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ABSTRACT 

In this paper, we study general polynomial discretizations in backward and forward looking, and the preservation of 
stability properties. We apply these results to the Ramsey model [1]. Its discrete-time version is a hybrid discretizations of 
a backward-looking budget constraint and a forward-looking Euler equation. Saddle-path stability is a robust property 
under discretization. 
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1. Discretizations 

Continuous-time systems can be approximated by discrete- 
time systems. In the spirit of Krivine, Lesne and Treiner 
[2], we bridge continuous and discrete-time dynamics 
through general polynomial discretizations. 

Discretizations can differ according to the step, the 
order and the direction of discretization. The step gives 
the length of the period in discrete time. The order is that 
of the Taylor expansion of a continuous-time model. The 
direction depends on the backward or forward-looking 
nature of this Taylor expansion. A hybrid discretization 
mixes backward and forward-looking approximations. 

We want to show that the steady state is invariant to 
the step, the order and the direction of discretization and 
its continuous-time stability properties (sink, saddle, source) 
are preserved under a sufficiently small discretization 
step in any case (backward, forward or hybrid). 

Instead of considering a continuous variable t and the 
corresponding position  x t  determined by an m-dimen- 
sional system of ordinary differential equations:  

 = ,x f x  where 0,f C  jointly with the initial condition 
 let us pick up a regular sequence of time val-

ues: 
 0 0x x ,

    =0=0
=n nn

t nh
 

, 

where h is a (possibly small) positive constant (discreti- 
zation step), and the associated values: 

   =n nx x t x nh . 

The path from nx  to 1nx   can be reconstructed 
component by component through an appropriate inte- 
gration of = x f x

mx
. Focusing on the ith component of 

the vector , we can integrate the time derivative 
on the right or on the left to obtain, respectively, 
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    

    

d

d

nh

i inh

nh h

i inh

f x t t

f x t t





 

 














 

we get   1= =i in in ih x x   0 . 
A discretization is an approximation of  i   

(  i  ) through a simpler function evaluated at = h  
( = 0 ). The Euler-Taylor discretization is a polynomial 
approximation. Assuming that 1qf C   and consider- 
ing the qth order polynomial, we obtain a backward or a 
forward-looking discretization: 
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because    0 = = 0i i h  . A discretization is said to 
be hybrid if (1) holds for some components of the vector 
x and (2) holds for the others. 
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Setting , we obtain from (1) and (2) a first-order 
discretization: 

= 1q
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that is 

 1in in i nx x hf x                 (3) 

1in in i nx x hf x   1

n

             (4) 

where the subscript i denotes the ith component of the 
vector. 

Equation (3) (respectively, (4)) constitutes a backward- 
looking (forward-looking) discretization, because the varia- 
tion 1nx x   depends on the past value nx  (future value 

1nx  ) on the right-hand side. Equation (3) is the classical 
Euler discretization. In economics, forward-looking dis- 
cretizations are of interest because agents behave ac- 
cording to their expectations. 

The sequences  nx  are approximations of the true 
sequence  x nh , exact solution to system  =x f x : 
the smaller h, the more accurate the representation. 

Higher-order discretizations are also possible. Let us dis- 
cretize the continuous-time dynamical system  =x f x  
with 1f C  by second-order Taylor polynomials, that 
is approximate the ith component of n 1x  ith a quadratic 
form. Using (1) and (2), we obtain in backward and for-
ward-looking, respectively: 
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where the subscript i denotes the ith component of the 
vector. 

If f is an analytic function, infinite-order backward or 
forward discretizations converge exactly to 1n nx x   and 
(1) and (2) now hold with equality: 
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In this case, the Taylor polynomials become a conver- 
gent series and the discretized dynamics represent ex- 
actly the continuous-time system whatever the step h. 

In general, a discretization is a closer approximation of 
a continuous-time system when the step h is smaller or 
the order of discretization q higher. The dynamic proper- 

ties of a continuous-time system can be preserved lower- 
ing h or increasing q. 

2. Dynamic Equivalence 

To compare continuous-time and discrete-time system, 
we study approximations in a neighborhood of the steady 
state and focus on the persistence of local stability prop- 
erties. 

