

4
5%]@2}

9+90H—2—105H—4j Z}rkL{(S 36—2)( H* 1}}

s GHS* 0H, &J7(0 67#
0=1+ Ut gl A e 6
g oL Z:;n aL oG ©)
with
am”_ﬂ_zam**_o
oL ¥ oG ’
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_ 27
[ 34A123 1—3H_2 - 37A-‘§ [1—30052 i]
oL are’|T Te? | aly

- )
o _ 3?124 5H2 ~1|= 36’124 [SCOSZi—l],
oG 41%G*| G )

el 2 2 4 2 4 2 4
M _ SAHZ 61 -3|5- 10"'——35H 4+24H——36H— LG-5 5+18H——5H— G’
oL 64p® L°G’ G? G’

2 4 2 4 2
s TN YT\ LT - LA FE R Y LT, L [ M | Y GG 3
128 U'G7 G? G’ G G "G

_3A; 1 [—3(5—100052 i—35c0s* i)~ 4(—4+24cos®i —36cos’ i)n —5(~5+18cos’ i ~5cos* i)ryz]

64“2 L11777
3A24 1 2 4 2 3 2 25
8 Ty - ~3(15-150c0s” i +175cos* i) ~5(~9-+ 90cos i ~105cos* i) * |+ kL’ [ (20~ 61”) (3cos”i~1) |
o 2 2 4 2 4 2 4
M _ 0% 1 ol 7188 778 112 af1 8 1M Y164 251267 1asH 6o
oG 1284 I°G G G G TG G G

2 2 4 2
(1o 1 21+270H——385H— L2+ 9-126 11807 |2 +6kis[e4—5H2L2]
G G’ G* G G G

6A, 1 ). .- ). .- - 4o\ 2
1287 F[5(—7+18COS i+77cos"i)+24(1-8cos” i +15c0s* i) +(25-126.cos” i +45c0s* i )7 ]
3
158 %[(—ZH 270cos” i ~385¢os" i) +(9-126cos’ i +189cos’ i)7]2:|+6|(£|:772 —5¢0s? i}
128 L'y n
and the secular drift rates of the longitude of the ascending node, h:
h= Z { oMy J @
1
with
o,
oH
67-(1 -3 -3 cosi
H -2 e L3G5 =g M L'p*’
o aa2 2 2 2
LTI B A LSNP Y LA [P (L s
oH  16p° L°G G G G
_15A, H 2 2 2 2y 5'—2
e — 7| (367 —5L7) (-3G% + 7H?) |+ 6kL°H tor
_ %A, M[5(1+7coszi)L2—12(1—3c032i)77+(—9+50052i)772]
162 Lyt
15A,, coscosi ) 2 o 3 . 5
- 3n° —=5)(-3+7cos” cos“i) |+ 6kL';coscosi| —-3+—
32 M [( ) ] e
3. Constraints for Invariant Orbits period oscillations can be ignored here since these are

only “temporary” deviations. The long period rates ap-

In order to prevent two neighboring orbits from drifting )
pear secular over a few weeks and they are O(JZ).

apart, the average secular growth needs to be equal. Short

Copyright © 2012 SciRes. AM
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Since the mean angle quantities 1,g and h do not
directly contribute to the secular growth, their values can
be chosen at will. However, the mean momenta values
L,G and H (and therefore implicitly a,e and i) must
be carefully chosen to match the secular drift rates. To
keep the satellites from drifting apart over time, it would
be desirable to match all three rates (I', g, H) . We impose

117

the condition that the relative average drift rate of the
angle between the radius vectors be zero. This results in

hizhj Vi# | 9
9i=gj

Vi | (10)

Now & and h can be rewritten as

+ZZZ { nthAn 377I 4n +;/;‘”“L377‘}cos(mi) (11)
n=1m=0t=
h zzz { nmt —4n—3’7t—4n +7/t:]mt L377t}cos(mi) (12)

n=1lm=0t=

where the non-vanishing coefficients ™, ygm‘, w
and »'™ are computed in Appendix .

Let the reference mean orbit elements be denoted with
the subscript “0”. The drift rate &, of a neighboring

orbit can be written as a series expansion about the ref-
erence orbit element, here it is enough to keep the second
order only, as

56, =6, -6, = 5% conl L5199
a X=Xy 677 X=Xg al X=Xg
(13)
2. 21 2 e 2. 21
L (sL) a6 62?‘ +(on)° 0 % +(8i)° 8_422 +oLon 29 50 Lo%
21 oL |, on’ |, o, oLon|,_, onoi dioL |,
5h —h h —5L@ +5fya—h‘ +§|@
oL - on - o
° (14)
1 2 0°h, 2 &°h, 2 0%h o%h _o%h . o°h
+—| (oL . +( o ! +(Oi : + Lo ! +0ndi— +0i6L——
2![( T - (on)° 3 7] (91) 2 o T Maag| T o) aioL |,

where we make use of the fact that 6 =6(L,7,i) and

h=h(L,n,i) only, also supposing that &6 is the dif-
ference in mean latitude rates,

oL=L - Ly, on=nm—ny i =i

and X, = Ly, 7,1

Note that this theory will lead to an analytical second

order conditions on the mean orbit elements. To establish
a more precise set of orbit elements satisfying Equations

—ig, X=L,7,i

(9) and (10), either SL,6n or oi could be chosen and
the remaining two momenta orbit element differences
found through a numerical root solving technique. How-
ever, the analytical second order conditions provide rea-
sonably accurate solutions to these two constraints equa-
tions and provide a wealth of insight into the behavior of
Earth potential and third body effect invariant relative
orbits.
The required derivatives can be evaluated as

2 4 5
L4 +Zzz {(_4n_3)zgth—4n—3—l77t—4n +37;‘thzf7t}Cos(mi)
n=1

mOtl

2 4 5

0,=22%

n=lm=0t=-1

éi :Zz:izs: _J!; m{l&

n=im=tt——1 N

2 4 5

I{(t 4n) nth41n—3'71—4n l+t}/nth3771 l}cos(mi)

nmt | —4n-3__t—4n

7"+ tyy™ L' fsin(mi)

2 n
gLL=12'LL’—5+ZZZ‘]—2|{(—4n—3)( —4n—3-1) "L t“”+6;/;”“L77‘}cos(mi)

n=1lm=0t=-1
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ZZZ {(t—4n)(t—4n—1) Lt (t=1) 7™ ' fcos (mi)

n=1lm=0t=
{ A B i ) } coscos(mi)
n=1lm=0t=
L” 222 {( 4n—3)(t—4n) nth—4n —3- 177t a1 gt nthZT]t_l}COS(mi)
n=lm=0t= -
2 4 5 n
'977! :ZZZ {(t 4n) nmt —4n—377t—4n 1+t7/nth3771 1}sin(mi)
n=lm=lt=—1

n

{( —An— S)ngt —4n-3-1 t4n+37/‘2mt|—277t}sin(mi)

and

(&)

. 2 4 5

hL :leotZl n2 {( 4n S)X;mtl‘74n . l o +3yr?th277t}COS(m|)
ZS: 2 {(t—4n) LS ™ o cos (mi
2 Zn n T (mi)

n

4 5 n

hi _ Z;Z:ltzl% m {Zr?mt L—4n—377t—4n 4 t%:\mt L377t } sin (ml)

4 5
ZZZ {( 4n-3)(-4n—-3-1) 1™ ’4"’3’277“4”+6;/thL77‘}cos(mi)

n=1m=0t= l

2 4 5 n
h, =222 %{(t —4n)(t=4n-1) 7" L4 1 (t-1) ™ Ly fcos(mi)

n=lm=0t=-1

h _ { nth—4n—377t—4n+t7/rr]1th377t}COS(mi)

n=lm=l1t=

Zzz {( 4n—3)(t 4n)er‘1th41n—3—177t—4n 1+3t7nmt L27]t l}COS(mi)

n=1m=0t=

ﬂ

{(t 4n)Z}Tml —4n—377t—4n 1+t7/nth3 t- l}Sin(mi)

. 2 4 5 _
P NI
n=lm=it=-1

. 2 4 5 _n
h"_ =Zzz le m{(_4n_3)lr?ml L—4n—3—177t—4n +37/I:1m1 LGt}sin(mi)

n=lm=1t=-1

2,

where 4, _ 90 and 0, = with x=L,7,i.

OX OXOX
To enforce equal drift ratesd, and h, between neighboring orbits, we must set 56 and Sh equal to zero in ex-
panded Equations (13) and (14), yields

0= %QL (5L’ +%9’L”5L577 +%.9’,7,7 (6n)° +[9’L +%5i9iLj5L+(9 + ; 5i6, j&n +(9} +%5i¢9'“ j&i (15)

0= %hLL (sL) +%hL,75L577 +%h,m (6n)° +(hL +%5iHiL)5L +(hﬂ +%5ih,,i j&n Jr[hi +%6ih“ jéi (16)