Focus first on the steady state. The system  =x f x  
and its discrete-time approximation  1n n nx x hf x   
have the same steady state. Indeed, in both the cases, we 
require   = 0f x  (respectively,  and = 0x 1 =n nx x ). 
We further notice that the system of m equations   = 0f x  
neither depends on the discretization degree h nor on the 
discretization method (forward or backward-looking). 
Therefore, the steady state is invariant to discretization. 

Focus now on the stability properties. Are they preserved 
under discretization in a neighborhood of the steady 
state?  

Without loss of generality, we consider two-dimensional 
dynamics. In the spirit of Samuelson [3], we can repre-
sent the stability properties in the plane of trace T and 
determinant D of the Jacobian matrix J of the system 
evaluated at the steady state. 

In the following, the subscripts  and 1 will denote 
variables in continuous or discrete time respectively. 

0

1) In continuous time, stability depends on the real 
part of these eigenvalues. If both the real parts are nega- 
tive (positive), the steady state is a sink (source) (in this 
case, the trace of 0J  is negative (positive) and the de- 
terminant of 0J  is positive (positive)). If the signs of 
the real parts are different, the eigenvalues are real and 
the steady state is a saddle point (in this case, the deter- 
minant is negative).  

2) In discrete time, the modulus of an eigenvalue a ib  
matters. When  ( > 1) the eigenvalue is in-
side (outside) the unit circle. If both the eigenvalues are 
inside (outside) the unit circle, the steady state is a sink 
(source). If one is inside and the other outside the unit 
circle, the steady state is a saddle point. 

2 2 < 1a b

We can evaluate the characteristic polynomial 

  2
1 1P T   D    

at –1 and 1. Focus on the  1 1,T D -plane. Along the line 

1 1=D T 1 , one eigenvalue is equal to 1 because 
 1 = 1P T1 1 = 0.D   Along the line , one 

eigenvalue is equal to –1 because 
1 1=D T 1

  1 11 =1P T   = 0.D   
On the segment defined by  and 1 = 1D 1 < 2T , the two 
eigenvalues are nonreal and conjugate with unit modulus. 
Consider first the points that neither belong to these lines 
nor to the segment. Inside the triangle defined by  
and 

1 < 1D

1 1< 1 ,T D
point if 

 the steady state is a sink. It is a saddle 
 1 1,T D  lies on the left sides of both the lines 

Copyright © 2012 SciRes.                                                                                  TEL 



S. BOSI, L. RAGOT 12 

1 1=D T  1 1= 1D T  , or on the right sides of 
ese lines 

1  and 
both of th ( 1 1< T ). It is a source other-
wise. 

At l

1 D

a two-dimensional system is required to study east, 
the three cases (sink, saddle and source) together and to 
consider hybrid discretizations. Without loss of generality, 
we linearize the following system of ordinary differential 
equations 

   1 1 1 2 2 2 1 2= ,  and  = ,x f x x x f x x         (5) 

dynamics around the steady state areLocal 
by

 represented 
 the Jacobian matrix 0J  evaluated at the steady state 

(    1 1 2 2 1 2, = , =f x x f x x ). 
isc

0
er dWe focus 

len

2.1. Backwa

on first-ord retizations, but our equiva- 

rd-Looking Discretizations 

ce results hold also for higher-order discretizations 
(see Bosi and Ragot [4]). 

We linearize the backward-looking discretization 

 1n n nx x hf x                  (6) 

m (5) around the cof the syste

where I a

ommon steady state 
  = 0f x  and we obtain  1 1 0= =n n ndx J dx I hJ dx  , 

nd 1J  are the two-d  
and Jacobian atrix of system (6). We observe that 0

imensional identity matrix
m J  

depends on the steady state x which, in turn, does  
depend on h. Then, 1 0=

not
J I hJ  depends only linearly 

on h. 
As abov

0

e, let us denote the trace and determinant of 
J  and 1J  by  0 0,T D  and  1 1,T D  respectively. The 

racter ic p al in d  time is given by 
  2

1 1 1P T D     , where 

1 0= 2T h

cha ist

There ar
that d

olynomi iscrete

T                  (7) 

0

e three critical values of the discre

2
1 0 0 1= 1 = 1D hT h D T h     2D       (8) 

tization step 
etermine the intervals of equivalence between the 

continuous and the discrete-time dynamics: 
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ion 1 Consider  
e a sink in continuous time 

0  then the steady state is a sink in dis- 

T

Proposit

(F

crete time if 

 > 0h .
1) Let the steady state b
igure 1). 
1.1) If 2

0T < 4D ,
< 1Hh h  and a source if 1 <Hh h . 