Equations (15) and (16) are two simultaneous nonlin- sumed known (say di), these two equations can be
ear algebraic equations in three unknowns, namely solved as: '
oL,6n,6i. When one of these three unknowns is as- Multiplying Equation (15) by 1/2h, and Equation
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(16) by 1/26,, and then subtracting yields
¢, (8n)" +c,on+c,
C,0n+C,

oL =

(7)
where
1,. . .
C = E(QL;; h =6 hLl] )v

c, =%(9‘,mhu ~0,h,,),

1

e, =0, +30,01 fu ~( .+

(v Ao,

c,

(9’,] +%9,ﬂ5ijhu —(h,, +%h,ﬂ5i]9u,

Cs :|:('9| +%9.ii5ijhu —(hi +%hii5ij9u:|é‘i :

Substituting Equation (17) into Equation (15) yields an
algebraic equation of fourth degree in 67 only in the
form

d, (67)" +d,(n) +d,(6n)* +d,6n+d; =0 (18)
where
d1 = ngLL _ClczéLn + Cféq:,’
d, = 2CZC4gLL —(0203 + C4cl)9Lz7
1. A .
—C,C, (QL +E¢9iL5|j +c? (9,7 +59’7i5|j +2¢,6,0,,,
dy = (4 +2¢,5 )0, —(C4C5 +05C,) 6,

+c30,, —(c,¢, +c401)(9'L +%6}L5ij

il

+20103(9,7 +%9 -5ij+cf (6} +%¢9'“5ij5i

(L), =-

d, =2¢,C50, —CsC,0,, —(C,Cy+ cscl)(éL +%¢9'iL5i)
1. 1.
+C3 9’7+59’”5I +2c,C, 0i+59“5| oi,

4, = ¢, _cscs[q +%6}L5i)+c§[6} +%9'“5i)5i |

4. Solution of the Quartic Equation (18)

The roots of the quartic Equation (18) can be written as

(617),, =a+bte,(dn),, =a+btd

where
d
a:——z,l,:l,/ze—f—g—h,
4d,” 2 :
1 1
‘c=E1l1e+f+g,<dlIE,/Ze—iF—g—Hh
with
, 2d, Y2 k 1
e=4a"——, f=—,g=———,h=—
3d, 3d,j'® 3x32d,” 8
where
L= d32 —3d2d4 +12d1d5,j :(Jnn1+\/—4[i3 +m? ),
3
“:_[d_zj L Adyd,  Ad,
dl dl2 dl
and

m = 2d? —9d,d,d, +27d,d? + 27d3d, — 72d,d,d, .

Substituting the four roots o7 ’s into Equation (17)
yields the four constraints SL ’s that guarantee the in-
variance of the relative motion of certain satellite con-
stellation

C, (612 +b% +c? —2ab+ 2be F 2.auc) +C, (.al —-b —«c) +Cg

12

(oL),, =-

C, ((dl —-b —<c) +C;

c, (.alz +b%+d*+2abF2bd T Zaldl) +C,(a+b—d)+Cg

3,4

5. Conclusion

Accurate modeling of relative motion dynamics for ini-
tial conditions close to the leader satellite is essential for
flying formation. Therefore, the solutions of interest are
restricted to a specific set of initial conditions that lead to
periodic motion, such that the satellites do not drift apart.
This paper showed an analytical expression to secular
drift rates due to oblate Earth model, truncating its poten-

Copyright © 2012 SciRes.

¢, (a+b-d)+c,

tial series at J,, and third body effect and set it equal
between two neighboring orbits. It followed the same
steps used before in Abd El-Salam et al. [7] for the Earth
model so the calculation of Abd El-Salam et al. [7] and
Schaub and Alfriend [1] is a special case from this cal-
culations. The variation in the inclination (Ji) can be
chosen at will for the nominal inclination, and the varia-
tions in both the eccentricity (de) and semi-major axis
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(oa) from their nominal values are set to zero. Noted
that these constraint conditions are not justified near the
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Z;OO — 9A12 ’Z;M :EZG 11;10 :lléoolzéll — 1;00
8 3 3
a0 _ 3705A; 3645A, o _1425A% 1725A, ,, _1155A; 5775A,
T B1242 1024 'Y 12842 256 7 51247 1024
201 _ 2457A122 _ 405A, o _ 909A122 _ 225, om _ 1395A122 _1575A24
 B124% 1024 77 12842 256 77 51242 1024
202 _ 21A122 + 2025, ZZZZ _ _99'0122 + 945A,, 1242 _ 567A122 2835A,,
¢ 5124° 1024 ' ¢ 1284° 256 7 5124° 1024
203 — _255A122 405A24 220 — _195A122 225A24 240 — 75A122 1575A24
 B124% 0 1024 77 128 256 77 51247 1024
7/'920—1 — —15k, 7/'924—1 — 120—1'7/5200 :lOk, 7/ — 3/{/200'}/5201 — 6k, }/9202 — —Sk, %9242 — —gk
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