1.2) If 2
0 0T D hen the steady stat nk > 4 , t e is a si if 0 < h  

1< Fh , a s 1 2< <addle if F Fh h and source if 2 <Fh h
If the steady ddle in contin me,

h
 state is a sa

.  
s ti  2) uou

then the steady state is a saddle in discrete time if 

20 < < Fh h  and source if 2 <Fh h  (Figure 2). 
3) If the steady state is a source in continuous time, 

th

 generically undergoes a Hopf bifurcation 
at 

en the source property is preserved whatever > 0h  
(Figure 3). 

The system

1Hh  and flip bifurcations at Fih , = 1,2i . 
Proof From (7) and (8), it is ss  pl po ible to ot a curve 
    1 1,h D h  for each one of these different cases: 

 
T

2

1 02T T1 1= 1D T D  0     given  0 0,T D . 
state is a co1) Assume that the steady ntinuous 

tim
sink in 

e: 0 0< 0 <T D . According to (8), 1 1> 1D T  . Focus 
on two  2

0 0< 4T D  and (1.2 0 . 
1.1) If 2

0 0< 4T D ways 2
0 >D h

 cases: (1.1) ) 2
0 > 4T

T h 
D

2 4,  then al 0  0,
that is 1T D11 < . 

hat is if 
 So, the steady  

1 < 1D , t 1<
 state is a sink if

Hh h , and a source if 1> Hh h . This 
rresponds pper parabola in 1. In-

creasing h away from zero means moving away from the 
point where = 0h , along the parabola. 
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Figure 1. Sink in continuous time. 
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Figure 2. Saddle in continuous time. 
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Figure 3. Source in continuous time. 
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1.2) If only if  

2

2
0 0> 4 ,T D  then 1 1< 1D T   if and 

1 <  <Fh h Fh . In additio  if and only if n, 1 < 1D

1< Hh h . W tice also that 20 < <e no 1 1<F H Fh h . Then, 
dy state is a sink if

h
 0 < <the stea 1Fh h , a saddle if 

1 2< <F Fh h h  and a source if is case corre-
lower parabola in 1. 

2) Assume now that the steady state is a

2 <Fh
Figure 

h . Th
sponds to the 

 saddle in con- 
tinuous time: 0 < 0.D  According to (8), 1 1< 1.D T   We 
observe that 21 < 0 <F Fh h  and that 1 > 1D and 
only if 1 <Fh h , the steady addle if 
0 < <

1T   if 
ate is a s2F hus< .h  T  st

2Fh rce if 2 < .Fh h  If 0 < 0T  ( 0 > 0T ), 

     he 

h  and a sou

the curve 0 is represented by t

on- 
tin

s cas
 backward 

lo

ward. Simply observe that, in the case 
(3

2.2. Forward-Looking Discretizations 

tization 

1  (9) 

of system (5) around the common steady state 

 1 1, : >T h D h h  
ghtward) branch of paraleftward (ri bola in Figure 2. 

3) Assume now that the steady state is a source in c
uous time: 0T  and 0 0D  . (7) and (8) imply 1 > 2T  

and 1 1> 1D T  for every > 0 . Therefore the  
property is preserved what > 0h . The branch of 
parabola in Figure 3 represents thi e.  

Corollary 2 (topological equivalence in

 h
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er 

oking) In any case of Proposition 1, there exists a 
nonempty interval  0,h  for the discretization step h 
where the stability properties of the continuous-time sys- 
tem are preserved. 

Proof Straightfor
), =h  . 
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Differently from the previous case, the Jacobian ma-
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  is no longer linear in 

h. The trace and th of 1e determinant J  are now given 
by 
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2
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Proposition 3 Consider  > 0h .
1) If the steady state is a sink in continuous time, then 

the sink property is preserved in discrete time whatever 

. > 0h
2) Let the steady state be a saddle in continuous time. 
2.1) If , then the steady state is a saddle. 1 > 0D

< 0D2.2) If , then the steady state is a saddle if 1

40 < < Fh h  and a sink if . 4

3) Let the steady state be a source in continuous time. 
<Fh h

3.1) Let 1 . If < 0D  2

0 0 0< 4T D D , then the source 
property is preserved whatever  If > 0.h  2

0 0 0> 4T D D , 
then the steady state is a source if 30 < < Fh h  or 

, and a saddle if h 3 4< <F Fh h h . 4 <Fh
3.2) Let 1 . If > 0D  2

0 0

0 < <
0 , then the steady 

state is a source if 2

< 4T D D

Hh h  and a sink if 2 . 
If 

<Hh h
 2

0 0 > 4T D D0 , then the steady state is a source if 
,  a saddle if 3F 3 4<h h <F Fh h h  and a sink if . 4

The system generically undergoes a Hopf bifurcation 
at 

<Fh h

2Hh  and flip bifurcations at Fi

Proof The proof is similar to that of Proposition 1. See 
Bosi and Ragot [4] for more details. 

h , . = 3, 4i

Corollary 4 (topological equivalence in forward 
looking) In every case of Proposition 3, there exists a 
nonempty interval  0,h  for the discretization step h 
where the stability properties of the continuous-time system 
are preserved. 

Proof Straightforward. Simply observe that, in cases 
(1) and (2.1), =h  . The same happens in the case 
(3.1) if  2

0 0 < 4 D0T D

n

. 

2.3. Hybrid Discretizations 

In economics, many higher-dimensional models require a 
hybrid discretization to recover the equivalence between 
discrete and continuous time, that is a mix of discretiza- 
tion in backward and forward looking. Without loss of 
generality, we consider a system where the first equation 
is discretized backward and the second one forward. 
Thus, the system of differential Equations (5) becomes:  

1 1 1 1 1 2,n n nx x hf x x              (10) 

2 1 2 2 1 1 2 1,n n n nx x hf x x            (11) 

The steady state is invariant to the choice of time and 
to the type of discretization (backward/forward). The 
trace and the determinant of the Jacobian matrix 1J  of 
the hybrid system (10)-(11) become 

 0 0
1

2 2

= 2
1

h T hD
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h f x


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  
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0 0

1 1
2 2 2 2

= 1 = 1
1 1

hT h D
D T

h f x h f x
  

     
   (13) 

Notice that, in the particular case 2 2 = 0f x  , (12) 
and (13) write 

2
1 1
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T D h
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0 22 0 22
5

0 0

2 2 4
F

T f T f
h

D D

  
   

  0D
 

2

0 22 0 22
6

0 0

2 2 4
F

T f T f
h

D D

  
   

  0D
 

where 22 2 2f f x   . 

Proposition 5 Consider  > 0h .
1) Let . 22

1.1) If the steady state is a sink in continuous time, 
then the steady state in discrete time is a sink if  

0f 

60 < < Fh h , and a saddle if . 6

1.2) Let the steady state be a saddle in continuous time. 
<Fh h

1.2.1) If   2

0 22 0 02 4 <T f D D    20 0 2> 2T f or , 
then the steady state is a saddle point. 

1.2.2) If   2

0 22 0 02 4 >T f D D  20 0 2< 2T f

5<
  and , 

then the steady state is a saddle if 0 < Fh h  or 
, and a source if 6 5 6<Fh h < <F Fh h h . 

1.3) If the steady state is a source in continuous time, 
then the steady state is a source if 60 < < Fh h  and a 
saddle if . 6 <Fh h

> 0f2) Let 22  with 22 . All the previous cases 
hold, provided we restrict the analysis to the interval 

< 1h f

 220,1 f . 
The system generically undergoes a Hopf bifurcation 

at 2Hh  and a flip bifurcation at Fi

Proof The proof is similar to that of Proposition 1. See 
Bosi and Ragot [4] for more details. 

h , . = 5,6i

Corollary 6 (topological equivalence in hybrid look- 
ing). In every case of Proposition 5, there exists a non- 
empty interval  for the discretization step h where 
the stability properties of the continuous-time system are 
preserved.  

0,h 

Proof Straightforward. Simply observe that, in the 
case (1.2.1), . =h 

3. Ramsey Model 

In the seminal Ramsey [1], the planner maximizes the 

undiscounted dynastic utility: , un-    
0

dtu c u c t

  

 t t t tk k c f k  der a resource constraint  where t  
and t  denote the individual capital and consumption. 
The initial endowment  is given.  



k
 

k
c

0

The intensive production function f k  is strictly 
increasing and strictly concave in the capital intensity 
and satisfies the Inada conditions. The felicity  u c  is 
also strictly increasing and strictly concave in the con- 
sumption level. c denotes the bliss point, that is the 
steady state value of consumption:  k=c f k  
with   ='f k  .  

The planner maximizes the Hamiltonian: 

     t t t t t

to find the first-order conditions: 

  =t t tk f k k c t             (14) 

 = '
t t tf k                  (15) 

where    =t tc c u 1'

tH u c u c f k k c         

t 
tc

t

 . The strict concavity of u 
ensures that  is a well-defined function of the multi- 
plier  .  

In discrete time, the planner maximizes 
   =0 tt

u c u c
   

1t t tk k   
 under a sequence of resource con- 

straints: , to obtain the first- 
order conditions: 

 tk c f k  t

  1 =t t t t tk k f k k c             (16) 

 1 1= 1 '
t t tf k               (17) 

We want to prove that the discrete-time system (16)- 
(17) is a discretization of the continuous-time system (14)- 
(15). 

Proposition 7 The discrete-time Ramsey model comes 
from a first-order hybrid Euler discretization of the con- 
tinuous-time model, that is a backward-looking discreti- 
zation of the resource constraint (14) and a forward- 
looking discretization of the Euler Equation (15), with a 
unit step. 

Proof Under the backward-looking linear discretiza- 
tion of the continuous-time resource constraint (14): 

   t h t t t tk k h f k k c            (18) 

we recover exactly the discrete-time resource constraint 
(16) with a unit discretization step ( ). However, the 
intertemporal arbitrage requires a forward-looking dis- 
cretization. Focus on (15) and apply (4): 

= 1h

 = '
t h t t h t hh f k           

to obtain 

 1 '
t t h t hh f k                 (19) 

which gives exactly the discrete-time Euler Equation (17) 
under a unit discretization step . = 1h

The forward-looking discretization of (15) is more 
suitable to capture saving decisions. Indeed, the expected 
productivity affects the arbitrage between consumption 
today and consumption tomorrow. 

Let us consider the steady state. For all the three dy- 
namical systems (14)-(15), (16)-(17) and (18)-(19) the 
steady state is defined by:   ='f k   and 

   = =c c f k k   (assumptions on technology and 
preferences ensure its existence and uniqueness). 

Focus now on the stability properties. The Jacobian 
matrix 0J  of the continuous time system (14)-(15) is 
given by: 

0

0
=

0

Ak
J

B k




 
 
 
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where  1 > 0  A     , 1 >B     0  with 

    > 0' ''u c u c c      ,      0,1'kf k f k   

     = 1 < 0'' 'kf  nd the and k f k   . The trace a
determinant in continuous time are  and 

0 . 

le-path y prop-
erty. 

The hybrid Euler discretization ( 9) is consistent 

position 8 The steady state of the discretized
m

 h. 

0 = 0T

0 = <D AB

Notice that 0 < 0D  implies the sadd  stabilit

18)-(1
with the continuous-time case. 

Pro  
odel is a saddle point (as in the continuous-time case) 

whatever the discretization step
Proof The Jacobian matrix 1J  of the hybrid Euler 

discretization (18)-(19) is: 

1 2

1
=

1

h
J

hB k Bh

Ak

A




 
 


 
 

where A and B are defined above. The trace and deter- 
minant become B  and . We obt

1 r th ath stability

r the discreti h
room for bifur

s- 
cr
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